
Training for Multi-resolution Inference
using ReusableQuantization Terms

Sai Qian Zhang
Harvard University, USA
zhangs@g.harvard.edu

Bradley McDanel
Franklin and Marshall College, USA

bmcdanel@fandm.edu

H. T. Kung
Harvard University, USA

kung@harvard.edu

Xin Dong
Harvard University, USA
xindong@g.harvard.edu

ABSTRACT
Low-resolution uniform quantization (e.g., 4-bit bitwidth) for both
Deep Neural Network (DNN) weights and data has emerged as an
important technique for efficient inference. Departing from con-
ventional quantization, we describe a novel training approach to
support inference at multiple resolutions by reusing a single set
of quantization terms (the same set of nonzero bits in values). The
proposed approach streamlines the training and supports dynamic
selection of resolution levels during inference. We evaluate the
method on a diverse range of applications including multiple CNNs
on ImageNet, an LSTM on Wikitext-2, and YOLO-v5 on COCO. We
show that models resulting from our multi-resolution training can
support up to 10 resolutions with only a moderate performance
reduction (e.g., ≤ 1%) compared to training them individually.
Lastly, using an FPGA, we compare our multi-resolution multiplier-
accumulator (mMAC) against other conventional MAC designs and
evaluate the inference performance. We show that the mMAC de-
sign broadens the choices in trading off cost, efficiency, and latency
across a range of computational budgets.

CCS CONCEPTS
• Computer systems organization → Neural networks; Re-
configurable computing;Data flow architectures; Systolic ar-
rays; • Computing methodologies→ Artificial intelligence.

KEYWORDS
Multi-resolution inference; deep neural networks; systolic arrays;
quantization; joint-optimization training; co-design
ACM Reference Format:
Sai Qian Zhang, Bradley McDanel, H. T. Kung, and Xin Dong. 2021. Train-
ing for Multi-resolution Inference using Reusable Quantization Terms.
In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’21),
April 19–23, 2021, Virtual, MI, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3445814.3446741

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446741

1 INTRODUCTION
Deep Neural Network (DNN) quantization has received much at-
tention in recent years due to its potential to address the growing
computational costs of DNN training and inference. By quantizing
a 32-bit full-precision models to a lower resolution (e.g., 8-bit fixed-
point), quantized DNNs can be implemented using more efficient
hardware with less costly memory access, such as 8-bit Multiplier-
Accumulator (MAC) units instead of floating-point units, leading to
significant improvements in energy efficiency, latency, and storage
requirements. However, there is generally a trade-off between the
hardware cost and the performance (e.g.,classification accuracy)
of a DNN under a fixed quantization regime. Due to this trade-off,
quantizationmethods often present multiple distinct models trained
at different precisions (e.g., from 8-bit to 4-bit fixed-point bitwidths)
that achieve varying degrees of performance/cost trade-off.

However, conventional hardware is typically designed for a sin-
gle precision, such as 8-bit fixed-point, and therefore can not effi-
ciently implement quantized models across a wide range of preci-
sions to support such a performance/cost trade-off. For instance,
while an 8-bit MAC can be used to multiply two 4-bit numbers, the
upper-half of the MAC will only be multiplying zero bits.

To address this concern, we present a multi-resolutionMultiplier-
Accumulator (mMAC) design that allows a hardware platform to
support efficiently multiple resolutions at runtime. The mMAC
operates on only the nonzero power-of-two terms in a value. For
example, for the value 20 = 000101002, mMAC only operates
on the 24 and 22 terms, corresponding to the two nonzero bits
in the unsigned binary representation of the value. Our approach
also generalizes to signed-digit representations (SDRs), such as
Booth Encoding [4], which can have both positive and negative
terms. Consequently, the mMAC takes fewer cycles to multiply
lower-resolution numbers (i.e., numbers with fewer nonzero terms)
and more cycles to multiply higher-resolution numbers with more
nonzero terms. Note that, unlike conventional uniform quantization
where resolution is tied to the bitwidth of the representation, in
this paper we generalize the notion of resolution of a value to be
the allowed number of nonzero power-of-two terms in the value,
regardless of their positions in the encoding.

To support multi-resolution inference, we have developed a
multi-resolution DNN training approach that jointly optimizes
many sub-models across a wide range of resolutions (illustrated on
the left of Figure 1). The result of this joint-optimization training is
a meta multi-resolution model capable of spawning sub-models at
multiple resolutions at runtime. These sub-models have two novel

https://doi.org/10.1145/3445814.3446741
https://doi.org/10.1145/3445814.3446741
htk
Text Box

htk
Text Box
In Proc of the 26th ACM Int Conf on Architectural Support for Programming Languages and Operating Systems (ASPLOS), April 2021

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Sai Qian Zhang, Bradley McDanel, H. T. Kung, and Xin Dong

Term ops (cost)

A
cc

ur
ac

y

Sub-model 5
(High budget)

Sub-model 1
(Low budget)

Number of terms determines both
accuracy and cost (Term operations)

Sub-model 1

Meta multi-resolution model

16/24/24/24/25W1 =
21 2023 2224

W2 =
W3 =
W4 =

Accuracy and
computation cost trade-offmMAC system

Output
activation

values

Data term store
212220 22

Weight term store
23 2422 23 mMAC

Sub-model
configuration

Weight budget

Data budget

1
0

0

0 1
1

1
0
0

1
1
1

1
0

0
0 1

1
1

0

Sub-model 2 Sub-model 5
...

0/0/4/4/4
16/16/20/22/23
0/8/12/12/12

...
budget=2 budget=4 budget=10

Figure 1: A multi-resolution model (left) contains multiple sub-models with varying power-of-two term budgets leading to
different degrees of quantization. Here, a group of 4 weight values (25, 4, 23, 13) are quantized with 5 different term budgets. In
a hardware deployment (middle) themulti-resolutionmodel is implemented using amulti-resolutionMultiplier-Accumulator
(mMAC)which all sub-models can share. The proposedmulti-resolution approach enables an efficient cost/performance trade-
off to suit the current runtime conditions (right) by selecting the appropriate sub-model with a corresponding resolution.

properties: storage sharing across the sub-models, as the same
nonzero terms (which need not be adjacent) for lower-resolution
sub-models also appear in higher-resolution sub-models, and com-
putation sharing as all sub-models can share the same mMAC
computation engine. In both training and inference, for the same set
of DNN weights, we simply adjust the number of leading nonzero
terms to implement different quantization resolutions (i.e., sub-
models). Thus, the larger quantization terms in a weight are reused
across multiple resolutions.

The multi-resolution model is deployed on the proposed mMAC
system, shown in the middle of Figure 1. A user (or other selection
mechanism) can select which sub-model to use based on the current
resource constraints in the performance/cost trade-off space (right
of Figure 1). Configuring the system to use a low-budget sub-models
is achieved by simply dropping more low-order power-of-two terms
from the meta multi-resolution model. Since a low-resolution sub-
model has fewer terms, the hardware system using mMACs will
perform the inference computation at a lower computation cost,
thereby at an increased computation rate. The multi-resolution
joint-optimization training procedure is critical in speeding up the
training of sub-models as well as ensuring low hardware cost and
high accuracy of the resulting sub-models. The main contributions
of the paper are:

• A multi-resolution training paradigm that supports efficient
joint-optimization training of multiple sub-models that share
power-of-two terms. The method uses a teacher-student
learning approach to train only two of the target sub-models
at each iteration. The resulting sub-models achieve a trade-
off in accuracy and number of term operations (cost).
• Sub-model configuration at inference to meet the current
resource constraints at deployment which translates to sim-
ply adjusting the number of leading terms to use in learned
weights. The multi-resolution model has a low memory foot-
print, as all sub-model instances of a large model share the
same leading power-of-two terms of the latter across the
model weights. This also enables efficient memory access

of only the currently required terms given a specified term
budget.
• A multi-resolution hardware system with mMAC for sup-
porting field-configurable multi-resolution DNN inference.
The mMAC computes dot products by processing only the
nonzero terms in weight and data values.

The remainder of the paper is organized as follows: Section 2
presents the background and related work on DNN pruning, DNN
quantization and binary encoding schemes. Section 3 provides an
overview of term quantization and its application for dot-product
computation. In Section 4, we describe the joint-optimization train-
ing strategy to produce a meta multi-resolution DNN model. The
hardware design of mMAC for multi-resolution inference system
is described in Section 5. The evaluation results on the accuracy
performance of the multi-resolution model are given in Section 6,
followed by the hardware evaluation in Section 7. We have released
the code for multi-resolution training and its implementation at
https://github.com/saizhang0218/Multi-resolution-Inference.

2 BACKGROUND AND RELATEDWORK
In Section 2.1, we review related work on DNNs that can dynami-
cally reduce computation costs under a small or negligible decrease
of model performance (e.g., accuracy). After that, we discuss various
pruning techniques in Section 2.2 and quantization techniques in
Section 2.3 used for DNNs acceleration. In Section 2.4, we provide
an overview of the Signed-digit Representation (SDR), which we
use instead of the conventional Unsigned Binary Representation
(UBR), and review specialized hardware accelerators which employ
SDR for DNN inference. Finally, in Section 2.5, we illustrate how
matrix-matrix multiplication is performed with those systolic ar-
rays which are used in evaluating the multi-resolution inference
method of this paper.

2.1 DNNs with Performance/Cost Trade-off
In recent years, there has been a trend towards designing dynamic
neural network to achieve an on-demand performance/cost trade-
off. Many approaches achieve this trade-off by skipping parts of the

https://github.com/saizhang0218/Multi-resolution-Inference

Training for Multi-resolution Inference using Reusable Quantization Terms ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

(a) 5-bit Uniform
Quantization

(b) 2-bit Uniform
Quantization

0 1
1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

21 2023 2224 21 2023 2224 21 2023 2224
0 1

1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

0 1
1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

(c) Logarithmic
Quantization

21
6

17
11

16
0

16
8

16
4

16
8

Figure 2: (a) Four values under 5-bit uniform quantization.
(b) 2-bit uniform quantization takes only the two leading
terms (24 and 23) of the 5-bit uniform quantization in (a).
(c) Logarithmic quantization uses only the largest term in
each value.

inference computation based on the complexity of the input sample.
In [27, 43, 53], the authors add early-exit branches to a DNN, so
that easier input samples can exit at an earlier point in the network
with high confidence. BlockDrop [57] and SkipNet [55] selectively
drop the convolutional blocks in ResNet architecture [23] on a
per-sample basis.

In [58, 59], the authors propose approaches to train a single
model which can generate sub-models with varying number of
channels in each convolutional layer. During runtime, the number
of activated channels in a convolutional layer can be adjusted dy-
namically based on the on-device resource budget. Once-For-All [5]
allows for a significantly larger number of DNN architectural set-
tings by exploring a greater design space (e.g., depth, width, kernel
size, and resolution) and using a teacher-student training paradigm.
In contrast to these works, where the derived sub-models share
weight values, our work proposes a multi-resolution DNN ap-
proach by sharing weight terms. Our approach allows for greater
sharing flexibility in weight representations and therefore a better
performance/cost trade-off.

2.2 Pruning Techniques
There have been significant research efforts on exploiting spar-
sity presented in DNN weights and activations [9, 21, 22, 41] as
performing multiplication with zero operands can be viewed as
wasted computation. Some of these methods take advantage of
the latent sparsity (e.g., in CNN activations) of pre-trained mod-
els [2, 7, 20, 21, 41, 47]. Other methods introduce mechanisms at
training time to make the computation sparser [22, 24, 28, 40, 56],
and for more efficient deployment in hardware [18, 46, 49]. For
instance, column combining [35] performs pruning on groups of
values in order to achieve denser representations when deployed in
systolic arrays. Regardless of the approach, these methods work at
the value level: either a value is nonzero, requiring a fixed amount
of computation time to process, or the value is zero, meaning that
the associated computation can be skipped.

2.3 Quantization Techniques
Quantization [11, 12, 19, 29, 33, 48, 62] has been studied extensively
for reducing the associated storage, memory access, and compu-
tation costs of DNNs. Several post-training quantization methods

W2,0 W2,1 W2,2

W1,0 W1,1 W1,2

W0,0 W0,1 W0,2

Systolic
cell

Weight-stationary systolic array
computing dot products Y=WX

X0,0
X0,1
X0,2

X1,0
X1,1
X1,2

X2,0
X2,1
X2,2

W0,0 W0,1 W0,2

W1,0 W1,1 W1,2

W2,0 W2,1 W2,2

W =
X0,0 X0,1 X0,2

X1,0 X1,1 X1,2

X2,0 X2,1 X2,2

X =

Y0,0 Y0,1 Y0,2

Y1,0 Y1,1 Y1,2

Y2,0 Y2,1 Y2,2

Y = Y0,0 Y0,1Y0,2

Y1,0 Y1,1Y1,2

Y2,0 Y2,1Y2,2

WX =

Figure 3:Weight-stationary systolic array formatrix-matrix
multiplication.

have been proposed to quantize floating-point weights after train-
ing, using 16-bit and 8-bit uniform quantization (UQ), without
dramatically impacting classification accuracy [15, 19]. Recently,
low-precision UQ approaches (e.g., with less than 4 bits per value)
have also been studied. Tomitigate the accuracy degradation caused
by low-precision weight and data, additional quantization-aware
training [30] is required to fine-tune the model weights. Figure 2(a)-
(b) show 5-bit UQ and 2-bit UQ applied on four values.

Logarithmic quantization (LQ) is a more aggressive form of quan-
tization that works by rounding each value to the nearest power-
of-two term as shown in Figure 2(c) [45, 61]. This allows for signifi-
cantly more efficient inference, as fixed-point multiplication in UQ
can be replaced with bit shift operations as each value has only a
single power-of-two term. However, due to the aggressive form of
quantization, LQ typically suffers from larger accuracy degradation
than UQ, as the resolution decreases exponentially when the values
gets larger.

Power-of-two term quantization (TQ) relaxes LQ by allowing
a term budget of one or more terms for values [36]. Unlike prior
work that applied TQ in a post-training quantization fashion [36],
in this work, we propose a multi-resolution training paradigm using
TQ as our quantization function for weights and data. We discuss
TQ in greater detail in Section 3, as it is the quantization scheme
used throughout this paper.

2.4 Techniques of Reducing Term Operations
Unsigned Binary Representations (UBRs) are a commonly used
positional encoding system, where each position is either 0 or 1. By
comparison, in Signed-digit Representations (SDRs), each position
can have a coefficient of {−1, 0, 1}. Note that this means each digit
in an SDR requires two bits: a sign bit and a 0/1 bit. Allowing
each position to have a negative coefficient leads to representations
with fewer nonzero digits. For instance, 27 (11011 in UBR with four
nonzero digits) can be represented as 1001̄01̄ in SDR (three nonzero
digits).1 SDRs have been extensively studied in the past [3, 4, 16],
but have received less attention in relation to the literature of DNN
hardware accelerators [6–8, 17, 21, 35, 42, 47, 60].

Some recent works [1, 13, 36, 51] have observed that the distri-
bution of DNN weight values, leading to most values having few
nonzero terms, can be exploited to reduce the computational cost
of DNN inference. Specifically, multiplication between a weight

1Here, 1̄ represents a negative coefficient (e.g., −22 or −20 in the example).

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Sai Qian Zhang, Bradley McDanel, H. T. Kung, and Xin Dong

3

3

21
6

11
17

(a) Weight
filter

4

(b) Weight
group

(c) TQ

21
6

10
16

(d) TQ weight
group

24 21 2023 22

0 1
1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

(e) Data
feature maps

3
19
6

(f) Data
values

(g) TQ
24 21 2023 22

1 1
0 1 1
1 1 0

0 0
1
0

0
0
0

(h) TQ data
values

Term quantization for data

21 2023 2224
0
1
0
0

0
0
0
1

0
0
1
0

1
1
1
1

1
1
0
1

X1 = 3
X2 = 19

X3 = 6
X4 = 11

Data values

X’1 = 3 = 21+20

X’2 = 18 = 24+21

X’3 = 6 = 22+21

X’4 = 10 = 23+21

Term-truncated
data values

11 0 1 10 1

3
18
6
10

Figure 4: Term quantization (TQ) applied to a group of size
𝑔 = 4filter weights (top) and individual data values (bottom).

and data value can be decomposed into exponent additions be-
tween power-of-two term-pairs in the two values. Through this
view, SDRs are an attractive representation as they reduce the num-
ber of terms in each value, leading to fewer term-pairs. (In fact,
it is known in the literature that SDR can achieve the minimum
number of terms [31]). Our proposed multi-resolution hardware
architecture (Section 5) supports weight and data values encoded
in SDRs.

2.5 Systolic Arrays for Matrix-Matrix
Multiplication

The majority of computational workload of DNN inference involves
matrix-matrix multiplication between a trained weight matrix and
input data matrix. Systolic architectures are known to efficiently
implement the matrix-matrix multiplication due to their regular
structures, dataflow architectures and reduced memory access [34].
In the evaluation, we adopt a weight-stationary systolic array for
matrix-matrix multiplication computation, where the weight matrix
𝑊 is pre-stored in systolic cells of the systolic array before the
operation begins. During the operation, the input data are passed
into the systolic array from bottom in a skewed fashion. The matrix
product will be produced at the right end of each row of the systolic
array (Figure 3). In Section 5, we describe a DNN inference system
that uses a systolic array of mMAC systolic cells.

3 TERM QUANTIZATION
In this section, we provide an overview of term quantization (TQ),
which we use in training a multi-resolution DNN described in Sec-
tion 4. First, in Section 3.1, we show how we apply TQ to group
of weights in a DNN and discuss the associated quantization er-
ror based on the distribution of weights. Then, in Section 3.2, we
illustrate how we apply TQ to individual data values. Finally, in
Section 3.3, we discuss the computational motivation for bounding
the number of terms in weight and data values.

3.1 Term Quantization on Weight Groups
TQ is a new quantization technique, proposed in [36], applicable
across a group of values (with group size 𝑔) by keeping the leading
𝛼 terms across all values in the group. Figure 4(a)-(b) show how

−0.2 −0.1 0.0 0.1 0.2
Weight Value

0.0

0.5

1.0

1.5

Fr
eq

ue
nc

y
(%

)

MLE is
N(μ= 0, σ= 0.03)

(a) Weight Histogram

1 2 3 4 5 6 7 8 9 101112131415
Group Size

0.8

1.0

1.2

1.4

Av
er

ag
e

Qu
an

tiz
at

io
n

Er
ro

r (b) Group Size Versus TQ Error
N(μ= 0, σ= 0.03)

Figure 5: (a) The distribution of weights in the 13th convo-
lutional layer in ResNet-18 [23]. (b) The quantization error
using Term Quantization (TQ) with an average term budget
of one term per value as the group size varies from 1 to 15.

four weights in a convolutional weight filter can form a group to
be processed by TQ. After applying TQ with a term budget of 𝛼 = 8
(Figure 4(c)), two of the 20 terms are dropped such that only 8
nonzero terms remain across the values in the group. Figure 4(d)
shows the weight group values after TQ.

Compared with rigid quantization schemes, such as uniform
quantization, where the terms can only be placed at certain digit
location, TQ allows for a much greater flexibility in allocating terms
across the group. By allocating more terms to larger values in the
group and fewer terms to smaller values in the group, TQ achieves
a much lower quantization error. This term allocation property
is especially useful for DNN weights, when they are well approx-
imated by a normal distribution. Figure 5(a) shows a histogram
of the weights in the 13th convolution layer in ResNet-18 [23].
Applying a Maximum Likelihood Estimate (MLE) of a 1D normal
distribution gives 𝑁 (0, 0.03). Other layers in ResNet-18 follow a
similar distribution with the standard deviation 𝜎 between 0.01 and
0.04. Figure 5(b) shows the average quantization error due to TQ
for samples drawn from a zero-mean normal distribution, with 𝜎

of 0.03, as a function of the TQ group size. The quantization error
rapidly decreases as the group size goes from 1 to 4 and becomes
flatter as the group size approaches 15. Based on this analysis, we
use a group size of 16 for the rest of the paper, as it achieves most
of the benefit from weight grouping. As discussed later in Section 5,
there is a significant hardware cost associated with in making the
group too large due to the increasing size of a multiplexer in the
mMAC based on the group size.

3.2 Term Quantization for Data Values
TQ can also be applied to an individual value by keeping the leading
𝛽 power-of-two terms in it. In this paper, we make a simplifying
assumption that when applying TQ to data values, we use group
size 𝑔 = 1. That is, for data values we apply TQ to individual data
values. The bottom of Figure 4(e)-(h) illustrate how TQ is applied
to values in data feature maps of a CNN with a data term budget
𝛽 = 2. As shown in the figure, for the value 19 (10011), TQ with
a term budget 𝛽 = 2 would quantize it to 18 (10010) by dropping
the smallest 20 term (denoted by the red slash). Unlike UQ, which
always truncates the low-order terms (e.g., 20) by reducing the
bitwidth, TQ maintains a larger bitwidth but reduces the number of
‘active’ terms in each value up to the term budget 𝛽 . In Section 3.3,

Training for Multi-resolution Inference using Reusable Quantization Terms ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

21 2022

1 0
1 0 1
0

W
10
5

W’
10
4

21 2022

1 1
1 1

X
11
7

X’
10
6

23

0
1

1
0

0
1
23

[23+21,22]

[23+21,22+21]

23x23+21x23+23x21+21x21
+22x22+22x21

dot product

21 2022

1 0
1 0 1
0

W
2
5

W’
2
4

21 2022

0 1
1 1

X
9
3

X’
8
2

23

0
0

0
0

0
1
23

[21,22]

[23,21]

21x23+22x21
dot product

(a)

(b)

Figure 6: (a) and (b) show two examples on the term oper-
ations to compute the dot product between a group of two
term-quantized weights and data. In (a), the weight term
budget 𝛼 and data term budget are set to 𝛼 = 2 and 𝛽 = 1,
resulting 𝛾 = 𝛼 × 𝛽 = 2 term-pair multiplications. In (b), the
weight term budget 𝛼 and data term budget are set to 𝛼 = 3
and 𝛽 = 2, resulting 𝛾 = 𝛼 × 𝛽 = 6 term-pair multiplications.

we discuss the computation implications of limiting the number of
nonzero terms in data values.

3.3 Term-pair Multiplication Under TQ
Suppose we consider the dot-product computation between a group
of weights and a group of data values. We use the following termi-
nologies and notations throughout the paper:
• group size (𝑔)
• weight term budget (𝛼) for a group of weights
• data term budget (𝛽) for each data item (i.e., 𝑔 = 1)
• term-pair budget (𝛾) is 𝛼 × 𝛽

We note that the dot-product computation between weights
and data under TQ involves 𝛾 term-pair multiplications. Each term-
pair multiplication amounts to an addition of the exponents in
the two terms. Two examples of such dot-product computation
are given in Figure 6. In Figure 6 (a), assume TQ with a weight
term budget 𝛼 = 2 and data term budget 𝛽 = 1 is applied on a
weight group W = [𝑤1,𝑤2] = [2, 5] = [21, 22 + 20] and data
values X = [𝑥1, 𝑥2] = [9, 3] = [23 + 20, 21 + 20], respectively. This
produces the term-quantized weights W’ = [2, 4] = [21, 22] and
the term-quantized data X’ = [8, 2] = [23, 21]. The dot product
between W’ and X’ is then computed by summing the following
term-pair multiplication results: 21 × 23 + 22 × 21 = 24 + 23 = 24.
This dot product requires 𝛾 = 𝛼𝛽 = 2 term-pair multiplications.
Figure 6 (b) depicts another example with a weight term budget
𝛼 = 3, data term budget 𝛽 = 2 and term-pair budget of 𝛾 = 6. By
limiting the number of leading terms in weights and data to a fixed
group budget via TQ, we can bound the term-pair computations
needed for each value-level multiplication in a convolutional layer.
We utilize this term-pair budget 𝛾 = 𝛼𝛽 in the design of our multi-
resolution Multiplier-Accumulator (mMAC) discussed in Section 5.

16/20/20/21
 0/ 0/ 6/ 6
16/16/16/16

 0/ 8/ 8/10

4-term
budget

W’1 =
W’2 =
W’3 =
W’4 =

Multi-resolution term quantized weights

2-term
budget

6-term
budget

8-term
budget

24 21 2023 22

0 1
1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

1
0
1

24 23 2224
1 0
0
1

1
0
0
10

24 2123 22 24 21 2023 22
0
1

0
0

1 0
0
1

1
0

1

0 1
1 0

0 0
0 1

1 0
0
1

1
0

1

1
0

1
0

0 0

24 21 2023 22

0 1
1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

Multi-resolution weight group

W1 = 21
W2 = 6
W3 = 17
W4 = 11

TQ (Term budget=8)

(Lowest
resolution)

(Highest
resolution)

Figure 7: A multi-resolution weight group of size 𝑔 = 4 with
four different weight term budgets 𝛼 : 2 terms (blue), 4 terms
(green), 6 terms (yellow), and 8 terms (red). Smaller termbud-
gets share terms with all larger term budget.

4 META MULTI-RESOLUTION DNN
In this section, we illustrate how we can train a single meta DNN
model to support multiple resolutions (i.e., term budgets) through
the use of TQ. First, in Section 4.1, we show how we can share the
terms in a group of weights across multiple resolutions. Then, in
Section 4.2, we present a teacher-student training algorithm to learn
a meta multi-resolution DNN that supports multiple resolutions
via term sharing.

4.1 Multi-resolution Weight Groups
In Section 3, we discussed how a group of𝑔weights can be quantized
to meet a specific weight term budget 𝛼 by dropping the low-order
power-of-two terms in the group. Here, we extend this notion such
that a single group of weights can support multiple weight term
budgets. Figure 7 depicts a multi-resolution weight group for the
same group of values in Figure 4, under four weight term budgets:
2, 4, 6, and 8 terms. When a lower-resolution term budget of 𝛼 = 2
is selected, the top two leading terms across the four values are kept
(shown in the blue region), resulting in the set of term-quantized
values of [16, 0, 16, 0]. In contrast, when a higher-resolution term
budget (e.g., 𝛼 = 8) is selected, the values in the group have less
quantization error (e.g., [21, 6, 16, 10]). This group-based multi-
resolution approach can be applied to the weight across all layers of
the DNN. Similarly, this multi-resolution paradigm can also apply
to the data by dynamically selecting the data term budget 𝛽 .

Under this multi-resolution paradigm, during inference runtime,
the term budgets 𝛼, 𝛽 can be selected to accommodate the current
hardware resource constraint (e.g., processing time or energy bud-
get) at hand. For instance, when there is less processing demand,
larger term budgets can be applied to the DNN weights, producing
a DNN model with both a better performance (e.g., classification
accuracy) and higher computation cost, and vice versa. Additionally,
since the terms in a weight group are shared across all resolutions,
they only need to be stored a single time while still supporting all
resolutions. Specifically, the terms for the lower-resolution weight
group can be derived by applying TQ with a corresponding term

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Sai Qian Zhang, Bradley McDanel, H. T. Kung, and Xin Dong

Student
sub-model

LT LS

Teacher
sub-model

Student candidates

+

LMulti-resolution
model

Term quantized data

Full-precision
model

Sub-model 2

1.1 0.3 0.7
0.6 0.0
2.3 0.4
0.9 1.8 1.2

2.7
2.5

...

...
...

Meta Multi-resolution DNN training

0 0

0 1

01 1

1 0
1

0
0

0
1

1
0

1
0
1
1

0
1

1
0 0

0 1

01

1 0

1

0 0

0 1

01

1 0
1

0
0

0
1

1
0

1 1
0

Sub-model 1

0 0

0 1

01

1 0
1
0

1

0 0

0 1

01

1 0

1

0
1

Sub-model 3

(a)

(b)

(c)

(d)

Figure 8: Meta multi-resolution DNN training procedure to
support sub-models with different term budgets at infer-
ence. At each training iteration, the full-precision model is
updated via (a)-(d). The highest resolution sub-model is al-
ways selected as the teacher sub-model and the student sub-
model is randomly selected from the other models. Note
that the terms used in a sub-model are nested in the terms
of any larger sub-model.

budget.We call the resulting DNNmodel corresponding to a specific
term budget pair (𝛼, 𝛽) a sub-model.

4.2 Meta Multi-resolution Model Training
Training a meta multi-resolution DNN to support multiple term
budgets (i.e., sub-models) during inference requires special consid-
erations. As we show later in Section 6.3, a simple post-training
quantization approach [38] applied to a DNN trained without multi-
resolution considerations does not achieve good performance for
the low-resolution settings with smaller term budgets. Therefore,
we propose to train the multi-resolution DNN such that the quanti-
zation error introduced by TQ during inference can be accounted
for during training in a similar manner to other quantization-aware
training approaches [30]. The resulting meta model generated from
the multi-resolution training enables superior prediction accuracies
for each sub-model compared to post-training quantization.

A straightforward training strategy is to jointly train all the pos-
sible sub-models by minimizing the sum of the losses derived from
each sub-model. However, this formulation causes the training run-
time and memory to grow rapidly as the number of sub-models
increases, making trainingwithmore than a few sub-models imprac-
tical. To mitigate these training challenges, we propose a knowledge
distillation mechanism which optimizes only a few sub-models per
iteration. Specifically, in this work, we optimize two sub-models at a
time: a higher-resolution teacher sub-model and a lower-resolution
student sub-model. To speed up convergence of themulti-resolution
training, we use a pre-trained full-precision 32-bit floating-point
model trained on the same training dataset.

Figure 8 provides an overview of this teacher-student training
procedure. At each iteration, the full-precision model is first quan-
tized by UQ to produce a multi-resolution model (step a) which is
used to generate both teacher and student sub-models (step b). The
sub-model with the largest weight term budget is always used as
the teacher network. The student network is randomly selected at

Systolic array of mMAC

...

Act.
block

mMAC

...

SDR
encoder

SDR
encoder

... Data
buffer...

... ...

...

...

... ...

SDR
encoder

Weight
buffer

Act.
block

Act.
block

mMAC mMAC

mMAC mMAC mMAC

mMAC mMAC mMAC

...

Term
Quantizer

Term
Quantizer

Term
Quantizer

Figure 9: The mMAC system design.

each iteration from the remaining sub-models (step c). The same
DNN topology is used for all sub-models. The loss is computed us-
ing the knowledge distillation technique [25], which combines loss
terms using both the real labels (𝐿𝑇) and the soft labels generated
by the teacher network (𝐿𝑆) (step d). The resulting gradients are
applied to the full-precision model. No quantization is performed
during backward propagation.

As this training is run over many iterations (e.g., 50000), each stu-
dent model will receive approximately the same number of updates
via random selection. During each forward propagation, we apply
SDR to reduce the weight and data terms in the multi-resolution
models. Additionally, we adopt the techniques in [10] to learn the
clipping parameters for both weight and data. Algorithm 1 provides
a detailed summary of this training procedure. Step 2 and 4 of the
algorithm generate the weight terms for the teacher and student
sub-models, respectively. Due to the fact that the sub-models use
nested terms as described in Figure 7, all weight terms that appear
in the student sub-model are also present in the teacher sub-model.

5 MULTI-RESOLUTION INFERENCE SYSTEM
In this section, we describe the design of the mMAC system which
can perform efficient inference for any of the sub-models gener-
ated by Meta Multi-resolution DNN training. To allow for a simple
system design, we use a 2D systolic array [34] for the implementa-
tion of the computation engine. However, we note that our multi-
resolution paradigm can also supports other computation engine
designs.

The system has the following components (depicted in Figure 9):
(1) a weight buffer that stores the weights of the largest sub-model,
(2) a systolic array composed of multi-resolution MAC (mMAC)
cells (described in Section 5.2), (3) activation blocks which apply
nonlinear activation functions (e.g., ReLU) on the systolic array
output, (4) SDR encoders (Section 5.3) which convert unsigned
input values into signed-digit representation (Section 2.4), (5) term
quantizers (Section 5.3) which select the top 𝛽 terms (data term
budget) from the outputs of the SDR encoders, and (6) a data buffer
which saves all the intermediate data for subsequent processing.

5.1 Multi-resolution Model Deployment
Given a multi-resolution DNN model trained via Algorithm 1, the
terms in each weight group of the largest sub-model are sorted
from largest to smallest and stored in memory. Before inference,
a chosen weight term budget 𝛼 determines the number of leading

Training for Multi-resolution Inference using Reusable Quantization Terms ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

Algorithm 1:Meta Multi-resolution DNN Training
Input: W𝑙 is the full-precision weights at layer 𝑙 .

X𝑇
𝑙
is input data for the teacher sub-model at layer 𝑙 .

X𝑆
𝑙
is input data for the student sub-model at layer 𝑙 .

𝐾 and 𝐴 are sets of weight and data term budgets.
𝑆 is the set of term budget pairs,
𝑆 = {(𝛼, 𝛽) |𝛼 ∈ 𝐾, 𝛽 ∈ 𝐴}.
𝑏 is the bitwidth of the multi-resolution model.
𝐼 is the number of training iterations (i.e., steps).
𝐿 is the total number of DNN layers.
𝑔 is the TQ weight group size (static across sub-models).

Output: The teacher model W𝑡𝑞,𝑇

𝑙
.

1 for 𝑖 ← 1 to 𝐼 do
2 for 𝑙 ← 1 to 𝐿 do
3 ⊲ Step 1 Apply 𝑏-bit uniform quantization on W𝑙 , X𝑆

𝑙
and

X𝑇
𝑙
to produce the result quantized model W𝑞

𝑙
and

quantized data X𝑞,𝑆

𝑙
, X𝑞,𝑇

𝑙
.

4 ⊲ Step 2 Let 𝛼𝑇 and 𝛽𝑇 denote the maximum possible
term budgets for weight and data, respectively. Apply
term quantization on SDR-encodedW𝑞

𝑙
with a budget 𝛼𝑇

and a group size 𝑔, generating the largest sub-model
weight matrix W𝑡𝑞,𝑇

𝑙
.

5 ⊲ Step 3 Apply term quantization on X
𝑞,𝑇

𝑙
with a budget

𝛽𝑇 and a group size 1 to produce TQ data X𝑡𝑞,𝑇

𝑙
.

6 ⊲ Step 4 Randomly select a pair of term budgets (𝛼𝑆 , 𝛽𝑆)
from 𝑆 , apply term quantization on SDR-encoded W

𝑞

𝑙

under a budget 𝛼𝑆 and a group size 𝑔 to generateW𝑡𝑞,𝑆

𝑙
.

7 ⊲ Step 5 Apply term quantization on X
𝑞,𝑆

𝑙
with a budget

𝛽𝑆 to generate the term-quantized data X𝑡𝑞,𝑆

𝑙
.

8 ⊲ Step 6 Perform the forward pass (e.g., convolution) for
(W𝑡𝑞,𝑇

𝑙
,X

𝑡𝑞,𝑇

𝑙
) and (W𝑡𝑞,𝑆

𝑙
,X

𝑡𝑞,𝑆

𝑙
) to produce Y𝑇

𝑜𝑢𝑡 ,
Y𝑆
𝑜𝑢𝑡 .

9 ⊲ Step 7 Perform additional operations (e.g., non-linear
activation, batch normalization) on Y𝑇

𝑜𝑢𝑡 and Y𝑆
𝑜𝑢𝑡 to

produce X𝑇
𝑙+1 and X𝑆

𝑙+1.
10 ⊲ Step 8 Compute the loss 𝐿𝑇 , 𝐿𝑆 for teacher and student

network.
11 ⊲ Step 9 Compute the gradient, updateW𝑙 and the

corresponding clipping parameters for each layer 𝑙 ∈ 𝐿.

terms for each group to load frommemory into eachmMAC. During
inference, the data terms are first quantized under the data term
budget 𝛽 before entering the mMAC. These term budgets lead to
a processing latency that is directly proportional to the term-pair
budget 𝛾 , which is 𝛼 × 𝛽 . An example is given in Figure 10, for a
weight term budget of 𝛼 = 8 (shown in red), 8 weight terms are
loaded from memory to mMAC, which together with 𝛽 = 1 leads to
a processing time of 𝛾 = 8. In contrast, a lower term budget (𝛼 = 4
shown in green) would require a subset of these terms to be loaded
from memory, giving a lower processing time (𝛾 = 4) and memory
access cost. More details on term-level memory access are provided
in Section 5.4.

5.2 Multi-resolution MAC (mMAC) Design
The multi-resolution MAC (mMAC) performs term-pair multipli-
cation via exponent addition. The hardware design of a mMAC

mMAC
Data terms

Dynamic computation time of Multi-resolution DNN via mMAC

21 21 22 22 23 24 24

mMAC
22 23 24 2421 22 22 23 24 24

20
Sorted termsWeight group

21 6 17 11

processed in
 cycles

24 21 2023 22

0 1
1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

20 21

Data terms

processed in
 cycles

Figure 10: The mMAC can process multiple term budgets by
varying the processing time (e.g., a 4-term budget in 4 cycles
and a 8-term budget in 8 cycles).

Weight exponent queue +

Data exponent queues

4 43 22 11 0
+++++ + + +Sign

+3
0

mMAC

YoutTerm
accumulator

Yin

+
+2

1 +
+4

0 +
+1

0 +

 0 2 3 0
Weight index queue

 1 1 3 0

Figure 11: Multi-resolution MAC design.

for a group size 𝑔 = 4 and term budgets 𝛼 = 8, 𝛽 = 2 is shown
in Figure 11. The exponents for term-pairs are stored in weight
and data exponent queues, with the sign of each term stored in a
separate queue with one bit per term. For example, the term −23
would save the exponent 3 in the exponent queue and a minus (−)
in the sign queue. Figure 11 uses the same weight terms as depicted
in Figure 10 for illustration clarity. Each cycle, the next weight
exponent is pulled from the weight exponent queue, and a data
exponent is selected for exponent addition using the next index
from the weight index queue. The adder then computes the sum
of these exponents, sets the sign, and delivers the sum to the term
accumulator. Processing a group with 8 term-pairs takes 8 cycles in
total. To support the multi-resolution term operation, the weight
exponent queue and weight index queue are designed to fit the
terms of largest budget.

Figure 12 depicts the operation of mMAC under a weight term
budget 𝛼 = 4 across multiple cycles (𝑇 = 0, . . . , 5). Only the four
leading weight terms and the corresponding weight indexes are
loaded into the weight exponent and weight index queues. At each
cycle, a pair of weight and data exponents are processed by the
adder, with the resulting signed exponent sent to the term accu-
mulator. The term accumulator converts the signed exponent to
a value and then adds it with the accumulation input. The term
accumulator output will loop back to be used again in the next
cycle while there are remaining term-pairs to be processed before
being passed to the neighboring systolic cell. To support the pro-
cessing of additional term-pairs across multiple cycles, the weight
exponent and index queues are implemented using linear feedback
shift registers.

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Sai Qian Zhang, Bradley McDanel, H. T. Kung, and Xin Dong

T=1

+

1

2 3 4

423

Term
acc.

T=3

4

0

T=5

T=0

++ + +

 0 2 3 0
Data index

queue

+
2 34

Term
acc.

4
++ + +

 0 2 3 0

1423

1
4

5

32

T=4

+
2 34

Term
acc.

4
++ + +

 0 2 3 0

4
6

96

1423

2

+
2 3 44

++ + +

 0 2 3 0

2
31+

23 4

Term
acc.

4
++ + +

 0 2 3 0

3
6

160

3

1423 1423

Term
acc.

168

+
2 34

Term
acc.

4
++ + +

 0 2 3 0

0010

0
4

4

184

T=2

Figure 12: An example of mMAC operation.

Incrementer

HA15 HA1 HA0...
1

m0m1m15

n0n1n15

Incrementer

Incrementer

>>

>>
Combine

wires

Term
accumulator

Positive
input

Negative
input

Positive
output

Negative
output

Shift bitwidth

(a) (b)

Figure 13: The term accumulator and incrementer.

5.2.1 Term Accumulator. A simple implementation of the term
accumulator would convert the signed exponent into the corre-
sponding binary value, and sum the intermediate result with the
input accumulation using a parallel adder. However, since the accu-
mulation must have a high precision (e.g., a 32-bit integer), a parallel
adder would be expensive to implement. Instead, we leverage the
property that each exponent addition results in a power-of-two
value to reduce the hardware implementation cost. Figure 13(a)
illustrates the design of the term accumulator. Using this design,
we can add 4 (0100)2 to the accumulator with value 9 (1001)2
by right shifting both by 2 places (corresponding to the 4), adding
the resulting two numbers with the incrementer, and finally left
shifting back the result. Exploiting the fact that exponent addition
results only in values with a single nonzero term enables the incre-
ments using half adders (HA), as opposed to full adders, as shown
in Figure 13(b).

One additional consideration is that under SDR a term can be
negative, meaning that the accumulator must support both incre-
ment and decrement operations. To support this requirement, we
use two accumulations to accumulate the positive sums and neg-
ative sums separately. A single parallel adder is used to perform
subtraction between the positive and negative sums at the end of
each row of systolic array to produce the final result.

5.3 Encoding and Term Quantization
The SDR encoder (Figure 14) takes outputs from the activation
block and produces SDRs with the minimum number of terms,
as described in Section 2.4. It implements the encoding scheme
proposed by [36] using a Finite-state machine (FSM). The FSM

SDR Encoder

SDR
Encoder

SDR
encoder
outputs

Systolic
array binary

output
2422

X = 24 + 22+ 21 + 20

2120 -20 2423

X = 24 + 23 - 20

NOT-IN-A-RUN
11 → -1: Enter IN-A-RUN
else: Copy bits

IN-A-RUN
00 → 1: Enter NOT-IN-A-RUN
01 → 0
10 → -1
11 → 0

SDR Encoding

SDR Encoding Algorithm

(a)

(b)

Figure 14: (a) SDR encoder operation. (b) SDR encoding algo-
rithm.

Term Truncator

Term quantization
SDR encoder

output
Term

quantizer
Term quantizer

output -20 2423 2423

X = 24 + 23 - 20 X’ = 24 + 23

Figure 15: Term quantization with 𝛽 = 2.

looks at only two consecutive bits in a binary input stream each
cycle to generate the corresponding SDR.

The term quantizer selects the top 𝛽 terms for each data value.
Figure 15 demonstrates this process for an input 𝑥 = 23 = 24 +
23 − 20. One term of 𝑥 is delivered to the term quantizer every
cycle, which counts the total number of the observed terms and
sets terms to 0 once the budget 𝛽 has been reached (e.g., 2 in this
example). The outputs from the term quantizer will be saved in the
data buffer.

5.4 Efficient Storage of Multi-resolution Model
A key to our proposed multi-resolution approach is the sharing of
terms across sub-models. Via our meta multi-resolution training
regime (Algorithm 1), the weight terms for all lower-resolution
sub-models are shared with higher-resolution sub-models so that
it is sufficient to store only the largest sub-model. Based on this
term sharing, we have developed a compact format for the stor-
age of weight and data terms in memory. Figure 16(a) shows an
example for the encoding of a group of 4 terms 24, 24, −23 and
21, where each term is encoded with 4 bits. The first three bits
represent the exponent of the term, and the forth bit indicates the
sign. Figure 16(b) shows encoding table for 5-bit TQ.

Under this storage scheme, each data value will be represented
by 4𝛽 bits, given that 𝛽 is the number of data terms in the value
and each term requires 4 bits.

Similarly, storing the weight terms in a group of𝑔 values requires
4𝛼 bits per weight value. Besides storing the terms, we must also
store the weight index for each weight term in a group of weight
values. Each weight index indicates which value a given weight
term belongs to. Storing weight indexes for each group requires
𝛼𝑙𝑜𝑔2 (𝑔) bits, where 𝛼 is the number of weight terms per group
and 𝑙𝑜𝑔2 (𝑔) is the number of bits to store each weight index. This
leads to an average of 4𝛼+𝛼 log2 (𝑔)

𝑔 bits per weight value.
In our multi-resolution training scheme, the weight budget 𝛼

of the highest resolution sub-model is selected to be close to 𝑔.
For instance, in the multi-resolution training of ResNet18, 8 sub-
models are trained jointly with a group size of 𝑔 = 16 and a group

Training for Multi-resolution Inference using Reusable Quantization Terms ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

Code Value

0000 20

0001 21

0010 22

0011 23

0100 24

1000 -20

1001 -21

1010 -22

1011 -23

1100 -24

0110 0

Weight storage

Code Value

0000 20

0001 21

0010 22

0011 23

0100 24

0101 25

0110 0

Code Value

1000

1001 -21

1010 -22

1011 -23

1100 -24

1101 -25

Data storage

Storage format

0100010010110001

Sign
(1 bit)

Exponent
(3 bits)

1000

0000
value
20
21
22
23

25

0001
0010
0011

0101

1000-20
-21
-22
-23

-25

1001
1010
1011

1101
0 0110

code value code

24 0100 -24 1100

Encoding table
(a) (b)

2421 -23 24

Figure 16: (a) Terms are converted into a packed format for
efficient storage. (b) The encoding table for storage.

budget of 𝛼 = 1.25 × 𝑔 = 20 for the highest resolution sub-model.
Storing a group of 𝑔 = 16 weights requires 4 × 𝛼 + 𝛼 × 𝑙𝑜𝑔2 (𝑔) =
4 × 20 + 20 × 𝑙𝑜𝑔2 (16) = 160 bits, which gives an average of 10
bits per weight value. Since all the 8 sub-models share the weights,
this allows for an average of 10

8 = 1.25 bits per weight values for
each sub-model.

In addition to the reduction in storage cost of weights shared
across multiple models, our multi-resolution approach also allows
for reduced memory access. Consider a multi-resolution weight
group depicted in Figure 7, which supports four resolutions associ-
ated with 2-term, 4-term, 6-term, and 8-term budgets for a group
of 𝑔 = 4 values. In this case, each resolution increase amounts to
adding a two-term increment to the group. For example, in increas-
ing the 6-term budget to the 8-term budget resolution, we use a
two-term increment composed of 20 and 21 for𝑤1 and𝑤4, respec-
tively. Based on this, we store each of these two-term increments
in a memory entry, in a manner that the two-term increments of
a larger sub-model always follow those of a smaller sub-models.
When implementing the next higher resolution, we access one more
entry to obtain the additional terms. Therefore, this memory layout
reduces the number of memory accesses for the low-resolution
sub-models (see Figure 17). In addition, the indices for the weight
terms are stored separately in a similar manner. The loaded indices
are used to position the terms within a group (Figure 18).

In general, an increment may have one, two, or more terms,
depending on the target multiple resolutions. We store several
increments for multiple groups contiguously in order to make full
use of the memory width. For example, for a 16-bit wide memory
with each term requiring 4 bits (Figure 16), we store two two-term
increments for two groups in each memory entry.

6 PERFORMANCE EVALUATION
In this section, we evaluate the performance (e.g., classification
accuracy, perplexity, or mean Average Precision) of DNNs trained
under the multi-resolution paradigm proposed in Section 4 on a
diverse range of applications including multiple CNNs (ResNet-
18 [23], ResNet-50 [23] and MobileNet-V2 [50]) on ImageNet [14],
an LSTM [26] on Wikitext-2 [44], and YOLO-v5 [32] on COCO [39].
We use pre-trained full-precisionmodels as the initial models for the
proposed multi-resolution paradigm discussed in Section 4.2. These
models come from the PyTorch torchvision for ResNet-18, ResNet-
50, and MobileNet-v2. We train a full-precision LSTM ourselves
using the PyTorch language model example. For YOLO-v5, we use

24 24

22 23

0x1
0x0

Term
memory

 23 22

 24 24

0x2 22 21
 21 200x3

20

03
0x1
0x0

Index
memory

3 0
 0 2

0x2 1 1
3 00x3

20 2122 2324 24 21 22

Weight group

Figure 17: The power-of-two weight terms are stored in two-
term increments. In this example, the same group of weight
values in Figure 7 are illustrated with four weight term bud-
gets 𝛼 = 2 (blue), 𝛼 = 4 (green), 𝛼 = 6 (yellow) and 𝛼 = 8
(red). When 𝛼 = 4 (shown in this figure), both addresses 0x0
and 0x1 will be accessed from the term memory and index
memory. When 𝛼 = 2, only address 0x0 will be accessed.

the pre-trained small model provided by the official repository
(https://github.com/ultralytics/yolov5).

We use these pre-trained models to initialize the training proce-
dure described in Algorithm 1. For all settings, we use a weight
group size of 𝑔 = 16. To perform the training efficiently, we have
implemented a custom CUDA kernel to perform TQ and SDR encod-
ing during the forward pass of training. Full details of the training
hyper parameters can be found in the appendix. This section an-
swers the following questions on multi-resolution performance:
• (Section 6.1) How much performance is lost by enforcing
term sharing instead of training each sub-model separately?
• (Section 6.2) How does the distribution of weight values
change across sub-models as a function of the the weight
term budget?
• (Section 6.3) How much performance is gained via the multi-
resolution training approach (Algorithm 1) as opposed to a
post-training term quantization approach as in [36]?
• (Section 6.4) How does UQ (with varying bitwidths) compare
to TQ (with varying term budgets) under a bit or term sharing
regime in terms of performance?
• (Section 6.5) How long does multi-resolution training (Algo-
rithm 1) take to perform for each of the evaluated models?
• (Section 6.6) What is the impact of the group size of TQ on
classification accuracy under multi-resolution training?
• (Section 6.7) How well does the multi-resolution training
approach scale as the number of sub-models is increased?

6.1 Impact of Term Sharing on Performance
In order to use the multi-resolution paradigm discussed in Sec-
tion 4, it is required that the weight values must be shared across all
sub-models. Therefore, it is important to investigate the impact in
performance of enforcing this weight sharing across the different
sub-models. Figure 19 shows the number of term-pair multipli-
cations and classification accuracy for ResNet-18 models trained
on ImageNet. The dark green points represent 8 models trained
individually using different TQ settings, such as (𝛼 = 10, 𝛽 = 2).

https://github.com/ultralytics/yolov5

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Sai Qian Zhang, Bradley McDanel, H. T. Kung, and Xin Dong

 24,24

0, 2

24 23 22
0 0
0
0

0
0
0
00

 Terms:
 Indices:

24 23 22
1 0
0
1

0
0
0
00

24 23 22
1 0
0
1

1
0
0
10

 23,22

3, 0
 Terms:

 Indices:

 24 24

0 2
 Terms:

 Weight indices:

24 23 22
1 0
0
1

1
0
0
10

 23 22

3 0

(a) (b)

Figure 18: (a) An illustration of a termusage table for a group
of four weights. For each term used by a weight, the index
of the weight is shown. Suppose that the first, second, third
and fourth weights are indexed by 0, 2, 3 and 0, respectively.
Then the table states that the 24, 23 and 22 terms are used by
both the first and third weights, the fourth weight, and the
first weight, respectively. (b) The corresponding terms used
by each of the four weights are shown.

By comparison, the light green points show the corresponding
performance for the proposed multi-resolution model with 8 sub-
models using the same TQ settings. Generally, we see that the
multi-resolution model is 0.25% to 1.25% worse than each point
trained individually, with the largest gap being for the most ag-
gressive setting (𝛼 = 8, 𝛽 = 2). The performance degradation is
caused by potentially inconsistent gradient updates produced by
the teacher and student. These conflicting gradient updates lead
to a slight accuracy degradation for the jointly-trained model as
compared to individually-trained models.

6.2 Multi-resolution Weight Distributions
As discussed in the previous section, the terms in a multi-resolution
DNN are shared across all sub-models, meaning that the weight
values change depending on the number of allocated terms for
the sub-model. Figure 20 shows a histogram of the frequency of
weight values for three different sub-models from amulti-resolution
DNN and a 5-bit UQ setting. Interestingly, for the low-resolution
sub-model setting of (𝛼 = 8, 𝛽 = 2), the weights are concentrated
mostly at values that can be represented with a single power-of-two
(e.g., 2, 4, and 8) and almost 50% of values are 0. For the more high-
resolution sub-model setting of (𝛼 = 20, 𝛽 = 3), the distribution of
values closely follows the 5-bit UQ model.

In this way, the proposed multi-resolution DNN can be viewed
as interpolating between logarithmic quantization for the low-
resolution sub-model and 5-bit uniform quantization for the high-
resolution sub-model. By training many sub-models between these
two extreme settings, the multi-resolution model is able to gradu-
ally trade-off computation (in the number of term operations per
sample) for performance (e.g., classification accuracy) as depicted
earlier in Figure 19.

6.3 Comparison to Post-training Quantization
Instead of training a multi-resolution DNN using Algorithm 1, we
could perform post-training quantization [38] on a pre-trained
floating-point model. Generally, post-training quantization leads to
poor performance for uniform quantization with less than 8 bits per
weight. However, term quantization, which was originally posed
as a post-training quantization approach in [36], leads to improved

2 3 4 5 6
Term-pair Multiplications 1e9

67

68

69

70

Ac
cu

ra
cy

 (%
)

(8, 2)
(10, 2)

(12, 2)
(14, 2) (14, 3) (16, 3) (18, 3)

(20, 3)

Cost of Term Sharing (ResNet-18)

Trained Individually
Trained Jointly

Figure 19: The multi-resolution model (light green) trained
with 8 sub-model settings has slightly lower accuracy than
settings trained individually (dark green). The (𝛼, 𝛽) values
for each sub-model are indicated by red lines and texts.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Absolute Weight Value

0

20

40

Fr
eq

ue
nc

y
(%

)

Frequency of Weight Values
Multi-res. (α= 8, β= 2)
Multi-res. (α= 14, β= 2)
Multi-res. (α= 20, β= 3)
5-bit Uniform Quantization

Figure 20: A histogram of the absolute weight values for 3
sub-models of ResNet-18 trained under themulti-resolution
paradigm and an individual model trained under 5-bit UQ.

performance compared to UQ even when only a few terms are used
per value.

Figure 21 provides a comparison between the proposed multi-
resolution training with TQ approach and post-training TQ as
in [36] for ResNet-18 and ResNet-50 on ImageNet. For both ResNet-
18 and ResNet-50, we see that multi-resolution training outperforms
post-training quantization for all settings. Additionally, we see that
more aggressive settings lead to a larger degradation in accuracy,
demonstrating thatmulti-resolution training is important to achieve
a reasonable trade-off space between performance and number of
operations.

6.4 Comparison to UQ Term Sharing
In this section, we compare the number of term-pair multiplications
required to process one sample at different sub-model settings
across multiple domains (image classification, object detection, and
language modeling) using either UQ or TQ under term sharing
via a multi-resolution model. The training procedure for the UQ
models is the same as in Algorithm 1, except with UQ substituted
for TQ. For the UQ models, sub-models are obtained by varying
the weight and data bitwidth (e.g., from 5-bit to 2-bit values for
the CNNs trained on ImageNet). See the appendix for a complete
description of parameters settings used in the evaluation.

6.4.1 ImageNet. Figure 22 (left) compares the performance of our
multi-resolution approach under TQ and UQ across ResNet-18,

Training for Multi-resolution Inference using Reusable Quantization Terms ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

0.25 0.50 0.75 1.00 1.25 1.50
Term-pair Multiplications 1e10

60

62

64

66

68

70

72

74

76

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

Post-training versus Fine-tuning

ResNet-50 (Mulit-res. Training)
ResNet-50 (Post-training)
ResNet-18 (Multi-res. Training)
ResNet-18 (Post-training)

Figure 21: Comparing post-training
quantization to the proposed multi-
resolution training for ResNet-18
and ResNet-50 on ImageNet. Multi-
resolution training significantly im-
proves accuracy.

109 101060.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

To
p-

1
Ac

cu
ra

cy
 (%

)

ImageNet

109 1010

Term-pair Multiplications (log scale)
87

88

89

90

91

92

93

94

95

Pe
rp

le
xi

ty

WikiText-2

1011 2 × 101140

42

44

46

48

50

52

54

m
AP

@
.5

COCO

ResNet-18 (UQ)
ResNet-18 (TQ)
ResNet-50 (UQ)
ResNet-50 (TQ)
MoblNet-v2 (UQ)
MoblNet-v2 (TQ)
LSTM (UQ)
LSTM (TQ)
Yolo-v5 (UQ)
Yolo-v5 (TQ)

Figure 22: Comparing multi-resolution models trained under uniform quantization
(UQ) and term quantization (TQ) for CNNs on ImageNet (left), an LSTM on Wikitext-
2 (middle), and YOLO-v5 on COCO (right). The UQ sub-models vary the weight and
data bitwidth (e.g., from 2-bit to 5-bit for ImageNet), while the TQ sub-models vary in
𝛼 (number of terms per weight group) and 𝛽 (number of terms per data value).

Model Time per epoch
(Multi-resolution)

Batch
size

Number of
sub-models

Time per epoch
(single model)

ResNet-18 47 mins 1024 8 24 mins
ResNet-50 92 mins 512 8 44 mins
MobileNet-v2 51 mins 512 8 27 mins
LSTM 8 mins 20 8 4 mins
YOLO-v5 68 mins 64 10 35 mins

Table 1: Multi-resolution DNN training complexity.

ResNet-50, and MobileNet-v2 on ImageNet. For all three models,
we observe that the multi-resolution approach using TQ greatly
reduced the number of term multiplications compared to UQ while
also achieving significantly better performance of roughly 5%. En-
forcing term sharing across the UQ settings leads to a significant
degradation in model performance, as all of the sub-models must
share a common scale factor for quantization. Deriving a common
scale factor is difficult for the 5-bit and 2-bit settings. Additionally,
the trade-off between performance and operations is more graceful
under TQ compared to UQ due to the more fine-grained nature of
TQ as each point varies by two additional nonzero terms instead of
a reduced bitwidth.

6.4.2 LSTM. Figure 22 (middle) compares the performance of the
two approaches on a 2-layer LSTM with 650 hidden units (i.e., neu-
rons), a word embedding of length 650, and a dropout rate of 0.5
trained onWikiText-2, following the PyTorch word language model
example. We see that our multi-resolution approach with TQ out-
performs UQ by a wide margin, with even the most aggressive
sub-model setting still achieving a reasonable perplexity.

6.4.3 COCO. Finally, Figure 22 (right) provides a comparison on
YOLO-v5 (small) trained on COCO. We find that object detection
requires significantly more precision compared to image classifi-
cation to achieve good performance. Due to this, the UQ settings
span from 8-bit to 5-bit representations for weights and data. By
comparison, the sub-models in our multi-resolution approach span
from (𝛼 = 22, 𝛽 = 4) to (𝛼 = 38, 𝛽 = 5). Since TQ only specifies
the number of nonzero terms and not the bitwidth, we are able to

achieve better performance by using a large bitwidth (8-bit) for all
settings while varying the term budget in each sub-model.

6.5 Multi-resolution DNN Training Cost
Instead of training all the sub-models each iteration, our proposed
meta multi-resolution DNN training leverages knowledge distil-
lation and selects two sub-models to optimize for every iteration
as described in Algorithm 1. Selecting only two models per itera-
tion, instead of all sub-models which can be as large as 10, leads to
significant saving on training time and memory usage. As two sub-
models are selected per iteration, the total time for multi-resolution
training is around twice of the time for training a single-resolution
DNNmodel. In comparison, joint training of all the sub-models will
cause the total training time and memory consumption to grow
linearly with the number of sub-models.

Table 1 summarizes the training complexity of the proposed
multi-resolution training scheme for each DNN model in Figure 22.
Specifically, we evaluate the training complexity in terms of: 1.
time for one epoch of multi-resolution training, 2. batch size of
multi-resolution training, 3. number of sub-models for the multi-
resolution training, 4. time required to perform one epoch of DNN
training over a single term-quantized model. To train the single
term-quantized model, we use the same batch size as the multi-
resolution training for each DNN model, so the total number of
iterations per epoch will be the same for both scenarios. We use
8 Nvidia GeForce GTX 1080 GPUs to perform multi-resolution
training, with each GPU having a memory size of 11GB. We notice
that multi-resolution training takes 1.92× longer on average than
training a single model. This is because at every iteration two sub-
models are selected to train jointly.

6.6 Sensitivity Analysis on Group Size
In this section, we evaluate the impact of the group size 𝑔 on the
classification accuracy of the multi-resolution DNN model. Specifi-
cally, we train three multi-resolution DNNs with different group
sizes (𝑔 = 8, 𝑔 = 16, and 𝑔 = 32), while keeping the average term
budget per weight value the same across all three multi-resolution

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Sai Qian Zhang, Bradley McDanel, H. T. Kung, and Xin Dong

2 3 4 5 6
Term-pair Multiplications 1e9

66

68

Ac
cu

ra
cy

 (%
)

Impact of Group Size (ResNet-18)

group size = 32
group size = 16
group size = 8

Figure 23: Comparing the impact of group size on classifi-
cation accuracy. A larger group size improves the classifi-
cation accuracy of a multi-resolution model compared to a
smaller group size for the same number of term-pair multi-
plications.

models. For example, for the 𝑔 = 16 model, the weight term bud-
gets 𝛼 for the sub-models are 20, 18, 16, 14, 12, 10, 8 in contrast to
10, 9, 8, 7, 6, 5, 4 for the group size 𝑔 = 8 model.

Figure 23 compares the number of term-pair multiplications
and classification accuracies of ResNet-18 for the multi-resolution
models with varying group sizes. The model with the largest group
size 𝑔 = 32 achieves the highest classification accuracy for the same
number of term-pair multiplications across all sub-model settings.
However, the 𝑔 = 16 setting has similar performance while also
being significantly more efficient to implement in hardware due to
a reduced multiplexer size. Therefore, in Section 7, we use 𝑔 = 16
throughout the evaluation.

6.7 Scalability of Multi-resolution Training
In this section, we evaluate how well the multi-resolution training
approach can support an increasing number of sub-models. Note
that only two sub-models are selected for each iteration of training
and one is always the largest sub-model. Since the total number of
training rounds are fixed, as the number of sub-models increases,
each sub-model will be selected for fewer training iterations.

Figure 24 shows the classification accuracies for three multi-
resolution ResNet-18 models with 4, 8 and 12 sub-models trained
using Algorithm 1 for 60 epochs. We observe that increasing the
number of sub-models (e.g., from 4 to 12 sub-models) allows for
a more fine-grained trade-off between accuracy and number of
term-pair multiplications while incurring a slight degradation in
accuracy. The multi-resolution model with 12 sub-models is within
1% classification accuracy of the model with 4 sub-models across
the range of sub-model settings.

7 HARDWARE EVALUATION
In this section, we evaluate the performance of the mMAC system
described in Section 5. We have synthesized our mMAC system
using Xilinx VC707 FPGA evaluation board. We first illustrate the
advantage of mMAC design by comparing it against conventional
bit-serial and bit-parallel MAC (Section 7.1). Next, in Section 7.2,
we compare mMAC against the Laconic Processing Element [51],
a recent MAC design which also performs term-level operations.
Then, in Section 7.3, we evaluate the hardware performance under

2 3 4 5 6 7
Term-pair Multiplications 1e9

62

64

66

68

70

Ac
cu

ra
cy

 (%
)

Varying # of Sub-models (ResNet-18)

4 Sub-models
8 Sub-models
12 Sub-models

Figure 24: Increasing the number of sub-models leads to a
slight degradation in classification while enabling a more
fine-grained trade-off between classification accuracy and
term-pair multiplications.

pMAC bMAC mMAC
LUT 57 12 21
FF 44 14 25

Table 2: FPGA resource consumption of MAC designs.

different resolutions. Finally, in Section 7.4, we compare our system
against the other FPGA accelerators.

7.1 Comparison to Conventional MACs
We evaluate the efficiency of our mMAC design by comparing it
against bit-serial and bit-parallel implementations of a conventional
MAC. We evaluate all three designs on the following computation:
𝑦𝑜𝑢𝑡 =

∑𝑔
𝑖=1 𝑥𝑖𝑤𝑖 +𝑦𝑖𝑛 , where 𝑦𝑖𝑛 , 𝑦𝑜𝑢𝑡 , 𝑥𝑖 and𝑤𝑖 are 16-bit, 16-bit,

5-bit and 5-bit, respectively, and 𝑔 is the number of accumulating
operations (i.e., group size in TQ). The left side of Figure 25 shows
the design of a bit-parallel MAC (pMAC), which performs multi-
plication between 𝑥𝑖 and 𝑤𝑖 and sums the result with 𝑦𝑖𝑛 in one
cycle and generates 𝑦𝑜𝑢𝑡 in 𝑔 cycles. The bit-serial MAC (bMAC),
based on [35], is shown in Figure 25 (right). It consists of a bit-serial
multiplier and additional logic elements to negate the multiplier
output and perform accumulation. It requires 16 cycles to process
one pair of values, for a total of 16 × 𝑔 cycles to generate 𝑦𝑜𝑢𝑡 .
In contrast, mMAC takes 𝛾 cycles to perform this accumulation
operation, where 𝛾 is the term-pair budget for the weight and data.
We set the group size 𝑔 = 16 for evaluation.

Table 2 depicts the FPGA resource consumption of the three
MAC designs in terms of LookUp Tables (LUTs) and Flip-flops
(FFs). Compared with pMAC, mMAC requires 2.8× less LUTs and
1.8× less FFs, due to the fact that mMAC performs exponent addi-
tions as opposed to multiplication in computing the term products.
Although the bMAC achieves an even lower hardware resource
consumption than mMAC, it requires a much larger processing
latency.

Table 3 shows the evaluation on energy efficiency for all the three
MAC designs on FPGA, where all the results are normalized by the
performance of mMAC. We evaluate mMAC under different term-
pair budget 𝛾 used in Figure 19. We observe that the performance
of mMAC improves as term-pair budget reduces, with all settings
outperforming both bMAC and pMAC. A smaller term-pair budget

Training for Multi-resolution Inference using Reusable Quantization Terms ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

Xin

Yin

5
W X

+
5

10

16 16 Yout
Xout

bMAC

FA FA1

W

Xin

Xout

Yin
Yout

5

pMAC

Bit-serial
Multiplier

Figure 25: Bit-parallel MAC (left) and bit-serial MAC (right).

𝛾 16 20 24 28 42 48 54 60
bMAC 0.15× 0.17× 0.22× 0.26× 0.37× 0.44× 0.50× 0.56×
pMAC 0.17× 0.22× 0.27× 0.31× 0.47× 0.53× 0.61× 0.66×
mMAC 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
Table 3: Comparison on energy efficiency for MAC designs.

allows for a smaller amount of term-pair operations required to
generate the result. This reduces the processing time and further
improves the energy efficiency of mMAC. In general, compared
with pMAC and bMAC, mMAC achieves a 3.1× and 5.6× higher
energy efficiency on average across all term-pair budgets.

7.2 Comparison to Laconic Processing Element
We compare the performance of mMACwith the Laconic Processing
Element (PE) [51]. Based on the layout shown in Figure 3 of [51], we
re-implement a Laconic PE which can perform 16 multiplications
between 5-bit weights and 5-bit data in parallel. Each term-pair
multiplication results in a single power-of-two term which is de-
livered to histogram buckets. These buckets tally how many times
each term appears (i.e., the coefficient of each power-of-two terms).
Additionally, we assume each weight and data can be represented
with 3 or fewer power-of-two terms under Booth encoding. With
the Booth encoding, the resulting power-of-two terms can have
their exponents as large as 6. This means we need to use 3 bits to
represent each exponent. In addition, the Booth encoding allows
each multiplication to complete within 3 × 3 = 9 cycles.

As described in Section 7.1, mMAC takes 𝛾 cycles to produce
the results, where 𝛾 is the term-pair budgets. We use the largest
term-pair budget of 𝛾 = 60 in Figure 19, which achieves a predic-
tion accuracy of 69.8% on ImageNet for 5-bit quantized ResNet-18.
We implement both MAC designs on an FPGA and compare their
performances in terms of the energy efficiency. We observe that
mMAC outperforms Laconic PE on energy efficiency by 2.7×.

While Laconic PE also focuses on term-level operation, it does
not use the concept of group-based quantization. This means that
the Laconic PE must assume that each weight or data value requires
the maximum number of terms (i.e., 3 terms) to ensure correctness.
Therefore, it processes a dot product of length 16 by assuming there
are 3×3×16 = 144 term-pairs. By comparison, our mMAC requires
only 𝛾 = 60 term-pairs to process a dot product of the same length.
Through multi-resolution training, our mMAC enforces a much
tighter processing bound for each group via the term-pair budget
𝛾 , thereby mitigating this straggler issue.

[37] [52] [54] [36] Ours
FPGA Chip VC709 Virtex-7 ZC706 VC707 VC707
Frequency (MHz) 150 100 200 170 150
FF 262k(30%) 348k(40%) 51k(12%) 316k(51%) 409k(66%)
LUT 273k(63%) 236k(55%) 86k(39%) 201k(65%) 275k(91%)
DSP 2144(59%) 3177(88%) 808(90%) 756(27%) 996(36%)
BRAM 1913(65%) 1436(49%) 303(56%) 606(59%) 524(51%)
Latency (ms) 2.56 11.7 5.84 7.21 3.98
Energy eff. (frames/J) 12.93 8.39 40.7 25.22 71.48
Table 4: Comparison of our FPGA implementation of
ResNet-18 to other FPGA-based accelerators on ImageNet.

Additionally, Laconic PE adopts histogram buckets to record the
coefficients of all the output power-of-two terms. Each bucket is rep-
resented as a 6-bit number to record the power-of-two coefficient.
For groups of size 16, many of these buckets will be underutilized or
empty, as it is more likely for small terms (e.g., 22) to be produced
than large terms (e.g., 26). During the reduction stage, this will
result in many additions of power-of-two terms with zero coeffi-
cients. In comparison, mMAC directly sums the output terms with
accumulation using cheaper half adders. Finally, mMAC supports
multi-resolution inference by adaptively adjusting the amount of
term operations to perform. In comparison, Laconic MAC only
supports single resolution inference.

7.3 FPGA System Evaluation
In this section, we evaluate our mMAC system performance under
different resolutions. The mMAC system contains a 128 × 128
systolic array. We adopt the corresponding term-pair budgets used
in Figure 22 for evaluation.

Figure 26 illustrates the trend in average processing latency
(i.e., number of cycles to finish one input sample) and energy ef-
ficiency (i.e., number of input samples processed for one Joule of
energy) of the mMAC system under different𝛾 values (i.e., term-pair
budget) across multiple models. We notice that the processing la-
tency decreases (3.1× on average) and the energy efficiency grows
(3.25× on average), as 𝛾 reduces from 60 to 16. This is because
a lower term-pair budget leads to a smaller mMAC processing
time for a group of weight and data values. Additionally, a smaller
term-pair budget also reduces the amount of memory accesses and
on-chip traffic between the memory and computation engine, since
only the terms in the low-resolution terms need to be loaded and
transferred. Figure 26 demonstrates that our mMAC system can
provide a range of designs with varying energy efficiency and la-
tency by dynamically adjusting its computational cost based on the
term-pair budget 𝛾 .

Hyperparameter Values
Total training epochs 60
Momentum 0.9
Batch size (ResNet-18) 1024
Batch size (ResNet-50) 512
Learning rates 0.1, 0.01, 10−3, 10−4, 10−5
Weight decay 10−4

Table 5: Hyperparameters for ResNet-18 and ResNet-50.

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Sai Qian Zhang, Bradley McDanel, H. T. Kung, and Xin Dong

16 20 24 28 42 48 54 60
γ

0

1

2

3

4

No
rm

al
ize

d
La

te
nc

y

(a) FPGA Latency
ResNet-18
ResNet-50
MobileNet-v2
LSTM

16 20 24 28 42 48 54 60
γ

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
En

er
gy

 E
ffi

cie
nc

y (b) FPGA Energy Efficiency
ResNet-18
ResNet-50
MobileNet-v2
LSTM

Figure 26: The mMAC system supports a range of designs
with varying energy efficiency and latency under different 𝛾
settings across multiple networks (normalized to 𝛾 = 16).

Hyperparameter Values
Total training epochs 60
Momentum 0.9
Batch size 512
Learning rates 0.1,0.01,10−3,10−4,10−5
Weight decay 10−4

Table 6: Hyperparameters for MobileNet-V2.

7.4 Comparison Against Other FPGA Designs
Lastly, we compare our mMAC system with the other FPGA DNN
accelerator designs on ResNet-18. Specifically, we apply term bud-
gets of (𝛼, 𝛽) = (20, 3) and𝑔 = 16 for ourmMAC system, which can
achieve a top-1 prediction accuracy of 69.8% on ImageNet. The re-
sults are shown in Table 4. Our system achieves the highest energy
efficiency. Although the processing latency of [37] is even lower, it
has a much larger hardware resource cost and lower energy effi-
ciency. On average, our system outperforms the other designs by
1.7× and 3.28× on the processing latency and energy efficiency.

Our mMAC system achieves superior performance for several
reasons. Most importantly, the multi-resolution DNN with TQ sig-
nificantly reduces the number of term-pair operations, which fur-
ther allows the computation engine to achieve a much tighter pro-
cessing bound (mitigating stragglers) and therefore a lower process-
ing latency. For instance, under a group size 𝑔 = 16 and term-pair
budget 𝛾 = 60, the mMAC system achieves a worst case processing
time of only 60 cycles to compute the dot product for the 16 values
in the group. This is in contrast to the conventional accelerator
design, where the computation latency is always impeded by the
slowest computation unit in the system. Second, the efficient de-
sign of mMAC converts the expensive multiplication operations
between values into a series of additions between the term expo-
nents, and the incrementer in the term accumulator avoids the
implementation cost of the expensive parallel adder. Finally, the
compact memory encoding scheme leads to a lighter traffic between
the on-chip buffer and the computation engine.

8 CONCLUSION
We have shown that via term quantization, a single meta model can
spawn sub-models of varying resolutions with low system over-
heads and performance loss. To this end, we train the meta model
by jointly optimizing multiple sub-models of different resolutions.

Hyperparameter Values
Total training epochs 40
Optimization algorithm SGD
Batch size 64
Initial learning rates 0.0015
Weight decay 5 × 10−4

Hyperparameter Values
Total training epochs 20
Optimization algorithm SGD
Batch size 20
Dropout 0.2
Initial learning rates 5

Table 7: Hyperparameters for YOLO (left) and LSTM (right).

During inference, we implement multiple resolutions by simply ad-
justing the number of leading nonzero terms on the learned weights
of the meta model. To minimize memory footprint of the metal
model and streamline its training, we share terms across multiple
sub-models. These approaches together lead to a multi-resolution
MAC (mMAC) design that can efficiently implement multiple res-
olutions. Results of this paper demonstrate that training a single
model for multi-resolution inference is viable.

ACKNOWLEDGMENTS
This research is supported in part by the Air Force Research Lab-
oratory under award number FA8750-18-1-0112, and the Defense
Advanced Research Projects Agency under UCLA award number
0160GXA278 and MIT award number S5181. The authors thank the
anonymous reviewers of ASPLOS 2021 for their helpful feedback.

9 APPENDIX
In this section, we present the hyperparameter settings for the
training procedure described in Algorithm 1.

9.1 Hyperparameters for ResNet
For ResNet-18 and ResNet-50, we use pre-trained full-precision
models from the PyTorch official website as the initial models for
the proposed multi-resolution paradigm discussed in Section 4 in
the paper. The bitwidth of the meta multi-resolution model is set
to 𝑏 = 5 for both models. The settings are summarized in Table 5.

9.2 Hyperparameters for MobileNet-V2
We use the pre-trained floating-point model from the github reposi-
tory as the initial model. The bitwidth of the meta multi-resolution
model is set to 𝑏 = 5. The settings are summarized in Table 6.

9.3 Hyperparameters for YOLO-V5
For YOLO-v5, we use the YOLOv5s model provided by the official
repository to initialize the full-precision model. The bitwidth of
the meta multi-resolution model is set to 8. Cosine learning rate
decay is used for adjusting the learning rate per iteration. The
hyperparameters are summarized in Table 7 (left). All the other
hyperparameters remain the same as the official repository.

9.4 Hyperparameters for LSTM
We adopt the code provided by the official Pytorch repository to
initialize the full-precision model, which achieves a perplexity of
86.85. Then we use this full-precision model to initialize the 8-bit
meta multi-resolution model in Algorithm 1. Other settings are
presented in Table 7 (right). All the other hyperparameters remain
the same as the official repository.

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/tonylins/pytorch-mobilenet-v2
https://github.com/tonylins/pytorch-mobilenet-v2
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/pytorch/examples/tree/master/word_language_model

Training for Multi-resolution Inference using Reusable Quantization Terms ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA

REFERENCES
[1] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary,

Roman Genov, and Andreas Moshovos. Bit-pragmatic deep neural network
computing. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 382–394. ACM, 2017.

[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural
network computing. In ACM SIGARCH Computer Architecture News, volume 44,
pages 1–13. IEEE Press, 2016.

[3] Algirdas Avizienis. Signed-digit number representations for fast parallel arith-
metic. IRE Transactions on Electronic Computers, EC-10:389–400, 1961.

[4] Andrew D Booth. A signed binary multiplication technique. The Quarterly
Journal of Mechanics and Applied Mathematics, 4(2):236–240, 1951.

[5] Han Cai, Chuang Gan, and Song Han. Once for all: Train one network and
specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

[6] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. ACM SIGARCH Computer Architecture News,
42(1):269–284, 2014.

[7] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks. In ACM SIGARCH
Computer Architecture News, volume 44, pages 367–379. IEEE Press, 2016.

[8] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao: A
machine-learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 609–622. IEEE Computer
Society, 2014.

[9] Yu Cheng, DuoWang, Pan Zhou, and Tao Zhang. A survey of model compression
and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

[10] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized
clipping activation for quantized neural networks, 2018.

[11] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neu-
ral networks with low precision multiplications. arXiv preprint arXiv:1412.7024,
2014.

[12] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:
Training deep neural networks with binary weights during propagations. In
Advances in neural information processing systems, pages 3123–3131, 2015.

[13] Alberto Delmas, Patrick Judd, Dylan Malone Stuart, Zissis Poulos, Mostafa Mah-
moud, Sayeh Sharify, Milos Nikolic, and Andreas Moshovos. Bit-tactical: Exploit-
ing ineffectual computations in convolutional neural networks: Which, why, and
how. 24th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[15] Tim Dettmers. 8-bit approximations for parallelism in deep learning. arXiv
preprint arXiv:1511.04561, 2015.

[16] Barry L Drake, Richard P Bocker, Mark E Lasher, Richard H Patterson, and
William J Miceli. Photonic computing using the modified signed-digit number
representation. Optical Engineering, 25(1):250138, 1986.

[17] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. Tetris:
Scalable and efficient neural network acceleration with 3d memory. In Proceed-
ings of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 751–764, 2017.

[18] Scott Gray, Alec Radford, and Diederik Kingma. Gpu kernels for block-
sparse weights. https://s3-us-west-2.amazonaws.com/openai-assets/blocksparse/
blocksparsepaper.pdf, 2017. [Online; accessed 12-January-2018].

[19] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
Deep learning with limited numerical precision. In International Conference on
Machine Learning, pages 1737–1746, 2015.

[20] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, Yu Wang, Huazhong Yang, and William J. Dally. Ese:
Efficient speech recognition engine with sparse lstm on fpga. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 75–84. ACM, 2017.

[21] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
andWilliam J Dally. Eie: efficient inference engine on compressed deep neural net-
work. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on, pages 243–254. IEEE, 2016.

[22] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[24] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very
deep neural networks. In International Conference on Computer Vision (ICCV),
volume 2, 2017.

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[27] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and
Kilian Q Weinberger. Multi-scale dense networks for resource efficient image
classification. arXiv preprint arXiv:1703.09844, 2017.

[28] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q Weinberger.
Condensenet: An efficient densenet using learned group convolutions. arXiv
preprint arXiv:1711.09224, 2017.

[29] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Quantized neural networks: Training neural networks with low precision
weights and activations. The Journal of Machine Learning Research, 18(1):6869–
6898, 2017.

[30] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2704–2713,
2018.

[31] Jonathan Jedwab and Chris J Mitchell. Minimum weight modified signed-digit
representations and fast exponentiation. Electronics Letters, 25(17):1171–1172,
1989.

[32] Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode012, ChristopherSTAN,
Liu Changyu, Laughing, Adam Hogan, lorenzomammana, tkianai, yxNONG,
AlexWang1900, Laurentiu Diaconu, Marc, wanghaoyang0106, ml5ah, Doug, Ha-
tovix, Jake Poznanski, Lijun Yu, changyu98, Prashant Rai, Russ Ferriday, Trevor
Sullivan, Wang Xinyu, YuriRibeiro, Eduard Reñé Claramunt, hopesala, pritul
dave, and yzchen. ultralytics/yolov5: v3.0, August 2020.

[33] Supriya Kapur, Asit Mishra, and Debbie Marr. Low precision rnns: Quantizing
rnns without losing accuracy. arXiv preprint arXiv:1710.07706, 2017.

[34] H. T. Kung. Why systolic architectures? IEEE Computer, 15:37–46, 1982.
[35] H. T. Kung, Bradley McDanel, and Sai Qian Zhang. Packing sparse convolutional

neural networks for efficient systolic array implementations: Column combining
under joint optimization. 24th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019.

[36] H. T. Kung, Bradley McDanel, and Sai Qian Zhang. Term revealing: Furthering
quantization at run time on quantized dnns. Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
2020.

[37] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang. A
high performance fpga-based accelerator for large-scale convolutional neural net-
works. In Field Programmable Logic and Applications (FPL), 2016 26th International
Conference on, pages 1–9. IEEE, 2016.

[38] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization
of deep convolutional networks. In International Conference on Machine Learning,
pages 2849–2858, 2016.

[39] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision, pages 740–755. Springer,
2014.

[40] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method
for deep neural network compression. arXiv preprint arXiv:1707.06342, 2017.

[41] Mostafa Mahmoud, Dylan Malone Stuart, Zissis Poulos, Alberto Delmas Lascorz,
Patrick Judd, Sayeh Sharify, Milos Nikolic, Kevin Siu, Isak Edo Vivancos, and
Andreas Moshovos. Accelerating image sensor based deep learning applications.
IEEE Micro, 2019.

[42] Bradley McDanel, Sai Qian Zhang, H. T. Kung, and Xin Dong. Full-stack opti-
mization for accelerating cnns using powers-of-two weights with fpga validation.
International Conference on Supercomputing, 2019.

[43] Mason McGill and Pietro Perona. Deciding how to decide: Dynamic routing in
artificial neural networks. arXiv preprint arXiv:1703.06217, 2017.

[44] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer
sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

[45] Daisuke Miyashita, Edward H Lee, and Boris Murmann. Convolutional neural
networks using logarithmic data representation. arXiv preprint arXiv:1603.01025,
2016.

[46] Sharan Narang, Eric Undersander, and Gregory F. Diamos. Block-sparse recurrent
neural networks. CoRR, abs/1711.02782, 2017.

[47] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. Scnn: An accelerator for compressed-sparse convolutional
neural networks. In ACM SIGARCH Computer Architecture News, volume 45,
pages 27–40. ACM, 2017.

[48] Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. Weighted-entropy-based quan-
tization for deep neural networks. In Proceedings of the IEEE Conference on

https://s3-us-west-2.amazonaws.com/openai-assets/blocksparse/blocksparsepaper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/blocksparse/blocksparsepaper.pdf

ASPLOS ’21, April 19–23, 2021, Virtual, MI, USA Sai Qian Zhang, Bradley McDanel, H. T. Kung, and Xin Dong

Computer Vision and Pattern Recognition, pages 5456–5464, 2017.
[49] Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu, Xuehai Qian, Xue Lin,

and Yanzhi Wang. Admm-nn: An algorithm-hardware co-design framework of
dnns using alternating direction methods of multipliers. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 925–938. ACM, 2019.

[50] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4510–4520, 2018.

[51] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos Nikolic, Kevin
Siu, Dylan Malone Stuart, Zissis Poulos, and Andreas Moshovos. Laconic deep
learning inference acceleration. In Proceedings of the 46th International Symposium
on Computer Architecture, pages 304–317. ACM, 2019.

[52] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing cnn accelerator
efficiency through resource partitioning. In Computer Architecture (ISCA), 2017
ACM/IEEE 44th Annual International Symposium on, pages 535–547. IEEE, 2017.

[53] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet:
Fast inference via early exiting from deep neural networks. In 2016 23rd In-
ternational Conference on Pattern Recognition (ICPR), pages 2464–2469. IEEE,
2016.

[54] JunsongWang, Qiuwen Lou, Xiaofan Zhang, Chao Zhu, Yonghua Lin, andDeming
Chen. Design flow of accelerating hybrid extremely low bit-width neural network
in embedded fpga. arXiv preprint arXiv:1808.04311, 2018.

[55] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet:
Learning dynamic routing in convolutional networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 409–424, 2018.

[56] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning
structured sparsity in deep neural networks. In Advances in Neural Information
Processing Systems, pages 2074–2082, 2016.

[57] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis,
Kristen Grauman, and Rogerio Feris. Blockdrop: Dynamic inference paths in
residual networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8817–8826, 2018.

[58] Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved
training techniques. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1803–1811, 2019.

[59] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable
neural networks. In 7th International Conference on Learning Representations,
ICLR 2019, 2019.

[60] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator for sparse neural
networks. In The 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture, page 20. IEEE Press, 2016.

[61] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental
network quantization: Towards lossless cnns with low-precision weights. arXiv
preprint arXiv:1702.03044, 2017.

[62] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary
quantization. arXiv preprint arXiv:1612.01064, 2016.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 DNNs with Performance/Cost Trade-off
	2.2 Pruning Techniques
	2.3 Quantization Techniques
	2.4 Techniques of Reducing Term Operations
	2.5 Systolic Arrays for Matrix-Matrix Multiplication

	3 Term Quantization
	3.1 Term Quantization on Weight Groups
	3.2 Term Quantization for Data Values
	3.3 Term-pair Multiplication Under TQ

	4 Meta Multi-resolution DNN
	4.1 Multi-resolution Weight Groups
	4.2 Meta Multi-resolution Model Training

	5 Multi-resolution Inference System
	5.1 Multi-resolution Model Deployment
	5.2 Multi-resolution MAC (mMAC) Design
	5.3 Encoding and Term Quantization
	5.4 Efficient Storage of Multi-resolution Model

	6 Performance Evaluation
	6.1 Impact of Term Sharing on Performance
	6.2 Multi-resolution Weight Distributions
	6.3 Comparison to Post-training Quantization
	6.4 Comparison to UQ Term Sharing
	6.5 Multi-resolution DNN Training Cost
	6.6 Sensitivity Analysis on Group Size
	6.7 Scalability of Multi-resolution Training

	7 Hardware Evaluation
	7.1 Comparison to Conventional MACs
	7.2 Comparison to Laconic Processing Element
	7.3 FPGA System Evaluation
	7.4 Comparison Against Other FPGA Designs

	8 Conclusion
	Acknowledgments
	9 Appendix
	9.1 Hyperparameters for ResNet
	9.2 Hyperparameters for MobileNet-V2
	9.3 Hyperparameters for YOLO-V5
	9.4 Hyperparameters for LSTM

	References

