
CAKE: Matrix Multiplication Using Constant-Bandwidth Blocks
H. T. Kung

Harvard University
Cambridge, MA, USA
kung@harvard.edu

Vikas Natesh
Harvard University
Cambridge, MA, USA
vnatesh@g.harvard.edu

Andrew Sabot
Harvard University
Cambridge, MA, USA
asabot@g.harvard.edu

ABSTRACT
We offer a novel approach to matrix-matrix multiplication compu-
tation on computing platforms with memory hierarchies. Constant-
bandwidth (CB) blocks improve computation throughput for archi-
tectures limited by external memory bandwidth. Configuring the
shape and size of CB blocks operating from within any memory
hierarchy level (e.g., internal SRAM), we achieve high throughput
while holding external bandwidth (e.g., with DRAM) constant. We
explain how, surprisingly, CB blocks can maintain constant exter-
nal bandwidth as computation throughput increases. Analogous to
partitioning a cake into pieces, we dub our CB-partitioned system
CAKE.

We show CAKE outperforms state-of-the-art libraries in compu-
tation time on real-world systems where external bandwidth rep-
resents a bottleneck, demonstrating CAKE’s ability to address the
memory wall. CAKE achieves superior performance by directly us-
ing theoretically optimal CB-partitioned blocks in tiling and sched-
uling, obviating the need for extensive design search.

KEYWORDS
memorymanagement, computation for deep neural network (DNN),
parallel processing, parallel architectures, optimal block scheduling,
arithmetic intensity, matrix multiplication, memory wall

ACM Reference Format:
H. T. Kung, Vikas Natesh, and Andrew Sabot. 2021. CAKE: Matrix Multiplica-
tion Using Constant-Bandwidth Blocks. In The International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’21), No-
vember 14–19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3458817.3476166

1 INTRODUCTION
Matrix-matrix multiplication (MM) underlies many computational
workloads in scientific computing and machine learning. For ex-
ample, most computations in the forward pass of a convolutional
neural network consist of one matrix multiplication per convolu-
tional layer between the inputs to and the weights of a layer (see,
e.g., [26]). Computation throughput for MM depends on process-
ing power, local memory bandwidth (e.g., between internal SRAM
and processing cores), local memory size, and DRAM bandwidth.
However, performance gains from increasing processing power are
limited by the other three factors. For example, DRAM bandwidth
may become the limiting factor as more processing power is added.

Current approaches to MM (e.g., Goto’s algorithm [12]) are de-
signed for systems where memory and compute bandwidth are
presumably balanced for target workloads. However, there is a

SC ’21, November 14–19, 2021, St. Louis, MO, USA
2021. ACM ISBN 978-1-4503-8442-1/21/11.
https://doi.org/10.1145/3458817.3476166

need for a new approach that can adapt to architectures with dif-
fering characteristics. These architectures may arise as a result of
emerging technologies such as special-purpose accelerators [10, 23],
low-power systems [20, 24], 3D DRAM die stacking [6, 14, 18, 25]
and high-capacity non-volatile memory (NVM) [27]. The memory
wall [30] remains a fundamental problem faced by all computing
systems: shrinking technology processes do not directly address
this issue. Finding a computation schedule which, for example, can
maximize data reuse in the local memory to alleviate this dispar-
ity between memory and compute can be challenging. Often, the
computation schedule is found through a grid search of the param-
eter space, which becomes computationally intractable for large
systems.

This paper proposes the CAKE system that utilizes constant-
bandwidth (CB) blocks in computation partitioning and block
scheduling. CAKE offers a theory for optimal partitioning and
substantially reduces the search space for an optimal schedule. A
CB block is a block of computation with the property that, when
computing the block from within a local memory, the required
external bandwidth is constant. We can design a CB block capable
of achieving a target computation throughput by controlling its
shape and size (Section 3). With sufficient local memory resources,
the CAKE algorithm can improve MM computation throughput
without having to increase external DRAM bandwidth.

In CAKE, we partition the MM computation space, a 3D volume
of multiply-accumulate (MAC) operations, into a grid of 3D CB
blocks. The blocks are scheduled and then sequentially executed
on a computing platform comprising multiple computing cores
(see Figure 1). This scheme is analogous to how a host can cut and
serve a “cake” to their guests. To consume the entire cake as quickly
as possible, each guest must continuously eat: the rate of serving
pieces must match the guests’ rate of consumption.

The intuition behind CAKE is that, by adjusting the shape (i.e.,
aspect ratios) and size of CB blocks, we can control the ratio of
computations to external memory accesses, i.e., arithmetic intensity
(see Figure 4). As a result, we can use CB blocks to increase the
use of available computing power without requiring a compara-
ble increase in IO bandwidth to external DRAM. We analytically
determine the shape and size of a CB block from available DRAM
bandwidth and computing resources (Section 3). Under the CB
framework, we can precisely characterize the required size and
bandwidth of local memory for achieving a target computation
throughput with a given external memory bandwidth.

We evaluate CAKE’s performance in computation throughput
and external memory bandwidth. Experiments are conducted on
two desktop CPUs and a low-power embedded CPU. On the desktop
CPUs, we found CAKE can outperform state-of-the-art GEMM li-
braries in computation throughput (Sections 5.2.5 and 5.2.6). For the
low-power system, CAKE achieves substantially higher throughput

https://doi.org/10.1145/3458817.3476166
https://doi.org/10.1145/3458817.3476166
htk
Text Box

htk
Text Box
Proc of Int Conf for High Performance Computing, Networking, Storage and Analysis (SC21)



Table 1: Terminology used throughout the paper

Term Description
MM matrix-matrix multiplication
CB constant-bandwidth block
Tile small matrix processed by a core (Section 3) or SIMD registers (Section 4.1)

Local Memory cache on CPUs
Internal BW bandwidth between last level cache and CPU cores
External BW bandwidth between local memory and external memory (DRAM)

Processor

L3 cache, last level cache (LLC)

L2 cache

L1 cache

Core

L2 cache

L1 cache

Core

L2 cache

L1 cache

Core Local memory

External memory

DRAM

Figure 1: Computing architecture withmany cores, multiple
levels of local memory, and external memory.

than vendor libraries (Section 5.2.4). Table 1 lists terminologies used
in this paper. The main contributions of this paper are:
• MM block scheduling with surface sharing (Section 2).
• CAKE constant-bandwidth blocks: blocks analytically shaped
and sized to reduce external memory access requirements
(Section 3).
• Comparison of CAKE and Goto’s algorithms (Section 4).
• CAKE library: a drop-in replacement for MM calls used by
existing frameworks that does not require manual tuning.
• Demonstration of CAKE library performance gains on 3
different CPU architectures (Section 5).

2 BLOCK MM COMPUTATION
In this section, we introduce a block framework for matrix multi-
plication (MM) computation and how we may partition the compu-
tation space into blocks. Algorithm 1 defines MM where reduction
occurs on dimension 𝐾 .

Consider an MM between matrices 𝐴 and 𝐵, where 𝐴 is size
𝑀 × 𝐾 and 𝐵 is size 𝐾 × 𝑁 . The MM can be computed via a set of
vector operations using one of the two strategies. That is, we can
obtain the MM result 𝐶 through𝑀 · 𝑁 inner products between𝑀
row vectors (size 1 × 𝐾 ) of 𝐴 and 𝑁 column vectors (size 𝐾 × 1) of
𝐵, or summation of 𝐾 outer products between column vectors (size
𝑀 × 1) of 𝐴 and the corresponding row vectors (size 1 × 𝑁 ) of 𝐵.

Outer products, unlike inner products, yield partial result matri-
ces which will be summed together to produce 𝐶 , allowing reuse
and in-place accumulation. In the 𝐴 × 𝐵 example (Figure 2), there
are𝐾 outer products between vectors of size𝑀×1 and 1×𝑁 , which
each produce partial result matrices of size𝑀×𝑁 . Partial results are
accumulated across the K-dimension (reduction dimension). Note
that we may store the intermediate partial result matrix locally to
be accumulated in place with forthcoming partial result matrices.

Thus the locally stored intermediate results are reused K times. We
use outer-product MM throughout this paper to leverage this reuse.

× =A B C

(a)

=CA

B

(b)

Matrix multiplication

Outer products

K 
ac
cu

mula
tio

ns

(c)

Figure 2: (a)𝐶 = 𝐴×𝐵matrixmultiplication. (b) Computation
space represented as an 𝑀 × 𝐾 × 𝑁 3D volume of multiply-
accumulate (MAC) operations as defined by Algorithm 1. (c)
Computation space as an accumulation of outer products.

Algorithm 1:Matrix multiplication algorithm
for 𝑖 = 1→ 𝑀 do
for 𝑗 = 1→ 𝑁 do
for 𝑘 = 1→ 𝐾 do
𝐶 [𝑖] [ 𝑗] ←− 𝐶 [𝑖] [ 𝑗] +𝐴[𝑖] [𝑘] · 𝐵 [𝑘] [ 𝑗];

The computation space for𝐶 = 𝐴×𝐵 is a 3D volume of𝑀 ·𝑁 ·𝐾
multiply-accumulate (MAC) operations depicted in Figure 2b. The
volume shown in Figure 2b is determined by 3 IO surfaces: In this
paper, we consider matrix 𝐴 as being on the “left” side, matrix 𝐵
being on the “top”, and matrix 𝐶 being the “back wall”.

2.1 Block Framework for MM Computation
If a computing platform has a sufficient local memory (internal
memory) to hold the 3 IO surfaces, all MACs in the 3D computation
space may be completed without any additional IO operations. For
largeMMs exceeding local memory capacity, the computation space
must be partitioned and computed in smaller blocks, whose results
are later combined.

In CAKE, we use uniform blocks of the same shape and size. As
shown in Figure 3, we partition the𝑀 × 𝑁 × 𝐾 computation space
into𝑚 × 𝑛 × 𝑘 blocks. Section 3 describes how block dimensions
are calculated based on available resources, such as total available
computing power and external DRAM bandwidth. Computation
of a block may be viewed as a sum of 𝑘 outer products, for multi-
plying the two corresponding sub-matrices within the larger MM

2



computation space. The computation yields the back wall of the
block. Block computations result in𝑚×𝑛 sub-matrices which, when
accumulated together, yield a portion of the final matrix 𝐶 . Matrix
addition is commutative, so computation order for blocks in the
computation space does not matter for correctness.

All cores in the processing grid work (Figure 3b) in parallel,
on input tiles at the rate of one tile result per unit time for each
core, to compute a block by performing 𝑘 outer products. Each
core works through the 𝑁 -dimension of the block computation
space, producing a row of partial results by computing tile-wise
multiplications between a single 𝐴 tile and 𝑛 𝐵 tiles. It is also possi-
ble to compute computation blocks in the𝑀 or 𝐾-dimension but
we focus our presentation on the 𝑁 -dimension. Each column of
cores in the grid (e.g., cores 1, 5, 9, 13 in Figure 3b) computes an
outer product between a sub-column of 𝐴 and a sub-row of 𝐵 to
produce a partial result sub-matrix. The resulting sub-matrices are
accumulated, yielding a partial sub-matrix which will be further
accumulated with results from other blocks.

Intra-block data movement is reduced by each core sequentially
reusing one 𝐴 tile with many 𝐵 tiles. The 𝐵 tiles are broadcast to
cores in the same column to maximize intra-block reuse. Partial
results are summed along the 𝐾 dimension (towards the back of the
computation space), maximizing reuse via in-place accumulation.

As noted earlier, a block is defined by three IO surfaces: an input
surface𝐴 of size𝑚 ×𝑘 , an input surface 𝐵 of size 𝑘 ×𝑛, and a result
surface 𝐶 of size𝑚 × 𝑛. Surfaces 𝐴 and 𝐵 correspond to the afore-
mentioned sub-matrices within the larger MM computation space.
Depending on the location of the block within the computation
space, result surface 𝐶 will consist of either partial or completed
reduction results.

For each block, the total external memory IO and required local
memory size are both equal to the sum of the three IO surfaces. Ex-
ternal memory bandwidth requirements may be determined from
the computation time of the block. When the block is shaped prop-
erly (see Figure 4), the IO time for the three surfaces will match the
computation time of the block, allowing IO to overlap computation
that fully utilizes available processing power.

IO requirements are further reduced when sequentially com-
puted blocks share an IO surface (i.e., the blocks are adjacent within
the computation space). The surface can be kept local: the following
adjacent block can reuse the surface without needing to fetch it
from external memory. Furthermore, if the surface is a partial result
surface, the previous block does not need to writeback the results
to external memory before the next computation. IO surfaces can
be shared in the𝑀 , 𝑁 , or 𝐾-dimension, and IO cost is minimized
when the largest IO surface is reused most frequently.

2.2 Scheduling Blocks for MM Computation
To minimize IO, blocks in the MM computation space are scheduled
so adjacent blocks are computed in sequence. Per the cake analogy,
scheduling is analogous to cutting a cake into large chunks (blocks)
that are then divided into smaller pieces for each guest (core). The
partitioning (Figure 3b) is then used to generate a sequence of
blocks, which are sequentially executed on the grid of cores.

Recall the 3 types of IO: 𝐴, 𝐵 and results 𝐶 (where results are
either partial or complete). The IO for a partial result is twice that

1 2 3

6 5 4

987

25
26
2710

11
12

9
8

7

24
23
22

13
14
15

6
5
4 19

20
21

18
17
16

1
2
3

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Processing grid

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

Slice

Block

Slice of MM space

Partitioned MM space

(a)

(b)

(c)

(d)

Figure 3: (a) Block defined by an 𝑘 ×𝑚, 𝑛 × 𝑘 input surfaces
and an𝑚 × 𝑛 output surface. (b) Grid of 16 processing cores.
(c) Block-partitioned computation space for anMMbetween
𝑀 × 𝐾 and 𝐾 × 𝑁 matrices. (d) Rotated view of a slice of the
computation space. The numbers represent the order of ex-
ecution for blocks in a 𝐾-first schedule.

of a completed result, 𝐴, or 𝐵 because it must be written back
to external memory and, later, fetched again for further use. A
schedule that minimizes external IO must therefore completely
reuse all partial surfaces, and then reuse 𝐴 and 𝐵. When a partial
dimension is complete there is a choice of which surface to reuse
next: 𝐴 (in the𝑀 dimension) and 𝐵 (in the 𝑁 dimension). When 𝐵
is reused first, the𝑀-dimension is completed after the𝐾-dimension
and vice versa if 𝐴 is reused first. We refer to this schedule as a
𝐾-first (reduction-first) schedule.

The choice of whether to first reuse 𝐴 (in the 𝑁 -dimension) or 𝐵
(in the𝑀-dimension) after completing a reduction run (e.g., blocks 1,
2 and 3 in Figure 3d) depends on the shape of the computation space.
When the 𝐵 surface is larger (𝑁 > 𝑀) reusing the larger 𝐵 surface
before the 𝐴 surface minimizes IO. This is done by computing the
M-dimension before the 𝑁 -dimension.

To allow inter-block reuse between different dimensions (e.g.,
between 𝐾 and 𝑀), the computation space traversal must “turn”
every time it completes a dimension. If instead the loops always
started at the 0 index of a dimension, no 𝐴 or 𝐵 surfaces would
be reused, leading to 𝑂 (𝑀𝑁 + 𝑁 ) missed IO surface reuses. The
traversal direction flips after each dimension to allow for IO surface
reuse, shown in Algorithm 2. Note the pseudocode assumes 𝑁 ≥ 𝑀 ,
when 𝑀 > 𝑁 the outer two loops are switched because the 𝐴
surfaces should be reused before the 𝐵 surfaces. The algorithm
defines the 𝐾-first computation order of blocks, which sweeps the
space of computation space by first traversing the 𝐾-dimension to
maximize partial result reuse, then the 𝑀-dimension to reuse 𝐴,
and lastly the 𝑁 -dimension to reuse 𝐵.

3 CONSTANT BANDWIDTH BLOCK SHAPE
AND SIZE

A constant bandwidth (CB) block is a block (described in Section 2.1)
with dimensions (𝑛,𝑚, 𝑘) shaped and sized according to external
bandwidth (as seen in Figure 4). CB block shaping provides control
over arithmetic intensity (AI), allowing us to match external IO
time with computation time. AI is defined as the ratio of compu-
tation volume to data transferred, which is equivalent to the ratio

3



Algorithm 2: 𝐾-first block partitioning algorithm
// Get the number of blocks in each dimension
𝑀𝑏 = 𝑀/𝑚;𝑁𝑏 = 𝑁 /𝑛;𝐾𝑏 = 𝐾/𝑘
for 𝑛𝑖𝑑𝑥 = 0, 1, . . . to 𝑁𝑏 − 1 do
// Flip direction of 𝑀 traversal for 𝐴 reuse

if 𝑛𝑖𝑑𝑥 mod 2 == 0 then𝑚𝑠𝑡𝑎𝑟𝑡 = 0;𝑚𝑒𝑛𝑑 = 𝑀𝑏 ;
else𝑚𝑠𝑡𝑎𝑟𝑡 = 𝑀𝑏 ;𝑚𝑒𝑛𝑑 = 0;
for𝑚𝑖𝑑𝑥 =𝑚𝑠𝑡𝑎𝑟𝑡 to𝑚𝑒𝑛𝑑 do
// Flip direction of 𝑘 traversal for 𝐵 reuse

if 𝑛𝑖𝑑𝑥 mod 2 == 0 then ;
if 𝑚𝑖𝑑𝑥 mod 2 == 0 then 𝑘𝑠𝑡𝑎𝑟𝑡 = 0;𝑘𝑒𝑛𝑑 = 𝐾𝑏 ;
else 𝑘𝑠𝑡𝑎𝑟𝑡 = 𝐾𝑏 ;𝑘𝑒𝑛𝑑 = 0;

else

if 𝑚𝑖𝑑𝑥 mod 2 == 0 then 𝑘𝑠𝑡𝑎𝑟𝑡 = 𝐾𝑏 ;𝑘𝑒𝑛𝑑 = 0;
else 𝑘𝑠𝑡𝑎𝑟𝑡 = 0;𝑘𝑒𝑛𝑑 = 𝐾𝑏 ;

for 𝑘𝑖𝑑𝑥 = 𝑘𝑠𝑡𝑎𝑟𝑡 to 𝑘𝑒𝑛𝑑 do
// Compute inner block multiplication
𝐶 [𝑚𝑖𝑑𝑥 ∗𝑚] [𝑛𝑖𝑑𝑥 ∗ 𝑛] + =
𝐴[𝑚𝑖𝑑𝑥 ∗𝑚] [𝑘𝑖𝑑𝑥 ∗ 𝑘] × 𝐵 [𝑘𝑖𝑑𝑥 ∗ 𝑘] [𝑛𝑖𝑑𝑥 ∗ 𝑛];

Bandwidth is
equal in all cases:

(a) (b) (c)

Figure 4: Changing the shape and size of a block can keep a
block’s external bandwidth (𝐵𝑊 ) constant when increasing
the computation throughput (CT) by increasing core count.
The block gets taller and wider, matching 𝐼𝑂 and computa-
tion time 𝑇 as volume (𝑉 ) changes. Note that arithmetic in-
tensity is 𝑉 /𝐼𝑂 . Since 𝑉 /𝐼𝑂 =

𝑉 /𝑇
𝐼𝑂/𝑇 = 𝐶𝑇

𝐵𝑊
, and CB blocks in

(a), (b) and (c) have equal 𝐵𝑊 and increasing volume, they
have increasing arithmetic intensity. Importantly, compu-
tation throughput is 𝑉 /𝑇 . Thus, CB blocks in (a), (b) and
(c) have increasing computation throughput at 𝑚𝑘𝑛𝑛 = 𝑚𝑘 ,
4𝑚𝑘𝑛
2𝑛 = 2𝑚𝑘 , and 𝑝2𝑚𝑘𝑛

𝑝𝑛 = 𝑝𝑚𝑘 , respectively.

of computation throughput (CT) to external memory bandwidth
(BW): 𝐴𝐼 = 𝐶𝑇

𝐵𝑊
. Therefore, we can, for example, increase CT or

decrease required BW by using CB blocks to control AI. We can
also increase the size of the CB block to leverage any additional
BW and decrease internal memory size requirements.

Consider a computing architecture with a number of cores, each
performing one tile multiplication per unit time. As seen in Section
2.1, each core handles one tile from 𝐴, so the number of tiles in
the 𝐴 surface (size𝑚 × 𝑘) of a CB block is equal to the number of
cores. The size of 𝑘 determines how many cores contribute their
partial results for accumulation. In this analysis, we assume 𝑘 is a
fixed optimal value calculated from available external bandwidth

(Section 3.2). Given 𝑘 , we can compute𝑚 so that𝑚 ·𝑘 is the number
of available cores (Figure 3a and 3b). We reflect an increase in the
amount of cores used in 𝑝 (e.g., when trying to increase CT by
doubling the number of cores used, 𝑝 would increase by a factor of
2). To reduce the number of variables in our analysis, we set𝑚 to a
multiple of 𝑘 , based on the number of available cores (i.e.,𝑚 = 𝑝𝑘),
but𝑚 does not need to be a multiple of 𝑘 .

Thus, the CB block shape is defined by 𝑚 = 𝑝𝑘 and 𝑛 = 𝛼𝑝𝑘

where 𝛼 ≥ 1 and 𝑘 are unitless constants calculated from available
external memory bandwidth (see Section 3.2). When external mem-
ory bandwidth is low, raising 𝛼 increases block computation time,
thereby decreasing the CB block’s external bandwidth requirement
(BW). When there is sufficient external bandwidth, 𝛼 is set to 1.

To compute a CB block in the 𝑁 -dimension, each core is first
loaded with one 𝐴 tile. 𝐵 tiles are then streamed to each core from
local memory (e.g., L3 cache). The CB block is shaped to have ex-
actly one 𝐴 tile per core, keeping 𝐴 tiles stationary, to reduce local
congestion. Results are accumulated between cores and cycled
back to local memory (e.g., L3 cache) for reuse and moved to exter-
nal DRAM when complete. The computation time 𝑇 for a CB block
is 𝑛 = 𝛼𝑝𝑘 unit times because each core is assigned to compute 𝑛
tile multiplications.

Alternatively, we can compute a CB block in the𝑀 or𝐾-dimension,
resulting in a CB block computation time of 𝑘 or𝑚 unit times, re-
spectively. Computing CB blocks in alternative directions may be
advantageous on certain architectures. For example, computing
CB blocks in the 𝐾-dimensions is preferable when doing in-place
accumulation. In a future paper we will show how the same shaping
methodology applies when computing CB blocks in the 𝑀 or 𝐾-
dimension. In this analysis, we do not factor in accumulation time
as we assume accumulation can be overlapped with multiplication.

3.1 Internal Memory Size Requirement
A CB block consists of 3 IO surfaces that must be stored locally. The
IO for each surface is equal to its size. For 𝐴, 𝐼𝑂𝐴 = 𝑝𝑘 · 𝑘 = 𝑝𝑘2.
For 𝐵, 𝐼𝑂𝐵 = 𝑘 · 𝛼𝑝𝑘 = 𝛼𝑝𝑘2. For result surface 𝐶 , 𝐼𝑂𝐶 = 𝑝𝑘 ·
𝛼𝑝𝑘 = 𝛼𝑝2𝑘2. The internal memory size requirement is simply the
combined size of the surfaces:
𝑀𝐸𝑀𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐼𝑂𝐴 + 𝐼𝑂𝐵 + 𝐼𝑂𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = 𝛼𝑝𝑘2 + 𝑝𝑘2 + 𝛼𝑝2𝑘2 (1)

To increase the target processing power 𝑝-fold, internal memory
size must increase by a factor of 𝑝2 (due to the third term, 𝛼𝑝2𝑘2).

3.2 External Bandwidth Analysis
We may compute the minimum external bandwidth required for a
CB block based on the external IO for its 𝐴 and 𝐵 surfaces, using
the following equation, where 𝑇 is the block computation time:

𝐵𝑊𝑚𝑖𝑛 =
𝐼𝑂𝐴 + 𝐼𝑂𝐵

𝑇
=
𝛼𝑝𝑘2 + 𝑝𝑘2

𝛼𝑝𝑘
=

(
𝛼 + 1
𝛼

)
· 𝑘 tiles/cycle (2)

Increasing 𝛼 allows us to compensate for low external bandwidth
but increases both computation time and required local memory
size. Partial result IO is not considered since results are held locally.

We define external bandwidth as 𝐵𝑊𝑒𝑥𝑡 = 𝑅 ·𝑘 tiles/cycle, where
𝑅 > 1 is a constant capturing the difference between available ex-
ternal bandwidth and the minimum bandwidth defined previously.
We satisfy the minimum external bandwidth requirement when
𝐵𝑊𝑒𝑥𝑡 ≥ 𝐵𝑊𝑚𝑖𝑛 , or 𝛼 ≥ 1

𝑅−1 .
4



Now consider the case when more processing power is available
(e.g., when the number of cores increases from 16 to 32, as in Figure
4). We choose to increase the 𝑁 and 𝑀-dimensions by a factor
of 𝑝 = 2 because IO and computation time will increase by the
same factor. 𝐵𝑊𝑚𝑖𝑛 does not depend on 𝑝 , which increases both
computation and IO time equally. As a result, we can increase the
number of utilized cores (𝑝𝑘2) while keeping the same external
bandwidth requirement (see Figure 4).

3.3 Internal Bandwidth Requirements
Recall that the local memory holds 3 IO surfaces: two input surfaces
and one result surface. During a CB block computation, each input
surface is read once and loaded onto the cores. The partial result
surface is accessed twice: once for reading and once for storing new
partial results. We see the internal bandwidth must be at least:

𝐼𝑂𝐴 + 𝐼𝑂𝐵 + 2𝐼𝑂𝑝𝑎𝑟𝑡𝑖𝑎𝑙
𝑇

= 𝑅𝑘 + 2𝑝𝑘 tiles/cycle (3)

Thus, as the number of cores (𝑝𝑘2) increases, internal bandwidth
must increase proportionally (due to the second term, 2𝑝𝑘) to match
external IO time with computation time.

4 ANALYSIS OF CAKE AND GOTO ON CPUS
Modern CPUs contain a multilevel memory hierarchy consisting
of external memory, a shared cache for all cores, and local caches
on each core (Figure 1). We compare CAKE and Goto’s algorithm
[13] (hereafter referred to as GOTO) by adapting our computation
throughput and memory bandwidth analysis from Section 3 to
CPUs with a multilevel memory hierarchy. In our analysis, we
assume the memory hierarchy comprises a local L1 and L2 cache
per core, a shared L3 cache for all cores, and external DRAM.

During an MM computation, there are various ways of utilizing
the different levels of memory. Algorithms that reuse data to differ-
ent degrees will differ in system resource requirements including
external memory bandwidth, internal memory bandwidth, and size
of local memories (caches). To increase computation throughput via
utilizing additional cores, algorithms must mitigate the constraints
imposed by cache size bottlenecks. In the previous analysis (Section
3), we expressed the number of cores as𝑚𝑘 . If we allow 𝑘 > 1 on
the CPU, we are limited to using a multiple of 𝑘 cores. For instance,
if 𝑘 = 2, we can only use𝑚𝑘 = 2, 4, 6, . . . cores. When 𝑘 = 1, we can
use any number of cores between 1 and 𝑝 to clearly demonstrate
scaling up to 𝑝 cores. For this reason, throughout Section 4, we use
𝑘 = 1.

In CAKE, when using additional cores, we increase both𝑚 and 𝑛
by the same factor to maintain the same external bandwidth require-
ment. In contrast, GOTO only increases𝑚 when using additional
cores.

We calculate the maximum-possible computation throughput
allowed by available cores given a fixed external DRAM bandwidth
for both CAKE and GOTO. We show that, unlike GOTO, by using
internal memory resources, CAKE need not increase external band-
width to increase computation throughput when using an increased
number of cores.

4.1 Bandwidth Analysis for GOTO
GOTO is the current state-of-the-art algorithm for MM on CPUs,
and is widely adopted by many libraries including Intel Math Kernel
Library (MKL) [7], ARM Performance Libraries [4] , and OpenBLAS
[31]. While GOTO is able to achieve high performance when fully
utilizing available DRAM bandwidth, its bandwidth requirement
quickly becomes a limiting factor when trying to use additional
cores.

We describe GOTO on a CPUwith 𝑝 cores, as depicted in Figure 5.
In the previous analysis (Section 3), we expressed the number of
cores as𝑚 = 𝑝𝑘 . With𝑘 = 1 for the CPU, we see that 𝑝 is the number
of cores. Each of the 𝑝 cores works on an independent portion of
the MM computation (i.e., there is no accumulation between cores).

Consider an MM computation𝐶 = 𝐴 × 𝐵 where 𝐴 is𝑀 ×𝐾 , 𝐵 is
𝐾 ×𝑁 , and𝐶 is𝑀 ×𝑁 . The GOTO algorithm uses an outer product
formulation on sub-matrices or tiles with dimensions defined in
terms of parameters 𝑚𝑐 , 𝑘𝑐 , and 𝑛𝑐 which are chosen based on
cache and register characteristics (GOTO [13]). More precisely, 𝐶
is partitioned into column sub-matrices of size𝑀 ′ × 𝑛𝑐 with some
M’ <= M (Figure 5a). Via outer-product MM, these sub-matrices
of 𝐶 are computed by multiplying 𝐴’s column sub-matrices (size
𝑀 ′ ×𝑘𝑐) with 𝐵’s row sub-matrices (size 𝑘𝑐 ×𝑛𝑐 ) and accumulating
across the 𝐾-dimension. In GOTO, a square 𝑚𝑐 × 𝑘𝑐 sub-matrix
(i.e.,𝑚𝑐 = 𝑘𝑐 ) of 𝐴 resides in the L2 cache of each core while the
𝑘𝑐 × 𝑛𝑐 sub-matrix of 𝐵 resides in the L3 cache (Figure 5b). The
values of𝑚𝑐 , 𝑘𝑐 , and 𝑛𝑐 are chosen such that each sub-matrix fits
into its respective local memory level, i.e., 𝑚𝑐 · 𝑘𝑐 ≤ 𝑆𝑖𝑧𝑒𝐿2 and
𝑘𝑐 · 𝑛𝑐 ≤ 𝑆𝑖𝑧𝑒𝐿3. Note also that 𝑘𝑐 only refers to the 𝐾 dimension
values of 𝐴’s sub-matrix in the L2 cache and bears no relation to 𝑘
from the previous analysis (Section 3).

At the level of SIMD registers, 𝑚𝑟 × 𝑛𝑟 partial result tiles are
processed, where the width of the available registers determines𝑚𝑟
and 𝑛𝑟 (Figure 5e). In tiled MM,𝑚𝑟 ×𝑘𝑐 tiles of𝐴 are multiplied with
𝑘𝑐 ×𝑛𝑟 tiles of 𝐵 while𝑚𝑟 ×𝑛𝑟 partial result tiles of𝐶 are streamed
to DRAM. For accumulation with subsequent partial results of 𝐶 ,
previously computed partial results of 𝐶 are streamed from DRAM
back to the CPU cores. DRAM streaming can dominate IO.

FromGOTO’s description, we derive the required external DRAM
bandwidth when using additional cores. Assuming a single core can
multiply an𝑚𝑟 ×𝑘𝑐 tile with an 𝑘𝑐 ×𝑛𝑟 tile and produce an𝑚𝑟 ×𝑛𝑟
result tile in a single unit time, we obtain𝑚𝑟 · 𝑘𝑐 · 𝑛𝑟 MAC opera-
tions per unit time. The total number of MAC operations needed to
compute an𝑚𝑐 ×𝑛𝑐 result sub-matrix is 𝑘𝑐 ·𝑚𝑐 ·𝑛𝑐 . We can compute
𝑝 𝑚𝑐 × 𝑛𝑐 result sub-matrices in parallel since each of the 𝑝 cores
has its own L2 cache to support the local SIMD computation. Thus,
the time to compute 𝑝 𝑚𝑐 × 𝑛𝑐 result sub-matrices is:

𝑇 =
𝑚𝑐 · 𝑘𝑐 · 𝑛𝑐
𝑚𝑟 · 𝑘𝑐 · 𝑛𝑟

=
𝑚𝑐 · 𝑛𝑐
𝑚𝑟 · 𝑛𝑟

To compute 𝑝 𝑚𝑐 ×𝑛𝑐 result sub-matrices of𝐶 , we must bring in
𝑝 𝑚𝑐 × 𝑘𝑐 sub-matrices of 𝐴 and one 𝑘𝑐 × 𝑛𝑐 sub-matrix of 𝐵 from
DRAM into local memory while also streaming 𝑝 𝑚𝑐 × 𝑛𝑐 partial
result sub-matrices back to DRAM:
𝐼𝑂 = 𝐼𝑂𝐴 + 𝐼𝑂𝐵 + 𝐼𝑂𝐶 = (𝑝 ·𝑚𝑐 · 𝑘𝑐 ) + (𝑘𝑐 · 𝑛𝑐 ) + (𝑝 ·𝑚𝑐 · 𝑛𝑐 )
The external (DRAM) bandwidth required is then:

𝐵𝑊𝐺𝑂𝑇𝑂
𝑒𝑥𝑡 =

𝐼𝑂

𝑇
=

(
1 + 𝑝 + 𝑘𝑐

𝑛𝑐
· 𝑝

)
·𝑚𝑟 · 𝑛𝑟

5



Main memory L1 cache/SIMD registersL3 cache L2 cache

(e)

(d)

(c)(b)

(a)

BAC
M

N

M

K N

Kp

2
1

p

2
1

p

2
1

+=

+=

+= ×

+=

+=

p

2
1

Note that:

Figure 5: GOTO data reuse in the CPU memory hierarchy.
(a)𝑚𝑐 ×𝑛𝑐 sub-matrices of𝐶 are computed by accumulating
outer products between column sub-matrices of 𝐴 and row
sub-matrices of 𝐵. (b) Each 𝑝 sub-matrix from𝐴 is reused in
the L2 cache of a core while data from 𝐵 is reused in the L3
cache, and results for 𝐶 are written back to external mem-
ory. (c, d) Computation of an𝑚𝑐 × 𝑛𝑐 sub-matrix of 𝐶 on a
core. (e) Tile-level MM on CPU SIMD registers.

(e)

(d)

(c)(b)

(a)

BAC
M

N

M

K N

Kp

2
1

p

2
1

p

2
1

+=

+=

+= ×

+=

+=

p

2
1

Main memory L1 cache/SIMD registersL3 cache L2 cache

Figure 6: CAKE data reuse in the CPU memory hierarchy.
(a) Schedule of CB blocks. (b) Each 𝑝 sub-matrix from 𝐴 is
reused in the L2 cache of a core while data from 𝐵 and par-
tial results for 𝐶 are reused in the L3 cache. (c, d) Computa-
tion of a single𝑚𝑐 ×𝛼𝑝𝑚𝑐 sub-matrix of𝐶 on a core, similar
to Figure 5c and d. (e) Tile-level MM, performed identically
to Figure 5e.

by assuming𝑚𝑐 = 𝑘𝑐 , as noted earlier. When using an increased
number of cores by a factor of 𝑝 , the required external bandwidth
for GOTO increases by a factor of at least 𝑝 . As we will present,
CAKE can mitigate this issue.

4.2 Bandwidth Analysis for CAKE
In contrast to GOTO, CAKE’s bandwidth requirements do not grow
proportional to the number of cores used. We analyze how shaping
and sizing the CB block affects external bandwidth requirements.
Figure 6 shows CAKE’s block shaping on our CPU with the mul-
tilevel memory hierarchy. The computation space of 𝐶 = 𝐴 × 𝐵 is
partitioned into a 3D grid of CB blocks, as described in Section 2.2.
Box (a) shows the schedule of entire CB blocks within the input
matrices.

Box (b) shows the different components of the CB block within
the memory hierarchy. Consider a CPU with 𝑝 cores. To compute a
single CB block on the CPU, the IO components are first loaded into
the L3 cache. The A component is partitioned into 𝑝 square𝑚𝑐 ×𝑘𝑐
sub-matrices (i.e.,𝑚𝑐 = 𝑘𝑐 ), and each sub-matrix is loaded into the
L2 cache of one of the cores. The data component of size 𝑘𝑐 ×𝛼𝑝𝑚𝑐
is then broadcast from the L3 cache to each core while the partial
result component of size 𝑝 ·𝑚𝑐 ×𝛼 · 𝑝 ·𝑚𝑐 is reused in the L3 cache.
Note that shaping the CB block on the CPU as 𝑝𝑚𝑐 × 𝑘 · 𝑘𝑐 × 𝛼𝑝𝑚𝑐
with 𝑘 = 1 is analogous to the 𝑝𝑘 ×𝑘 ×𝛼𝑝𝑘 shaping of the CB block
in Section 3. Here, 𝛼 > 1 is a unitless constant that is set based
on the available DRAM bandwidth . Partial results are returned
to DRAM only after being reused for all accumulation in the 𝐾-
dimension. Since we reuse partial results in the L3 cache until they
are complete, the total IO for a CB block is the sum of the 𝐴 and 𝐵
component’s IO:

𝐼𝑂 = 𝐼𝑂𝐴 + 𝐼𝑂𝐵 = 𝑝 ·𝑚𝑐 · 𝑘𝑐 + 𝛼𝑝 ·𝑚𝑐 · 𝑘𝑐

Computation time for CAKE is derived analogously to GOTO (Sec-
tion 4.1). Box (e) in Figure 6 showsMM at the tile level on a CPU.We
assume a single core can multiply a𝑚𝑟 ×𝑘𝑐 tile with a 𝑘𝑐 ×𝑛𝑟 tile to
produce a𝑚𝑟 × 𝑛𝑟 result tile per cycle, This amounts to𝑚𝑟 · 𝑘𝑐 · 𝑛𝑟
multiply-accumulate (MAC) operations per cycle. The total number
of MAC operations needed to compute a𝑚𝑐 × 𝛼 · 𝑝 ·𝑚𝑐 result sub-
matrix is𝑚𝑐 ·𝑘𝑐 ·𝛼 ·𝑝 ·𝑚𝑐 . We can compute 𝑝 of these𝑚𝑐 ×𝛼 ·𝑝 ·𝑚𝑐
result sub-matrices in parallel, so the CB block compute time is:

𝑇 =
𝑚𝑐 · 𝑘𝑐 · 𝛼𝑝𝑚𝑐
𝑚𝑟 · 𝑘𝑐 · 𝑛𝑟

=
𝛼 · 𝑝 ·𝑚2

𝑐

𝑚𝑟 · 𝑛𝑟
The external memory bandwidth required tomaximize computation
throughput when increasing the number of cores is:

𝐵𝑊𝐶𝐴𝐾𝐸
𝑒𝑥𝑡 =

𝐼𝑂

𝑇
=
𝑝𝑚𝑐𝑘𝑐 (𝛼 + 1) ·𝑚𝑟𝑛𝑟

𝛼𝑝𝑚2
𝑐

=
𝛼 + 1
𝛼
·𝑚𝑟𝑛𝑟 (4)

We see CAKE can, unlike GOTO, balance computation with IO,
while requiring only constant external bandwidth.

As described in Section 3, when growing the number of cores by
a factor of 𝑝 , CAKE requires that local memory size increase by a
factor of 𝑝2 and internal bandwidth by a factor of 𝑝:

𝑀𝐸𝑀𝐶𝐴𝐾𝐸
𝑙𝑜𝑐𝑎𝑙

= 𝐼𝑂𝐴 + 𝐼𝑂𝐵 + 𝐼𝑂𝐶 = 𝑝𝑚𝑐𝑘𝑐 · (𝛼 + 1) + 𝛼𝑝2𝑚2
𝑐 (5)

𝐵𝑊𝐶𝐴𝐾𝐸
𝑖𝑛𝑡 =

𝐼𝑂𝐴 + 𝐼𝑂𝐵 + 2𝐼𝑂𝐶
𝑇

=

(
2𝑝 + 1

𝛼
+ 1

)
·𝑚𝑟𝑛𝑟 (6)

4.3 Sizing CAKE CB Blocks to Minimize Cache
Evictions

The CAKE CB block shape allows us to keep bandwidth require-
ments constant, but CB block size is still dependent on available
local memory. Due to the least-recently-used (LRU) eviction scheme
of our L2 and L3 caches, we are unable to use the entirety of each

6



cache for matrix operands. CAKE CB blocks must be sized to mini-
mize superfluous memory accesses resulting from cache evictions.
GOTO uses a similar strategy for sizing its blocks to minimize
translation lookaside buffer (TLB) misses [13].

We want to reuse a CB block surface (either input surfaces𝐴 and
𝐵, or partial result surface 𝐶) in local memory. Assume a current
working CB block 𝑖 reuses partial results 𝐶 [𝑖] in local memory. If
the CPU cache has size 𝑆 and uses an LRU eviction protocol, we
must size our CB block such that:

𝐶 + 2(𝐴 + 𝐵) ≤ 𝑆
The factor of 2 allows entries for 𝐴[𝑖] and 𝐵 [𝑖] to coexist with
entries for 𝐶 [𝑖], 𝐴[𝑖 + 1], and 𝐵 [𝑖 + 1]. Suppose we are currently
working on CB block 𝑖 and size the block such that 𝐴 + 𝐵 + 𝐶 =

𝑆 . When the next CB components 𝐴[𝑖 + 1] and 𝐵 [𝑖 + 1] are first
addressed, their data should replace the cache entries that were
used for 𝐴[𝑖] and 𝐵 [𝑖]. However, upon completion of CB block 𝑖 ,
some entries related to 𝐶 [𝑖] will be LRU and will be replaced by
𝐴[𝑖 + 1] and 𝐵 [𝑖 + 1] from block 𝑖 + 1. Furthermore, the factor of 2
ensures, when𝐴[𝑖 + 2] and 𝐵 [𝑖 + 2] of block 𝑖 + 2 are first addressed,
the entries for 𝐴[𝑖] and 𝐵 [𝑖] are guaranteed to be LRU and will be
replaced.

4.4 Comparing CAKE and GOTO
CAKE and GOTO employ similar techniques for reusing data within
a memory hierarchy, as seen in Figures 5 and Figures 6. Both use
outer products to compute blocks of 𝐶 by multiplying column sub-
matrices of𝐴 with row sub-matrices of 𝐵 and summing each partial
product in the𝐾 dimension. Furthermore, both partition the column
sub-matrix of 𝐴 into square𝑚𝑐 × 𝑘𝑐 sub-matrices and reuse these
square sub-matrices in the L2 cache of each core. However, by using
CB block shaping and sizing, CAKE is able to account for available
external bandwidth constraints.

To accommodate additional cores, both CAKE and GOTO in-
crease the size of the sub-matrices reused in local memory. Figures
5b and 6b) show that both CAKE and GOTO will increase the size
of the column sub-matrix of 𝐴 in the𝑀 dimension (via 𝑝𝑚𝑐 ) by uti-
lizing the L2 cache from each additional core to operate on several
new 𝑚𝑐 × 𝑘𝑐 sub-matrices. In GOTO, the 𝐵 sub-matrix occupies
most of the L3 cache as the value of 𝑛𝑐 is chosen based on L3 cache
size. GOTO assumes that computation power and memory band-
width are balanced, allowing wide column sub-matrices of 𝐶 (with
large 𝑛𝑐 value) to be computed while buffering partial results in
main memory, i.e., GOTO attempts to overlap partial result move-
ment with the computation of the next outer product. Since the
𝑀-dimension increases proportionally with the number of cores,
the partial result sub-matrix IO to main memory also increases
proportionally. GOTO relies on increasing DRAM bandwidth to bal-
ance the computation time with such increasing IO requirements.

In contrast, CAKE controls the size of the 𝐵 and 𝐶 sub-matrices
in the L3 cache by shaping the CB block in the 𝑁 dimension (𝛼𝑝𝑚𝑐 )
according to the available DRAM bandwidth (via 𝛼) and number
of cores (via 𝑝 , see Figure 6a). Unlike GOTO, CAKE eliminates the
movement of partial results to external memory entirely through
in-place accumulation in local memory.

Partial results of 𝐶 in CAKE occupy the greatest proportion of
L3 cache relative to the sub-matrices of 𝐴 and 𝐵. For example, in

Table 2: CPUs Used in CAKE Evaluation

CPU L1 L2 L3 DRAM Cores DRAM Bandwidth
Intel i9-10900K 32 KiB 256 KiB 20 MiB 32 GB 10 40GB/s

AMD Ryzen 9 5950X 32 KiB 512 KiB 64 MiB 128 GB 16 47GB/s
ARM v8 Cortex A53 16 KiB 512 KiB N/A 1 GB 4 2GB/s

our experiments with the Intel i9-10900K CPU, suppose 𝑝 = 10
cores, 𝛼 = 1, and sub-matrix dimensions𝑚𝑐 = 𝑘𝑐 = 192 are chosen
such that the 𝐵 and 𝐶 CB block surfaces fill up the L3 cache. Then,
the 𝐶 and 𝐵 surfaces will take up up 91% and 9% of the L3 cache,
respectively. In comparison, GOTO uses all of the L3 cache for 𝐵.

Both CAKE and GOTO will see reduced performance as the
number of cores grows faster relative to available internal memory
size. Past a certain point, GOTO cannot leverage additional cores
as DRAM bandwidth becomes the limiting factor. Analogously for
CAKE, limited internal bandwidth and local memorywill eventually
impede performance as the number of cores increases. However,
CAKE can further increase throughput by utilizing additional local
memory or DRAM bandwidth whereas GOTO can only do so by
increasing DRAM bandwidth usage.

5 PERFORMANCE EVALUATION OF CAKE ON
CPUS

Current state-of-the-art MM algorithms are based on GOTO and
bounded by external memory bandwidth. We show CAKE improves
MM performance on multiple CPU architectures, achieving maxi-
mum computation throughput without increasing external band-
width by leveraging increased internal memory bandwidth and
size.

We evaluate CAKE on CPUs with different system characteristic
constraints. We measure CAKE’s performance, using computation
throughput and DRAM bandwidth usage as metrics.

5.1 CPUs Evaluated
We evaluate CAKE on an ARM v8 Cortex A53, Intel i9-10900K, and
AMD Ryzen 9 5950X. Each CPU has unique architecture and system
characteristics, shown in Table 2, allowing us to evaluate CAKE
under different constraints in external bandwidth, local memory
size, and internal bandwidth. The ARM v8 Cortex A53 is an em-
bedded low-power CPU with severely limited DRAM bandwidth,
local memory size, and internal bandwidth. The Intel i9-10900K is
a 10-core desktop CPU with high DRAM bandwidth and large local
memory but constrained internal memory bandwidth. The AMD
Ryzen 9 5950X is a 16-core desktop CPU with high DRAM band-
width, large local memory, and high internal memory bandwidth.
In each section, we compare CAKE to the state-of-the-art GEMM li-
brary for its respective CPU. We then explain CAKE’s performance
in the context of each CPU’s characteristics and constraints.

5.2 CAKE Implementation and CPU
Experiments

We implemented CAKE in C++ for use in our evaluations. Our
implementation uses the BLIS kernel library [28] to execute MM
at the tile level on CPU SIMD registers. BLIS was chosen for its
portability across CPU architectures, enabling CAKE to act as a
drop-in GEMM library on multiple platforms.

7



In Section 5.2.2, we profile CAKE on the Intel i9 and ARM CPUs
in terms of how often the CPUs are stalled onmemory requests from
different memory levels. Then, in Section 5.2.3 we show CAKE’s
performance relative to Intel’s Math Kernel Library (MKL) and
ARM Performance Libraries (ARMPL) for various matrix sizes on
the Intel and ARM CPUs. Matrix size and shape were systemati-
cally varied in three dimensions to identify regions where CAKE
outperforms the competing GEMM library. In Sections 5.2.4, 5.2.5,
and 5.2.6, we vary the number of cores and measure computation
throughput (in GFLOP/s) and DRAM bandwidth usage (in GB/s)
when performing a large square MM computation. Matrix sizes
were chosen to fit into the system’s available DRAM. For example,
we use relatively small 3000 × 3000 matrices for the ARM system
due to its limited main memory. CAKE’s theoretically optimal
DRAM bandwidth usage (calculated in Section 4.2) is shown as a
dashed curve. Internal bandwidths between the last level cache
(LLC) and CPU cores were measured using the parallel memory
bandwidth benchmark tool (pmbw) [5]. Local memory refers to
the LLC shared among all cores, and may be the L2 or L3 cache de-
pending on architecture (i.e., L2 for ARM and L3 for Intel). We also
show performance extrapolations for CAKE and the state-of-the-art
GEMM libraries when using additional CPU cores, assuming fixed
DRAM bandwidth. The extrapolation assumes local memory size
increases quadratically and internal bandwidth increases linearly
with the number of cores. We use the last two data points in each
plot to initialize the extrapolation line.

5.2.1 PackingOverhead andConsiderations. GEMM libraries,
such as Intel MKL, contain distinct packing implementations opti-
mized for many matrix shapes [16] to copy input matrices into a
contiguous buffer. We implemented only one packing method since
our development effort focused on the MM kernel over packing.
By packing matrices into contiguous buffers, GEMM libraries, in-
cluding CAKE, are able to minimize cache evictions. As an added
benefit, packing also prevents cache self-interference, as articulated
in [22]. In all experiments, we include packing overhead when
measuring throughput and DRAM bandwidth during MM.

In a typical system, cache eviction schemes are not modifiable
by users. If the eviction scheme is not properly accounted for, ad-
ditional runtime due to unnecessary evictions and cache misses
will dominate GEMM running time. When𝑀 , 𝑁 , and 𝐾 are large,
time spent packing is small relative to time spent in the MM kernel.
However, we note that, with CAKE, packing overhead for skewed
matrix shapes (i.e., where one of 𝑀 , 𝑁 , and 𝐾 is much smaller
than the other two) may constitute a significant fraction of total
computation time.

5.2.2 Reducing Main Memory Stalls With CAKE. We profile
the time the CPU spends serving requests from different mem-
ory levels when running a fixed-size MM using CAKE, MKL, and
ARMPL libraries. On the Intel i9-10900K, we profile memory re-
quest stalls for an MM between two 10000 × 10000 matrices. A stall
occurs when CPU cores are waiting for data from some memory
level, and are unable to be productive. We use Intel’s Vtune Profiler
[8] to measure the number of cycles where the CPU is stalled on the
L1, L2, and L3 caches as well as main memory. On ARM v8 Cortex
A53, we measure the number of cache hits and DRAM memory

L1 L2 L3 Main Memory
0.0

0.1

0.2

0.3

0.4

Ti
m

e 
(b

illi
on

s o
f c

lo
ck

tic
ks

)

(a) Memory Request Stalls on Intel i9
Cake
MKL

L1 Hits L2 Hits DRAM Requests
0
1
2
3
4
5
6
7
8

Bi
llio

ns
 o

f A
cc

es
se

s

(b) Cache and DRAM Accesses on ARM
Cake
ARMPL

Figure 7: (a) Number of clock ticks spent stalled on requests
at different memory levels for CAKE and MKL for 10000 ×
10000matrices using all 10 cores of the Intel i9-10900K CPU.
Stalled time is defined as the time that the operands are not
in the CPU registers but instead are present in a particular
memory level (L1, L2, L3, DRAM). For this large problem size,
CAKE’s performance is ≈ 10% lower than MKL’s (see Figure
8 for problem sizes where CAKE outperforms MKL). How-
ever, CAKE spends less absolute time stalled on main mem-
ory and more time stalled on local memory than MKL. (b)
Cache Hits and DRAM Memory accesses when performing
MM between two 3000 × 3000 matrices on ARM v8 Cortex.
CAKE shifts memory demand to internal memory (L1, L2,
L3) whereas both MKL and ARMPL rely on main memory
transfers.

requests using the Linux Perf Tool [2] for an MM between two
3000 × 3000 matrices.

As depicted in Figure 7a, with CAKE, the Intel CPU is most often
stalled on memory requests to a local memory level. In contrast,
with MKL, the CPU stalls most often on requests to main memory.
We see similar results for the ARM CPU in Figure 7b. CAKE serves
more memory requests from the L1 cache than ARMPL, which
performs ≈ 2.5𝑥 more DRAM requests. This reflects CAKE’s use
of local memory to buffer partial results. If DRAM bandwidth re-
mains fixed, as the number of cores grows, main memory stalls
will significantly impact performance due to high memory access
latencies.

5.2.3 CAKE’s Performance for Different Matrix Shapes. As
depicted in Figure 8, we use all 10 cores for the Intel CPU and vary
𝑀 and 𝐾 from 1 to 8000. Each plot shows a different𝑀 : 𝑁 aspect
ratio, and shaded regions represent input matrix dimensions where
CAKE outperforms MKL by at least some factor.

As the matrix size decreases in any dimension, CAKE’s through-
put, relative to MKL, increases. For a general MM between square
𝑁 × 𝑁 matrices, arithmetic intensity is 𝑂 (𝑁 ). Hence, as the prob-
lem size 𝑁 decreases, arithmetic intensity also decreases and the
MM becomes more memory-bound. CAKE increases arithmetic
intensity, and thus MM throughput, by analytically blocking the
computation to minimize external IO.

Figure 9 shows CAKE’s speedup in computation throughput for
square matrices of varying size compared to MKL and ARMPL on
the Intel i9-10900K and ARM v8 Cortex CPUs, respectively. Speedup
in throughput for a fixed-size MM using 𝑝 cores is defined as 𝑡𝑝/𝑡1,
where 𝑡1 and 𝑡𝑝 are the throughputs for the MM using a single core
and 𝑝 cores, respectively. This speedup metric allows us to evenly

8



compare CAKE’s performance across different platforms (i.e., Intel
and ARM) for the same problem sizes. For absolute performance
results, please refer to Sections 5.2.4, 5.2.5, and 5.2.4.

In Figure 9a, CAKE’s improvement in speedup over MKL is more
pronounced for smaller matrices. When matrices grow to a certain
size, achievable throughput reaches a steady state, allowing MKL
to approach CAKE’s performance. In contrast, Figure 9b shows
that, on the ARM CPU, CAKE has higher speedup than ARMPL
for all problem sizes. The low available DRAM bandwidth impedes
ARMPL’s performance when it attempts to use more cores, mean-
ing CAKE outperforms ARMPL for all problem sizes. Kinks in the
speedup curves for MKL and CAKE in Figure 9a around 6 cores
may be attributable to non-deterministic latency introduced by bus
contention or L3 cache coherency delays.

1000 2000 3000 4000 5000 6000 7000 8000
M = N

1000

2000

3000

4000

5000

6000

7000

8000

K

(a) Relative Throughput for M = N
 1.00x
 1.25x
 1.50x
 2.00x

1000 2000 3000 4000 5000 6000 7000 8000
M = 2N

1000

2000

3000

4000

5000

6000

7000

8000

K

(b) Relative Throughput for M = 2N
 1.00x
 1.25x
 1.50x
 2.00x

1000 2000 3000 4000 5000 6000 7000 8000
M = 4N

1000

2000

3000

4000

5000

6000

7000

8000

K

(c) Relative Throughput for M = 4N
 1.00x
 1.25x
 1.50x
 2.00x

1000 2000 3000 4000 5000 6000 7000 8000
M = 8N

1000

2000

3000

4000

5000

6000

7000

8000

K

(d) Relative Throughput for M = 8N
 1.00x
 1.25x
 1.50x
 2.00x

Figure 8: Relative improvement in throughput for CAKE,
compared toMKL, over variousmatrix dimensions on an In-
tel i9-10900K. Each each contour boundary indicates dimen-
sions for which CAKE outperforms MKL by a certain factor.
Darker regions indicate greater throughput for CAKE rela-
tive to MKL.

5.2.4 Achieving Maximum Computation Throughput
Allowed Under External Bandwidth Constraints. We evalu-
ate the CAKE algorithm on an ARM v8 Cortex A53, which has a
low DRAM bandwidth, local memory size, and internal bandwidth.
We multiply two 3000× 3000matrices using CAKE and the ARMPL
and collect performance data using the Linux perf tool [2]. We use
Perf to record DRAM accesses by monitoring the ARM PMU event
counter for L2 cache refills from DRAM. Figures 11a and 11b show,
as the number of cores increases, ARMPL must increase DRAM us-
age to increase computation. As a result, ARMPL does not achieve

1 2 3 4 5 6 7 8 9 10
Number of Cores (M=N=K)

1

2

3

4

5

6

7

Sp
ee

du
p

(a) Speedup For Square Matrices in CAKE vs MKL
M=N=K

1000 (mkl)
1000 (cake)
2000 (mkl)
2000 (cake)
3000 (mkl)
3000 (cake)

1 2 3 4
Number of Cores (M=N=K)

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

(b) Speedup For Square Matrices in CAKE vs ARMPL
M=N=K
1000 (armpl)
1000 (cake)
2000 (armpl)
2000 (cake)
3000 (armpl)
3000 (cake)

Figure 9: Speedup in computation throughput (speedup in
time compared to a single core) for square matrices on Intel
i9 10900K and ARM v8 Cortex CPUs. In (a), CAKE’s speedup
improvement over MKL is more pronounced for small ma-
trices. MKL’s performance approaches CAKE as matrix size
increases and achievable throughput reaches a steady state.
In (b), CAKE outperforms ARMPL on square MM consis-
tently for all sizes. Unlike CAKE, ARMPL cannot scale per-
formance with the number of cores due to limited DRAM
BW on the ARM CPU.

the maximum computation throughput as there is little additional
DRAM bandwidth available (Figure 11b). In contrast, CAKE can
adjust the CB block shape to achieve the maximum computation
throughput for a given number of cores without increasing DRAM
bandwidth.

We use pmbw to measure the ARM CPU’s internal bandwidth
between the L2 cache and cores, as shown in Figure 11c. Internal
bandwidth on the ARM CPU does not increase proportionally with
the number of cores, beyond 2 cores. Consequently, we see the
DRAM bandwidth required for CAKE increases slightly above the
theoretical optimum for 3 and 4 cores in Figure 11a.

In Figure 11b, insufficient internal bandwidth causes CAKE’s
throughput to grow slightly less than proportional to the number
of cores. Our extrapolation in Figure 11c suggests that, if internal
bandwidth continued to increase proportionally to the number of
cores, CAKE throughput would also continue to increase.

9



1 2 3 4 5 6 7 8 9 10
Number of Cores

5

10

15

20

25

Av
g.

 D
RA

M
 B

w 
(G

B/
s)

(a) DRAM Bandwidth in CAKE vs MKL
MKL Observed
CAKE Observed
CAKE Optimal

1 2 3 4 5 6 7 8 9 1011121314151617181920
Number of Cores

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (G

FL
OP

/s
)

(b) Computation Throughput in CAKE vs MKL
MKL Observed
CAKE Observed
MKL extrapolated
CAKE extrapolated

1 2 3 4 5 6 7 8 9 1011121314151617181920
Number of Cores

100

200

300

400

500

Ba
nd

wi
dt

h 
(G

B/
s)

(c) Internal Bandwidth On Intel CPU
Intel i9 actual
extrapolated

Figure 10: CAKE on an Intel i9-10900k, performingMMbetween two 23040×23040matrices. (a) Compared toMKL (blue), CAKE
(red) does not need to increase DRAM bandwidth to utilize more cores. The slight increase in CAKE’s DRAM bandwidth, above
the optimal, for 9 and 10 cores is caused by insufficient internal bandwidth between the L3 cache and CPU cores. (b) CAKE
(red), achieves within 3% of MKL’s (blue) computation throughput without needing to increase DRAM bandwidth. (c) Using
pmbw, we measure internal bandwidth between the L3 cache and cores. On this CPU, internal bandwidth does not increase
proportionally with the number of cores past 6 cores. Consequently, we see in (a) that CAKE’s required DRAM bandwidth
increases slightly above optimal past 6 cores, and in (b) that insufficient internal bandwidth causes CAKE throughput to grow
slightly less than proportional to core count. The dotted extrapolation lines assume internal memory bandwidth increases
proportionally for each additional core, local memory size increases quadratically, and DRAM bandwidth is fixed.

1 2 3 4
Number of Cores

0.2

0.4

0.6

0.8

1.0

1.2

Av
g.

 D
RA

M
 B

w 
(G

B/
s)

(a) DRAM Bandwidth in CAKE vs ARMPL

ARMPL Observed
CAKE Observed
CAKE Optimal

1 2 3 4 5 6 7 8
Number of Cores

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

FL
OP

/s
)

(b) Computation Throughput of CAKE vs ARMPL
ARMPL extrapolated
CAKE extrapolated
CAKE Observed
ARMPL Observed

1 2 3 4 5 6 7 8
Number of Cores

10

20

30

40

50

Ba
nd

wi
dt

h 
(G

B/
s)

(c) Internal Bandwidth On ARM CPU
ARM Cortex v8 A53
extrapolated

Figure 11: CAKE on an ARM v8 Cortex A53, performing MM between 3000 × 3000 matrices. CAKE adjusts the CB block to
achieve the maximum computation throughput without increasing DRAM bandwidth. (a) Unlike ARMPL (magenta), CAKE
(red) does not need to increase DRAM bandwidth to utilize more cores. (b) CAKE achieves higher computation throughput
than ARMPL, which is limited by DRAM bandwidth. (c) Using pmbw, we find internal bandwidth between the L2 cache and
cores does not increase with the number of cores for the ARM CPU. Consequently, we see in (a) that CAKE’s required DRAM
bandwidth increases slightly above optimal for 3 and 4 cores, and in (b) that insufficient internal bandwidth causes CAKE’s
throughput to grow slightly less than proportional to the number of cores. The dotted extrapolation lines assume internal
memory bandwidth increases proportionally for each additional core, local memory size increases quadratically, and DRAM
bandwidth is fixed.

5.2.5 Achieving Maximum Computation Throughput
AllowedUnder InternalMemoryBandwidthConstraints. We
compare CAKE to MKL on an Intel i9-10900K for an MM between
two 23040 × 23040 matrices. We use Intel VTune Profiler to record
computation throughput andDRAMbandwidth usage. CAKE achieve
within 3% of MKL’s computation throughput, but requires substan-
tially less DRAM bandwidth (Figures 10a, 10b).

We measure internal bandwidth between the L3 cache and pro-
cessor cores, again using pmbw. As shown in Figure 10c, the Intel
CPU is constrained by internal bandwidth, which fails to grow pro-
portionally with the number of cores beyond 6 cores. Consequently,
CAKE requires slightly more than the theoretically optimal DRAM

bandwidth for 9 and 10 cores, as seen in Figure 10a. In Figure 10b,
we also see that insufficient internal bandwidth causes CAKE’s
throughput to grow less than proportional to the number of cores
past 8 cores. Figure 10b includes extrapolations for expected per-
formance for both for CAKE and MKL, under the assumption that
internal memory bandwidth continues to increase proportionally
with the number of cores while DRAM bandwidth remains fixed.
With sufficient local memory, CAKE will achieve the maximum pos-
sible computation throughput for a given number of cores. While
MKL’s throughput may continue to increase beyond 10 cores, it re-
lies on increased DRAM bandwidth to increase throughput, which

10



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cores

1

2

3

4

5

Av
g.

 D
RA

M
 B

w 
(G

B/
s)

(a) DRAM Bandwidth in CAKE vs OpenBlas

OpenBlas Observed
CAKE Observed

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Cores

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (G

FL
OP

S/
se

c)

(b) Computation Throughput of CAKE vs OpenBlas

OpenBlas extrapolated
CAKE extrapolated
CAKE Observed
OpenBlas Observed

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of Cores

0

200

400

600

800

1000

1200

1400

1600

Ba
nd

wi
dt

h 
(G

B/
s)

(c) Internal Bandwidth On AMD CPU
AMD Ryzen 9 5950X
extrapolated

Figure 12: CAKE on an AMD Ryzen 9 5950X performing MM between two 23040 × 23040 matrices. Relative to the other CPUs
evaluated, the 5950X is least constrained by system resources. (a) Unlike OpenBLAS (black), CAKE (red) does not need to
increase DRAM bandwidth to utilize more cores. On this CPU, DRAM bandwidth is estimated from the number of L1 cache-
line refills from DRAM. (b) CAKEmatches OpenBLAS’s peak performance, but with a smaller DRAM bandwidth requirement,
as seen previously. (c) Using pmbw, we measured internal bandwidth between the L3 cache and cores. The 5950X has high
internal bandwidth between L3 cache and cores that grows roughly linearly with the number of cores. Consequently, we see
in (a) that CAKE’s required DRAM bandwidth stays constant past 9 cores, and in (b) that sufficient internal bandwidth enables
CAKE to achieve high computation throughput. The dotted extrapolation lines assume internalmemory bandwidth increases
proportionally for each additional core, local memory size increases quadratically, and DRAM bandwidth is fixed.

will plateau when all available DRAM bandwidth is consumed. Al-
though 40GB/s of DRAM bandwidth is available on this system,
CAKE only utilizes an average of 4.5GB/s, instead relying on local
memory bandwidth to leverage more cores. Relying on local mem-
ory is preferable because, while DRAM bandwidth is high, latency
and power consumption may be problematic [29].

5.2.6 Achieving Maximum Computation Throughput
Allowed Under Available Processing Power (without other
system resource constraints). We compare CAKE to OpenBLAS
when computing an MM between two large 23040× 23040matrices
on an AMD Ryzen 5950X CPU. OpenBLAS was chosen for the
AMD CPU because it is an optimized library using GotoBLAS and
outperforms MKL on non-Intel hardware [9]. We use AMD 𝜇Prof
[15] to measure DRAM bandwidth and computation throughput.
However, due to the lack of an available DRAM access counter on
this CPU at the time of writing, DRAM accesses during MM are
estimated using the PMU counter for L1 data cache refills. Only a
portion of total DRAM bandwidth usage is measured, so we omit
comparison to the theoretically optimal DRAM bandwidth curve
in Figure 12a.

Figure 12c shows internal bandwidth between the L3 cache and
processor cores increases roughly proportionally by 50GB/s per
core. CAKE takes advantage of the increasing internal bandwidth
to achieve peak computation throughput without increasing DRAM
bandwidth usage beyond 9 cores (Figures 12a and 12b). Since this
CPU is not constrained by internal bandwidth or DRAM bandwidth,
both CAKE and OpenBLAS can increase computation throughput
when adding more cores, but OpenBLAS uses more DRAM band-
width than CAKE.

We include extrapolations for expected performance for CAKE
and OpenBLAS, again assuming internal memory bandwidth con-
tinues to increase proportionally with the number of cores while
DRAM bandwidth remains fixed in Figures 12b and 12c

6 EXTENDING CAKE BEYOND CPUS AND
CAKE ARCHITECTURE SIMULATOR

6.1 Beyond CPUs
CAKE trades off increased internal memory usage for reduced
external bandwidth requirements, which can benefit any computing
platform with a memory hierarchy with multiple levels (e.g., L1, L2,
DRAM).

While this paper focuses on CPUs, CAKE is not limited to these
platforms. For example, the CAKE methodology can apply to GPUs
or other heterogeneous systems comprised of general-purpose com-
puting engines and special-purpose accelerators.

Indeed, CUTLASS, a GPU MM library, similarly utilizes block
shaping and sizing, but only exposes them as “compile-time con-
stants that the programmer specifies.” [1] CAKE’s CB blocks can
eliminate the need to manually search for optimal block designs.
For similar reasons, CAKE can also help reduce searches for optimal
multi-tenant schedules [11].

6.2 CAKE Architecture Simulator
We developed a SystemC architecture simulator [3] using MatchLib
[19] connections to validate the correctness of the CB block design
and execution schedule. The simulator models timings between
external memory, local memory, and cores under various system
characteristics (e.g., low external memory bandwidth). This flexibil-
ity helps verify the correctness of the CAKE algorithm for corner
cases that are difficult to analyze. Results from the simulator were
used to develop the libraries evaluated in Section 5 and will ease
the development of future extensions of CAKE (as noted in Sec-
tion 6.1) to various computing platforms (including GPUs, Maestro
[21], TPU [17], etc.).

To reduce module complexity and simplify programming, stan-
dardized packets are used for all communication between simulated
hardware modules. Packets originate from external memory and
contain headers to control routing (i.e., source routing) as well

11



as fields containing the packet’s tile index into the computation
space and CB block. Packet-based scheduling allows us to easily
modify the architecture and computation schedule. For example,
to double the number of cores, we simply instantiate new mod-
ules to represent the added cores, and adjust the packet headers
accordingly.

7 CONCLUSION
When performing a block of computations in a matrix multipli-
cation (MM) space from within an internal memory, CAKE uses
a constant-bandwidth (CB) block to simultaneously satisfy two
objectives. First, CAKE adapts the computation’s arithmetic in-
tensity to balance computation and IO times by controlling block
aspect ratios. Second, CAKE adjusts the computation volume by
controlling CB block sizes to fully use all available computing power.
With CAKE, we can trade off increased internal memory usage for
reduced external bandwidth requirements. From a technology view-
point, relying on local memory is generally preferable since DRAM
has relatively high latency and power consumption. Furthermore,
CAKE explicitly specifies the required bandwidth and size of the
internal memory.

Supported by analysis and measurements on real-world systems,
CAKE can substantially improve computational throughput for MM
on CPUs as a drop-in replacement for MM calls. In both theory and
practice, CAKE has advanced state-of-the-art MM computation.

ACKNOWLEDGMENTS
This work was supported in part by the Air Force Research Labora-
tory under award number FA8750-18-1-0112, a gift from MediaTek
USA and a Joint Development Project with TSMC.We thankWei-Te
Mark Ting for his comments and drawings. We also thank anony-
mous reviewers whose comments helped improve and clarify this
manuscript.

REFERENCES
[1] 2020. CUTLASS: Fast Linear Algebra in CUDA C++. https://developer.nvidia.

com/blog/cutlass-linear-algebra-cuda/.
[2] 2021. perf: Linux profiling with performance counters. https://perf.wiki.kernel.

org/index.php/Main_Page.
[3] Accellera Systems Initiative Inc. 2016. SystemC Synthesis Subset Standard

v1.4.7. Accellera Systems Initiative Inc. https://www.accellera.org/downloads/
standards/systemc

[4] Arm Limited 2021. Arm Performance Libraries Reference Guide. Arm Limited.
https://developer.arm.com/documentation/101004/latest/

[5] Timo Bingmann. 2013. Parallel Memory Bandwidth Benchmark/Measurement.
https://panthema.net/2013/pmbw/.

[6] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. McCaule,
P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen,
and C. Webb. 2006. Die Stacking (3D) Microarchitecture. In 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06). 469–479.
https://doi.org/10.1109/MICRO.2006.18

[7] Intel Corporation. 2021. Intel oneAPI Math Kernel Library. https://software.intel.
com/content/www/us/en/develop/articles/mkl-reference-manual.html.

[8] Intel Corporation. 2021. Intel VTune Profiler. https://software.intel.com/content/
www/us/en/develop/tools/oneapi/components/vtune-profiler.html.

[9] Agner Fog. 2020. Intel’s "cripple AMD" function. https://www.agner.org/optimize/
blog/read.php?i=49.

[10] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017.
TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’17). 751–764.

[11] S. Ghodrati, B. H. Ahn, J. Kyung Kim, S. Kinzer, B. R. Yatham, N. Alla, H. Sharma,
M. Alian, E. Ebrahimi, N. S. Kim, C. Young, and H. Esmaeilzadeh. 2020. Planaria:
Dynamic Architecture Fission for Spatial Multi-Tenant Acceleration of Deep

Neural Networks. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 681–697. https://doi.org/10.1109/MICRO50266.2020.
00062

[12] Kazushige Goto and Robert A. van de Geijn. 2002. On Reducing TLB Misses in
Matrix Multiplication. Technical Report TR-02-55 (2002).

[13] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of High-Performance
Matrix Multiplication. ACM Trans. Math. Softw., Article 12 (2008), 25 pages.

[14] J.H. Huang. 2013. Keynote. (2013). NVidia GPU Technology Conference.
[15] Advanced Micro Devices Inc. 2021. AMD 𝜇Prof. https://developer.amd.com/amd-

uprof/.
[16] Intel Corporation 2016. Intel oneAPI Deep Neural Network Library. Intel Corpora-

tion. https://oneapi-src.github.io/oneDNN/
[17] Norman P. Jouppi, Cliff Young, et al. 2017. In-Datacenter Performance Analysis

of a Tensor Processing Unit. CoRR abs/1704.04760 (2017). arXiv:1704.04760
http://arxiv.org/abs/1704.04760

[18] H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, and K. Kim. 2017. HBM (High Band-
width Memory) DRAM Technology and Architecture. In 2017 IEEE International
Memory Workshop (IMW). 1–4. https://doi.org/10.1109/IMW.2017.7939084

[19] Brucek Khailany, Evgeni Khmer, et al. 2018. AModular Digital VLSI Flow for High-
Productivity SoC Design. In Proceedings of the 55th Annual Design Automation
Conference (San Francisco, California) (DAC ’18). Association for Computing
Machinery, New York, NY, USA, Article 72, 6 pages. https://doi.org/10.1145/
3195970.3199846

[20] Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-Efficient
Machine Learning in 2 KB RAM for the Internet of Things. In Proceedings of the
34th International Conference on Machine Learning - Volume 70 (Sydney, NSW,
Australia) (ICML’17). JMLR.org, 1935–1944.

[21] H. T. Kung, B. McDanel, S. Q. Zhang, X. Dong, and C. C. Chen. 2019. Maestro: A
Memory-on-Logic Architecture for Coordinated Parallel Use of Many Systolic
Arrays. In 2019 IEEE 30th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), Vol. 2160-052X. 42–50.

[22] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. 1991. The Cache
Performance and Optimizations of Blocked Algorithms. (1991), 63–74. https:
//doi.org/10.1145/106972.106981

[23] Z. Li, Z. Wang, L. Xu, Q. Dong, B. Liu, C. I. Su, W. T. Chu, G. Tsou, Y. D. Chih, T. Y. J.
Chang, D. Sylvester, H. S. Kim, and D. Blaauw. 2021. RRAM-DNN: An RRAM
and Model-Compression Empowered All-Weights-On-Chip DNN Accelerator.
IEEE Journal of Solid-State Circuits 56, 4 (2021), 1105–1115.

[24] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. 2020.
MCUNet: Tiny Deep Learning on IoT Devices. arXiv:2007.10319 [cs.CV]

[25] Jason Lowe-Power, Mark D. Hill, and David A. Wood. 2016. When to use
3D Die-Stacked Memory for Bandwidth-Constrained Big Data Workloads.
arXiv:1608.07485 [cs.AR]

[26] Bradley McDanel, Sai Qian Zhang, HT Kung, and Xin Dong. 2019. Full-stack
optimization for accelerating CNNs using powers-of-two weights with FPGA
validation. In Proceedings of the ACM International Conference on Supercomputing.
449–460.

[27] Dennis Rich, Andrew Bartolo, Carlo Gilardo, Binh Le, Haitong Li, Rebecca Park,
Robert Radway, Mohamed Sabry, H.-S. Philip Wong, and Subhasish Mitra. 2020.
Heterogeneous 3D Nano-systems: The N3XT Approach? 127–151. https://doi.org/
10.1007/978-3-030-18338-7_9

[28] Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework for
Rapidly Instantiating BLAS Functionality. ACM Trans. Math. Software 41, 3 (June
2015), 14:1–14:33. http://doi.acm.org/10.1145/2764454

[29] T. Vogelsang. 2010. Understanding the Energy Consumption of Dynamic Random
Access Memories. In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. 363–374. https://doi.org/10.1109/MICRO.2010.42

[30] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications
of the Obvious. SIGARCH Comput. Archit. News 23, 1 (March 1995), 20–24.
https://doi.org/10.1145/216585.216588

[31] Zhang Xianyi, Wang Qian, and Zaheer Chothia. 2012. Openblas. URL: http:
//xianyi.github.io/OpenBLAS (2012), 88.

12

https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.accellera.org/downloads/standards/systemc
https://www.accellera.org/downloads/standards/systemc
https://developer.arm.com/documentation/101004/latest/
https://panthema.net/2013/pmbw/
https://doi.org/10.1109/MICRO.2006.18
https://software.intel.com/content/www/us/en/develop/articles/mkl-reference-manual.html
https://software.intel.com/content/www/us/en/develop/articles/mkl-reference-manual.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://www.agner.org/optimize/blog/read.php?i=49
https://www.agner.org/optimize/blog/read.php?i=49
https://doi.org/10.1109/MICRO50266.2020.00062
https://doi.org/10.1109/MICRO50266.2020.00062
https://developer.amd.com/amd-uprof/
https://developer.amd.com/amd-uprof/
https://oneapi-src.github.io/oneDNN/
https://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
https://doi.org/10.1109/IMW.2017.7939084
https://doi.org/10.1145/3195970.3199846
https://doi.org/10.1145/3195970.3199846
https://doi.org/10.1145/106972.106981
https://doi.org/10.1145/106972.106981
https://arxiv.org/abs/2007.10319
https://arxiv.org/abs/1608.07485
https://doi.org/10.1007/978-3-030-18338-7_9
https://doi.org/10.1007/978-3-030-18338-7_9
http://doi.acm.org/10.1145/2764454
https://doi.org/10.1109/MICRO.2010.42
https://doi.org/10.1145/216585.216588
http://xianyi.github.io/OpenBLAS
http://xianyi.github.io/OpenBLAS

	Abstract
	1 Introduction
	2 Block MM Computation
	2.1 Block Framework for MM Computation
	2.2 Scheduling Blocks for MM Computation

	3 Constant Bandwidth Block Shape and Size
	3.1 Internal Memory Size Requirement
	3.2 External Bandwidth Analysis
	3.3 Internal Bandwidth Requirements

	4 Analysis of CAKE and GOTO on CPUs
	4.1 Bandwidth Analysis for GOTO
	4.2 Bandwidth Analysis for CAKE
	4.3 Sizing CAKE CB Blocks to Minimize Cache Evictions
	4.4 Comparing CAKE and GOTO

	5 Performance Evaluation of CAKE on CPUs
	5.1 CPUs Evaluated
	5.2 CAKE Implementation and CPU Experiments

	6 Extending CAKE Beyond CPUs and CAKE Architecture Simulator
	6.1 Beyond CPUs
	6.2 CAKE Architecture Simulator

	7 Conclusion
	Acknowledgments
	References



