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Abstract

Various approaches have been proposed for out-of-
distribution (OOD) detection by augmenting models, input
examples, training sets, and optimization objectives. Devi-
ating from existing work, we have a simple hypothesis that
standard off-the-shelf models may already contain sufficient
information about the training set distribution which can be
leveraged for reliable OOD detection. Our empirical study
on validating this hypothesis, which measures the model
activation’s mean for OOD and in-distribution (ID) mini-
batches, surprisingly finds that activation means of OOD
mini-batches consistently deviate more from those of the
training data. In addition, training data’s activation means
can be computed offline efficiently or retrieved from batch
normalization layers as a ‘free lunch’. Based upon this ob-
servation, we propose a novel metric called Neural Mean
Discrepancy (NMD), which compares neural means of the
input examples and training data. Leveraging the simplicity
of NMD, we propose an efficient OOD detector that com-
putes neural means by a standard forward pass followed
by a lightweight classifier. Extensive experiments show that
NMD outperforms state-of-the-art OOD approaches across
multiple datasets and model architectures in terms of both
detection accuracy and computational cost.

1. Introduction
Deep Neural Networks (DNNs) have achieved successes

on many computer vision tasks [28, 49]. However, most of
the deep learning methods are based on an assumption that
the data is independent and identically distributed (i.i.d.),
i.e., training and testing data come from the same under-
lying distributions. While it is almost impossible to curate
a dataset that covers all different kinds of scenarios in the
real world, the i.i.d. assumption is untrue in practice and
out-of-distribution (OOD) examples are likely to occur in
the testing data. So the ability to detect OOD examples be-
comes essential when deploying deep neural networks in
real-world applications [76, 86].

Many approaches have been developed to address OOD
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Figure 1. Training and inference time comparison with CIFAR-10
against CIFAR-100 (OOD) detection on ResNet-34. Our NMD-
MLP achieves superior performance in terms of both AUROC and
training time. See Secs. 3.3 and 5.6 and Fig. 4 for more details.

examples including enhancing standard DNN architec-
tures [14, 17, 26, 33, 48, 73, 83] and DNN fine-tuning us-
ing the augmented training set [15, 45, 50, 58, 61]. Un-
fortunately, these methods often incur significant overhead
w.r.t. both computation and data processing. Recent studies
perform kernel density estimation on standard training sets,
interpreting the negative of incoming example’s density as
the outlier score [22, 31, 44, 63]. Both non-parametric and
parametric kernels have been studied in the literature. How-
ever, they suffer from limited performance, heavy reliance
on large batch size, and low computational efficiency.

Deviating from most previous works, we believe the off-
the-shelf model itself should contain sufficient information
about the training data distribution. So we proposed a sim-
ple study (Figure 3) by looking at the model activation’s
mean for OOD and ID input batches. The result reveals
that the activation means of OOD mini-batches consistently
and clearly deviate more from those of the training data.
Inspired by this observation, we raised the question: Can
OOD detection be as simple and efficient as computing ac-
tivation’s arithmetic mean without fine-tuning?

We propose a novel metric called Neural Mean Discrep-
ancy (NMD), which compares neural means of the input ex-
amples and training data. The proposed NMD metric can be
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efficiently computed from the model’s activations; only for-
ward passes are needed. Additionally, training data’s neural
mean can be obtained for free from Batch Normalization
layers [43]. We found this NMD metric able to achieve su-
perior performance in OOD detection in terms of both ac-
curacy and efficiency (Figure 1).

From a theoretical perspective, we further connect the
aforementioned observation and the NMD formulation with
integral probability metrics (IPMs). IPMs are a family of
general distribution distance metrics, which project two sets
of examples to a new space via a kernel and use the mean
discrepancy of their projections as the distribution distance.
Both non-parametric and deep neural kernels have been
studied in the past [31, 44, 63]. The key finding of our work
is that, instead of defining a separate kernel function, the
off-the-shelf DNN itself is an efficient and effective kernel
for the purpose of out-of-distribution detection. This find-
ing consequently brings several advantages of our approach
summarized as follows:

1. Accessibility: Since the off-the-shelf DNN can be di-
rectly used, our NMD distance metric does not re-
quire data- and computation-intensive kernel optimiza-
tion, fine-tuning, or hyper-parameter search.

2. Extensibility: Each group of neurons (e.g., each chan-
nel in a convolution layer) are treated as a unique kernel,
which allows for thousands of parallelized kernels. They
are from different depths of the DNN and complemen-
tary to each other for capturing multi-level semantics,
which leads to improved discriminatory power.

3. Simplicity. Computing the NMD metric turns out, sur-
prisingly, as simple as calculating DNN’s activation
means. It can be offline computed via forward passes
on the training data. Interestingly, if the model contains
Batch Normalization (BN) layers, the neural means can
be approximated from BN directly as a “free lunch”.

We find the absolute value of NMD is able to reliably dis-
tinguish ID against OOD batches even when the batch size
is down to 4, an order of magnitude smaller than previous
statistical methods [13, 27, 30, 31, 44]. In order to further
improve the detection efficacy, we introduce a lightweight
OOD detector (instantiated as either a logistic regression or
a multilayer perceptron) which takes neural means as the
input to generate detection outputs. The detector is able to
take sensitivity and correlation of elements in the NMD vec-
tor into consideration, and achieve state-of-the-art detection
accuracy even when the batch size becomes 1, i.e., single
example OOD detection. The entire pipeline of our method
is illustrated in Figure 2 and Algorithm 1.

We extensively evaluate NMD across various datasets,
types of OOD (far- and near- OOD), pre-training types (su-
pervised and self-supervised [34]), and model architec-
tures (Simple ConvNet [44], ResNet [35], VGG [80] and
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Figure 2. The pipeline of NMD-based OOD detection. An input
example’s NMD vector is computed by taking the difference be-
tween its channel-wise activation mean and corresponding running
average in the batch normalization (BN) layer. The NMD vector
is then passed to a lightweight classifier (e.g., LR or MLP). Please
be advised that BN is not a requirement in computing NMD.
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Figure 3. A proof-of-concept example for an off-the-shelf ResNet-
34 pretrained on CIFAR-10 (ID). We first compute each mini-
batch’s NMD (see Figure 2). We then take the average of ele-
ments’ magnitude in NMD vector for each mini-batch as the score
(y-axis), referred to as Ours-Avg. Without fine-tuning, Ours-Avg
can reliably separate ID and OOD data. However, an un-trained
ResNet-34 is not able to achieve this as shown in the appendix.

Vision Transformer [19]). NMD consistently outperforms
statistical approaches and other state-of-the-art methods in
these settings. We further evaluate the robustness and gen-
eralizability of NMD under various data circumstances in-
cluding few-shot ID and OOD examples, zero-shot OOD
examples, and transfer learning for unseen OOD. In addi-
tion, we measure the efficiency of our approach showing
that the training cost of an NMD detector is orders of mag-
nitude faster than existing methods [12, 51, 58, 86], and our
overall inference latency is close to a standard forward pass.

2. Preliminary

2.1. Out-of-distribution (OOD) detection

Suppose one has a model well-trained on the training set
Dtr = {s1, . . . , s|Dtr|} from an underlying distribution P.
Given a batch of input examples I = {x1, . . . ,x|I|} from
an unknown distribution Q, the goal of OOD detection is to
discriminate whether I comes from P in a similar spirit to
measure how far Q deviates from P.



2.2. Integral probability metrics

Integral probability metrics (IPMs) [64] is a family of
probability distance measures defined as

IPMF (Q,P) = sup
ϕ∈F

(Ex∼Q[ϕ(x)]− Es∼P[ϕ(s)]) , (1)

where ϕ(·) denotes the witness function. IPMs project the
examples from two distributions P,Q to a new space using
ϕ, and then compare the means of the two projected sets.
Normally, we do not know the exact distribution formula-
tion, thus Eq. (1) is empirically estimated as

sup
ϕ∈F

 1

|I|

|I|∑
i=1

ϕ(xi)−
1

|Dtr|

|Dtr|∑
j=1

ϕ(sj)

 . (2)

If I is an out-of-distribution batch, we expect the value of
Eq. (2) to be large; otherwise, it should be relatively small.

IPM is a general framework, which relies on choosing an
appropriate class of witness functions F . Although IPM-
based methods have theoretical guarantees, they have cer-
tain limitations: (1) They may be incapable of handling high
dimensional data like images [46] or capture semantic infor-
mation [13, 57]. (2) They usually rely on hypothesis testing
which requires sufficiently large |I|, |Dtr| (e.g., 50+) and a
large number of computation iterations (e.g., 1000+) for a
single batch [27, 30, 44, 70].

3. Our approach
An overview of our approach is illustrated in Fig. 2. Our

key idea is that, instead of constructing additional special-
ized witness function, one can instantiate the witness func-
tion using the off-the-shelf model pre-trained on the training
data Dtr. This witness function leads to the proposed met-
ric, Neural Mean Discrepancy (NMD), which evaluates the
statistics of neural activations from the off-the-shelf model.

3.1. Neural Mean Discrepancy

The supremum in Eq. (2) is taken over the witness func-
tion ϕ(·), which implies that the neural network ϕω(·) is op-
timized to maximize the discrepancy in expectation over Q
and P [11, 53, 57]. This optimization leads to high compu-
tational cost. Instead, we propose to relax the requirement
of supremum in the context of OOD detection by making
an intuitive assumption: as long as a function is capable of
differentiating the statistics (i.e., mean) of examples from
in- and out-of- distributions in the projected (i.e., feature)
space, this function can be a qualified witness function. In-
terestingly, we find the off-the-shelf model f(·) pre-trained
on the in-distribution training set fits this criteria.

Taking a certain channel c in the l-th layer of the off-the-
shelf model as function f lc : R|I|×3×d′×d′ → R|I|×1×d×d,
where d′ and d are the spatial sizes of input images and

activation maps, respectively. We define a model-agnostic
metric named Neural Mean Discrepancy (NMD) using f lc
as the witness function,

NMDl
c(I) =

1

|I| · d2

|I|∑
i=1

d∑
m=1

d∑
n=1

f lc(xi)m,n (3)

− 1

|Dtr| · d2

|Dtr|∑
j=1

d∑
m=1

d∑
n=1

f lc(sj)m,n (4)

= µ[f lc(I)]− µ[f lc(Dtr)] , (5)

where the first sum (
∑|I|

i=1 or
∑|Dtr|

i=1 ) is taken over exam-
ples and the last two sums (

∑d
m=1

∑d
n=1) are taken over

all spatial positions (m,n) in this channel.
We sum over spatial positions of the activation map be-

cause each kernel of a neural net can be viewed as a realiza-
tion of the witness function in the IPM theory. Thus taking
average over spatial positions within a channel (i.e., output
of a kernel) is a faithful implementation of IPM with an NN.

Each spatial position responds to a corresponding patch
from the input image, known as the receptive field [5, 59,
60]. As a result, averaging across spatial positions can be
thought of as averaging over image patches after project-
ing them with f lc. This implicitly augments the input batch
and enables our method to survive from an extremely small
batch size |I| (even for a single input image |I| = 1) when
compared to previous IPMs-based methods.

Multi-layer NMD for multi-scale OOD detection. To
further improve the performance, we consider measuring
and combining NMDs from all channels across layers in
the off-the-shelf model. By doing that, we can get an NMD
vector for a given input batch I,

NMD(I) = {NMD1
1,NMD

1
2, . . . ,NMD

l
1,NMD

l
2, . . . ,NMD

L
1 ,NMD

L
2 , . . . }

(6)
which is a C-dimensional vector where C is the total num-
ber of channels in the off-the-shelf model. The multi-layer
NMD has three major advantages:
1. Each neural mean discrepancy NMDl

c associates with a
unique witness function f lc. Our method utilises the
combination of several witness functions which deliver
richer capacity than previous approaches based on a sin-
gle IPM, as validated by our extensive experiments.

2. NMDl
c for different layers may have different patch sizes

because their receptive fields increase linearly with their
layer depths. Combining NMDs from all layers enable
multi-scale OOD detection which captures both low-
level and high-level semantics (See Sec. 5.7).

3. By using multiple channels, NMD does not introduce
extra computation overhead since they can be obtained
via a single forward pass of the model.



“Free lunch” from Batch Normalization. The way that
NMD computes the activation statistics coincides with what
Batch Normalization (BN) does. Rather than computing
µ[f lc(Dtr)] by traversing the entire training data in Eq. (4),
one can directly use the running average from BN.

BN is an indispensable component in modern DNNs due
to its ability of stabilizing training and improving model
generalizability [43]. BN computes an output which nor-
malizes input using per-channel statistics. Concretely, in a
given channel, BN subtracts the activation mean µ from the
inputs and then divides them by standard deviation σ. Dur-
ing training, µ and σ2 are the empirical per-channel mean
µbatch and variance σ2

batch of the current mini-batch. Dur-
ing testing µ and σ2 are not computed from mini-batches.
Instead, the expected statistics µ, σ2 are estimated from the
training set and used for normalization. Ioffe et al. [43]
proposes that running average can be used to efficiently es-
timate expected statistics,

µ← λµ+ (1− λ)µbatch, σ2 ← λσ2 + (1− λ)σ2
batch, (7)

where a typical value of λ is 0.99 (which is a standard way
of implementation in most deep learning libraries [2, 68]).

Back to our method, we use the running average mean µ
stored in BN directly to approximate µ[f lc(Dtr)] instead of
manually computing it with Eq. (4),

µ[f lc(Dtr)] ≈ µ`
c. (8)

We adapt this approximation in our experiments and vali-
date that it works efficiently for OOD detection. Besides,
we also validate the effectiveness of Eq. (4) for models not
containing BN (e.g., VGG [80] and Transformer [19]).

3.2. A proof of concept

To verify our intuition using an example, we instantiate
the in-distribution data using CIFAR-10 [47] and the out-
of-distribution data using SVHN [67]. A ResNet-34 [35] is
trained on CIFAR-10 with standard training receipt as the
off-the-shelf model f(·). Given a mini-batch I, its NMD
vector is computed via Eqs. (5), (6) and (8). We propose
an intuitive baseline method called Ours-Avg, which takes
the average over elements’ magnitude in the NMD vec-
tor as confidence score for OOD detection. We randomly
sample 100 mini-batches from CIFAR-10 (green dots) and
SVHN (red dots) testing sets and visualize each batch’s
score in Fig. 3. The observation in Fig. 3 validates our ex-
pectation: OOD data has larger NMD than in-distribution
data on average.

Without any training, model fine-tuning, or hyper-
parameter tuning, Ours-Avg achieves an impressive perfor-
mance, 99.9% AUROC, with batch size |I| = 4. In con-
trast, other IPM-based methods typically require the batch
size to be much larger [27, 30, 70].

Algorithm 1 Pipeline of our NMD-based OOD detection
Input: (1) an input example x,

(2) an off-the-shelf pre-trained classifier f(·), and
(3) an OOD detector (gLR or gMLP).

Stage 1: Generate feature mean discrepancy vector
Do a forward pass with the off-the-shelf model f(x)
for each channel in f do

Compute NMDl
c(x) via Eqs. (5), (6) and (8)

end for
NMD(x)← Concatenate all channels’ NMDl

c(x)

Stage 2: Detect with the generated NMD vector NMD(x)
if Training then

Train the OOD detector g(·) with pairs:
{ (NMD(xID), 0), . . . , (NMD(xOOD), 1) }

else if Testing then
Use the OOD detector g (NMD (x)) to get
the detecting result

end if

3.3. A sensitivity-aware NMD detector

To further improve discriminatory power of the OOD de-
tection, we propose to learn a parametric detector that takes
NMD vectors as input instead of simply averaging them.
By doing this, the detection performance is boosted even
the batch size |I| drops to 1 (i.e., single input example).

Previous literature [9, 18, 32] observed that channels
in deep neural networks are correlated and of different
importance. To leverage this observation, we propose to
train a detector g(·) that takes the NMD vector NMD(x)
as input and predicts whether the current example is OOD
or not. During training, these detectors are optimized
on pairs of NMD representations and distribution indica-
tors, e.g., (NMD(xID), 0) for in-distribution examples and
(NMD(xOOD), 1) for out-of-distribution ones.

These OOD detectors are simple, lightweighted, and ef-
ficient at both training and inference. We will demonstrate,
in the experimental section, that the detector can learn with
few-shot examples and has high generalizability to unseen
OOD types. Even without access to OOD examples, the de-
tector can still achieves superior performance by randomly
permuting the pixels of in-distribution examples [73].

While the detector g(·) can be implemented using any
classification method, we compare in our experiments two
kinds of lightweight OOD detectors: a logistic regression
gLR (LR) and a multilayer perceptron gMLP (MLP). The
whole pipeline of our method can be found in Algorithm 1.

4. Experimental setup

Off-the-shelf models. NMD is model-agnostic and we
evaluate it on multiple architectures, including 4-layer Con-
vNet [44, 71], ResNet-34 [35], self-supervised ResNet-



34 [34], WideResNet [91], DenseNet-100 [40], VGG [80],
and Vision Transformer [19]. All models are well-trained
using their original training receipts and frozen (i.e., no fine-
tuning) throughout the experiments.

Benchmark datasets. We perform comparative studies on
various datasets: CIFAR-10, CIFAR-100, SVHN, cropped
ImageNet, cropped LSUN, iSUN, and Texture, following
OOD literature [51, 55, 58, 73, 78]. Different combinations
of in- and out-of- distribution datasets result in different lev-
els of difficulty. An OOD detection problem is typically cat-
egorized into near-OOD and far-OOD [25, 72, 84]. Near-
OOD means that the two data distributions are close to each
other. An example is using CIFAR-10 as in distribution and
CIFAR-100 as OOD. This is because both datasets come
from the same tinyimagenet dataset [69] and their labels are
all daily objects with similar semantics. In contrast, an ex-
ample for far-OOD could be CIFAR-10 as in distribution
and SVHN as OOD because SVHN contains only house
number images while CIFAR-10 contains natural images
with rich information. Near-OOD is generally a harder task
than far-OOD [73, 78, 92]. In order to demonstrate the ef-
fectiveness of our approach, we evaluate the NMD method
in both near-OOD and far-OOD tasks.

Protocols. We consider 4 kinds of data access circum-
stances to simulate real-world OOD detection scenarios.
1. Full access: Conventional OOD detection approaches

assume the access to both ID and OOD data for OOD
detector training and hyper-parameter tuning.

2. Few-shot: Due to privacy concerns, the data owner may
only release a few ID and OOD showcase examples for
OOD detector training. In our experiments, we propose
an extreme scenario where one only has access to 25 ID
and 25 OOD examples for training.

3. Zero-shot: Recent studies [39, 58, 78, 90] also learn
OOD detectors with only ID examples and without any
dependence on OOD examples.

4. Transfer: To evaluate the transferability of different
methods, we additionally propose to train the detectors
on one kind of OOD dataset and evaluate their perfor-
mance on separate unseen OOD datasets.

Evaluation metrics. Consistent with the literature [51, 55,
58, 73, 78], we use three evaluation metrics: (1) true neg-
ative rate at 95% true positive rate (TNR95), (2) area un-
der the receiver operating characteristic curve (AUROC),
and (3) detection accuracy (ACC) which measures the max-
imum detection accuracy over all possible thresholds.

Baseline methods. We compare our approach with several
existing methods lying in different categories.
1. Statistical methods: These are most related to our work.

As summarized in Sheng et al. [44], for a test example x,
such approaches compute the OOD score using the neg-
ative of the sum of kernel evaluation at each of the inlier

Model ID OOD Method AUROC

ConvNet
(4 layers)

CIFAR-10 SVHN

DK 82.4
CNTK 71.3

SCNTK 84.9
Ours-LR 99.9

ConvNet
(4 layers)

SVHN CIFAR-10

DK 21.4
CNTK 51.9

SCNTK 80.3
Ours-LR 99.8

Table 1. AUROC comparison of statistical OOD detection meth-
ods. we compare our method with deep kernel on extracted
feature maps (DK) [27, 57], convolutional neural tangent ker-
nel (CNTK) [6], shift-invariant convolutional neural tangent ker-
nel (SCNTK) [44]. Consistent to the setting of [44], we use a
four-layer convolution neural network as the classifier for feature
extraction. More details can be found in the appendix.

example Sx′ such that SCORE(x) = −
∑|S|

i=1 κ(x,x
′
i).

Different choices of the kernel κ result in different meth-
ods including Deep kernel (DK [27, 57]), convolution
neural tangent kernel (CNTK [6]), and shift-invariant
convolutional neural tangent kernel (SCNTK [44]).

2. Other baselines: We also compare our method with
other state-of-the-art approaches such as ODIN [55],
Mahalanobis distance [51], OE with classifier fine-
tuning [38], and Energy with classifier fine-tuning [58].
They require model fine-tuning, hyper-parameter tuning,
multi-round forward inference, while NMD does not de-
pend on any of the above.

5. Results

We show our results in this section, which empirically
demonstrate the simplicity, efficacy, efficiency, and general-
izability of NMD-based OOD detection. All results are ob-
tained for single example detection, i.e., batch size |I = 1|.

5.1. Comparison with statistical baselines

We first compare our method with the most related line
of approaches based on statistical tests, i.e., DK [27, 57],
CNTK [6], and SCNTK [44]. These methods require a
traversing in a subset of the in-distribution data Sx′ for ev-
ery test example, which could be expensive. NMD does not
depend on Sx′ which leads to higher efficiency. Following
settings of Sheng et al. [44], all compared methods adapt
a four-layer convolutional neural network as the feature ex-
tractor. Tab. 1 shows that our method (using logistic regres-
sion detection, denoted as ‘Ours-LR’) achieves significantly
better OOD detection performance (99.8+% AUROC). The
result empirically justifies the value of using multiple wit-
ness functions at different scales and semantic levels from
the same pre-trained model.



5.2. Comparison with other baselines

We evaluate our method on a set of out-of-distribution
datasets with ResNet trained on the in-distribution dataset
CIFAR-10. In this experiment, we assume both the ID and
OOD datasets are available for training. The pre-trained
ResNet-34 is frozen in our NMD method, while other meth-
ods may further fine-tune it to maximize the test power. In
addition, our NMD is hyper-parameter free while other ap-
proaches may have sensitive hyper-parameters to tune (e.g.,
temperatures in [55], perturbation in [51], and margin in
[58]). As shown in Fig. 4, despite its simplicity, our method
consistently outperforms other methods across datasets, es-
pecially on near-OOD dataset, CIFAR-100. More experi-
mental results can be found in the appendix.

5.3. Learning with only in-distribution examples

We further compare our method with approaches that do
not depend on any given OOD dataset for training. Among
them, G-ODIN [39] and 1D [90] need to fine-tune the model
on in-distribution dataset. Since no OOD example is ac-
cessible, we craft artificial OOD examples by randomly
permuting pixels of in-distribution examples and use the
crafted OOD examples to train our detector. The detector
trained on artificial OOD examples is evaluated on realis-
tic OOD datasets. Fig. 5 shows that our method performs
better than state-of-the-art without access to realistic OOD
data. The result also suggests that, even though the artificial
OOD examples are unrealistic, they are helpful in guiding
the decision boundary of an OOD detector.

5.4. Few-shot OOD training

We evaluate our method under the scenario that a very
limited number of in-distribution and out-of-distribution ex-
amples are available for training.

Fig. 6 compares different methods when only 25 ID ex-
amples and 25 OOD examples are present during training.
The baseline ‘Gram’ uses 50 ID examples as an exception
because it does not depend on OOD examples. Since 50 ex-
amples are too few to conduct fine-tuning for ‘Energy’, we
report its performance without fine-tuning as a reference.

Our method outperforms all other methods under this
few-shot setting. Previous works often require sufficient
data to tune hyper-parameters or models. In contrast, NMD
is hyper-parameter-free and thus can learn well with few
examples. However, we observe a slight over-fitting of
the MLP detector which suggests one should consider low-
capacity models such as LR in the few-shot cases.

5.5. Generalizability across models and datasets

We are interested in the transferability of the detec-
tor across datasets. For each model, we use CIFAR-100
as OOD dataset for training the detector and evaluate the

trained detector on unseen OOD datasets such as LSUN-C,
SVHN, Texture, and ImageNet-C.

As we elaborated in Sec. 3.1, one can either use run-
ning average in BN to approximate µ[f lc(Dtr)] (Eq. (8)) or
manually compute it via Eq. (4) if the model has no BN lay-
ers. So we also evaluates the generalizability of our method
across different models.
1. VGG models. VGG-19 consists of 16 convolution and

ReLU layers, followed by three fully-connected (FC)
layers. It has no BN layers. We only use channels
from convolutional layers to compute NMD. Since no
BN layer is present in this model, we traverse the in-
distribution training set (i.e., CIFAR-10) for one epoch.

2. Self-supervised models. We use MoCo [34] as the
self-supervised learning method. After pre-training a
ResNet-34 model with MoCo on CIFAR-10, we freeze
it and use it to compute NMD.

3. Vision Transformers. Different from CNNs, a Vision
Transformer (ViT) [19] is composed of a stack of stan-
dard multi-head self-attention and position-wise fully-
connected layers. ViT splits an image into p non-
overlapped patches and provides the sequence of embed-
dings of these patches as an input to a Transformer. ViT
adopts layer normalization (LN) [8] to normalize each
input example’s activation Zl ∈ Rp×d. Imitating convo-
lution neural networks, we compute ViT’s feature mean
for an input example x with µl (x) = 1

p

∑p
i=1 Zl

i ∈ <d,
and use it to compute NMD metric.
Tab. 2 indicates that NMD generalizes well for vari-

ous models and datasets. Interestingly, we find that self-
supervised ResNet-34 has the best averaged detection per-
formance across 4 unseen OOD datasets, suggesting the
high transferability of its learnt representations [16, 23, 34].

5.6. Training and inference efficiency

In this section, we compare the training and inference
costs of the proposed Ours-MLP with baselines in Fig. 1.
We measure the training and inference time on a machine
with one NVIDIA GPU 1080 Ti and a Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz.

Training cost. Since the detectors (i.e., LR and MLP)
we used are lightweight, the training process can be done
quickly (within 60 epochs with CIFAR-10 (ID) and CIFAR-
100 (OOD) training datasets in Fig. 1). In addition, differ-
ent from existing methods, NMD does not have sensitive
hyperparameters and thus does not have to repeat training
process for multiple times to search the hyperparameters.

Inference cost. As illustrated in Algorithm 1, we only have
to run a single forward pass with the pre-trained model to
generate the NMD vector. The generated NMD vector will
be then processed by a lightweight detector (e.g., Logistic
regress or three-layer MLP as detailed in Sec. 3.3). In con-
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Figure 5. AUROC comparison of detection methods when only in-distribution dataset is accessible. We compared our method with
Energy without classifier fine-tuning [58], Gram [78], G-ODIN [39], and 1D [90] on ResNet-34, using CIFAR-10 as in-distribution dataset.

In-dist. Train
OOD

Test
OOD

ResNet-34 ResNet-34 (self) VGG-19 ViT DenseNet
TNR at TPR 95% ↑ / AUROC ↑ / ACC ↑

CIFAR-10 CIFAR-100

LSUN-C 95.8 / 99.2 / 95.6 99.1 / 99.8 / 98.1 96.4 / 99.3 / 95.7 94.0 / 98.7 / 94.6 90.6 / 98.3 / 93.6
SVHN 96.4 / 99.2 / 95.9 99.9 / 99.9 / 99.9 99.9 / 99.9 / 99.1 99.8 / 99.9 / 99.2 95.8 / 99.2 / 95.4
Texture 91.7 / 98.5 / 93.4 97.8 / 99.5 / 96.7 96.1 / 99.1 / 95.6 91.4 / 98.3 / 93.5 93.0 / 98.6 / 94.0

ImageNet-C 93.7 / 98.7 / 94.4 99.9 / 99.9 / 99.1 94.0 / 98.9 / 94.5 89.0 / 98.1 / 93.0 94.3 / 98.8 / 94.7

Table 2. We evaluate generalizability of our method across models, including ResNet-34 trained with standard softmax cross-entropy
loss [35], ResNet-34 trained with self-supervised loss from MoCo [34], VGG-19 (without BN) [80], and Visual Transformer [19]. To
further validate the generalizability across datasets, we use CIFAR-100 as OOD dataset to train our detector and test the trained detector
on unseen OOD datasets including LSUN-C, SVHN, Texture, and ImageNet-C.

trast, other approaches, in addition to a standard forward
pass (Baseline [37] and ACET [36]), also require either: (1)
extra forward and backward passes [39, 51, 55]; (2) comput-
ing complicated properties (e.g., co-occurrences) [78, 90].

5.7. Ablation study

Layer importance for OOD detection. We visualize the
importance of NMD from different layers of ResNet-34
in Fig. 7. We find that our method utilises both low-level
visual attributes (from shallow layers) as well as high-level
semantic information (from deep layers) and dynamically
adjusts the importance depending on tasks. In the top two
plots of Fig. 7, we specify the OOD detector as a logistic
regression (LR). We standardize NMD vector to ensure that
each of its dimensions has a similar magnitude before send-
ing it to the LR model.

The absolute values of each learned coefficient in LR
can be treated as the importance of its corresponding chan-
nel. We compute a layer’s importance by averaging all its
channels’ importance values. We test two OOD detection

tasks: (1) In a far-OOD task CIFAR-10 against SVHN,
NMD values from shallow layers, which extract low-level
features [7, 88], are already able to differentiate CIFAR-10
against SVHN. (2) In a near-OOD task, CIFAR-10 against
CIFAR-100, we have to rely more on NMD values from
deeper layers to capture the semantic differences.

In the bottom two plots of Fig. 7, we visualize the detec-
tion performance when the first k layers’ NMDs are used.
For SVHN, it is sufficient to achieve the best AUROC with
only the first 5 layers. While, for CIFAR-100, using more
layers consistently leads to better performance. This obser-
vation aligns well with the previous paragraph, and moti-
vates a potential future work on dynamically selecting lay-
ers given an input example (i.e., ‘early exits’) for better per-
formance and efficiency like [56].

Does Neural Variance Discrepancy help? Besides the first
order statistics (i.e., mean), one can define Neural Variance
Discrepancy (NVD) by computing the activation’s second-
order statistics in a similar manner. In practise, we find
that using NVD (AUROC=95.3, CIFAR-10 against CIFAR-
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Figure 6. AUROC comparison of detection methods when only 25 in- and 25 out-of- distribution examples are accessible. We compared
our method with ODIN, Maha, Gram, and Energy with classifier fine-tuning [58] on ResNet-34, using CIFAR-10 as in-distribution dataset.
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achieves 84.0 AUROC.

The first layer is
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achieves 99.9 AUROC.

AUROC is improved
consistently when using

more layers.
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Figure 7. We study the layer-granularity importance of ResNet-34
for far-OOD (e.g., SVHN, left) and near-OOD (e.g., CIFAR-100,
right) using CIFAR-10 as in-distribution dataset. Top figures: Im-
portance of each layer in ResNet-34, where a layer’s importance is
measured by the averaged magnitude of channels’ coefficients in
the LR detector. Bottom figures: We use the first k layers (x-axis)
to do detection and evaluate the AUROC for different k.

100 on ResNet-34) is able to achieve a similar OOD de-
tection performance as NMD (AUROC=95.4). Combining
both NMD and NVD obtains a slightly better result (AU-
ROC=95.6). Please refer to Appendix E for more details.

6. Related work
OOD detection with model modification and fine-tuning.

Multiple OOD approaches augment standard DNN archi-
tectures by model ensemble [14, 26, 48, 83], training an
additional branch [17, 33], and learning a background
model [73]. In addition, various novel training objectives
have been proposed including training with OOD uniform
label [50], an additional OOD class [15, 61], OOD ex-
amples crafted by a generative model [62], energy score
regualarization [58], and soft-binning error [45].

OOD detection without fine-tuning. Maximum soft-
max probability [37] and it variants like ODIN [55],
GODIN [39], POOD [24] and Energy [58] have been used
for OOD detction. Beside the final outputs, intermediate ac-
tivation is also used like Gram [78], Mahalanobis [51, 72].

Statistical OOD detection. Previous studies have shown
some preliminary results of using Frechet distance [20] and
Maximum Mean Discrepancy (MMD) [29] for adversar-
ial [13, 27, 30, 74] and distribution shift detection [31, 70].
Erdil et al. [22] applies adversarial perturbation and ker-
nel density estimation (KDE) for a subset of in-distribution
examples and each input to do OOD detection. Density
of states estimator is also used for OOD detection with
generative models [63]. Jia et al. [44] proposes a compo-
sitional kernel, as a variates of adaptive deep neural ker-
nel [6, 27, 57], for efficient OOD detection. However, mere
shallow models are considered. In this work, by creatively
leveraging neural means from a pre-trained model, we sig-
nificantly reduce the algorithmic complexity and computa-
tional cost of statistical OOD detection.

Updating Batch Normalization statistics for improved
accuracy. Previous studies find that one can improve model
performance by updating the statistics and affine parameters
of the Batch Norm layers when either data or model change
during training [75, 82] or testing [65, 89]. Such BN recali-
bration techniques show promising effectiveness of improv-
ing the model performance [42, 85], domain adaptation and
generalization ability [54, 77], few-shot learning [21], and
the model’s robustness against input noise [10, 66, 79].

7. Conclusion and discussion
We proposed Neural Mean Discrepancy (NMD) which

compares the neural means between test examples and
training data for OOD detection. Both the IPMs-based the-
oretical analysis and empirical results validate the efficacy
of NMD. With the extreme algorithmic simplicity, NMD is
evaluated across datasets, models, and data access circum-
stances, achieving state-of-the-art accuracy and efficiency.

Limitations. Although NMD can achieve competitive re-
sults without access to real OOD data (see Sec. 5.3), artifi-
cially crafted OOD data via pixel shuffling is still required
to learn channel sensitivities. It is likely to estimate sensi-
tivities directly via weight distributions of the off-the-shelf
model [41, 87] or gradient information [4, 81]. In addition,
early existing works [3, 56] could be applied to further im-
prove the performance of an NMD-based OOD detector.
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A. Extra Results Using Different In-
Distribution Datasets

We further evaluate our method on various in-
distribution datasets including SVHN and CIFAR-100
in Tab. 3 using the same setting as Fig. 4. According to
Fig. 4, our method achieves state-of-the-art results with var-
ious in-distribution datasets.

In-dist. (model) OOD Baseline [37] ODIN [55] Maha. [51] Ours-LR

CIFAR-100
(ResNet-34)

SVHN 79.5 70.7 92.4 94.2
LSUN-C 75.8 85.6 98.2 99.9

ImageNet-C 77.2 87.8 98.0 99.9

SVHN
(ResNet-34)

CIFAR-10 92.9 92.1 99.3 99.8
LSUN-R 91.6 89.4 99.9 99.9

ImageNet-R 93.5 92.0 99.9 99.9

CIFAR-100
(DenseNet-100)

SVHN 82.7 85.2 90.3 93.3
LSUN-C 70.8 85.5 98.0 99.9

ImageNet-C 71.6 84.8 94.1 99.6

Table 3. AUROC comparison of detection methods on various in-
distribution datasets.

B. Lightweight OOD Detector

• Logistic regression (LR) is a kind of classic machine
learning model for binary classification. Given an input
vector, The LR model performs a dot product on the in-
put with the learned coefficient vector and outputs the
prediction score after applying the sigmoid function. A
LR model can be trained efficiently by several solvers
like LBFGS. [52] We use the default hyper-parameters
in sklearn [1] for training of LR detector.

• The multilayer perceptron (MLP) we use consists of
three full-connected layers following by non-linear acti-
vation function ReLU. We adapt dropout after the sec-
ond full-connected layer and train the MLP with SGD
optimizer. As a non-linear model, MLP is able to learn
more complex correlation among elements in the input
than LR. In practise, we find that MLP has slightly better
detection performance than LR, while, with higher over-
fitting possibility when the number of training examples
is limited. We training the MLP using SGD with 0.001
learning rate and 0.9 momentum.

The adapted OOD detector is lightweight. For instance,
Our LR model has 8k parameters and 16k FLOPs, signifi-
cantly smaller than the pre-trained model (e.g., ResNet-34
with ∼2×104k parameters and ∼2×106k FLOPs).

C. Architecture of ConvNet

Consistent to the setting of [44], we use a simple Con-
vNet in Sec. 5.1 and Tab. 1. ConvNet’s architecture is sum-
marized in Tab. 4.

Layer Configuration

Conv1 (3, 300, kernel size=4, stride=1)
Conv2 (300, 300, kernel size=4, stride=2)
Conv3 (300, 300, kernel size=4, stride=2)
Conv4 (300, 300, kernel size=3, stride=2)

AvgPool (kernel size=2)
FC (300, 10)

Table 4. Architecture of ConvNet following [44]. After each con-
volutional layer, batch normalization and ReLU layers are applied.

D. Pre-trained or Un-trained Models?
In Fig. 3, we show that the average of elements’ magni-

tude in NMD vector from a pre-trained ResNet-34 can be
used as OOD score to reliably distinguish OOD batches.
Such a proof-of-concept example validates that the off-
shelf-shelf pre-trained model can be used as a qualified
witness function. Based on this interesting and supervis-
ing finding, we believe the off-the-shelf model itself should
contain sufficient information about the training data dis-
tribution because it was trained to capture training data’s
features.

To further validate our hypothesis, we replace the pre-
trained ResNet-34 with an un-trained ResNet-34 and re-run
the experiment. As shown in Fig. 8, an un-trained ResNet-
34 cannot act as a qualified witness function to detect OOD
batches even the batch size is 8.

E. Neural Variance Discrepancy
As mentioned in Sec. 5.7, one can define Neural Vari-

ance Discrepancy (NVD) by computing the activation’s
second-order statistics in a similar manner as NMD,

NVDl
c(I) =

√
σ2[f lc(I)]−

√
σ2[f lc(Dtr)] , (9)

where the second term can be approximated by BN’s run-
ning average variance. Interestingly, NVD-based detec-
tion (i.e., NVD-MLP) achieves a comparable detection per-
formance as NMD.

We further combine NVD and NMD via concatenating
them together. Since elements in NVD and NMD may have
different magnitude, we adopt the standardizer from
sklearn to remove the mean and scale to unit variance
for each dimension of NVM and NMD vectors before con-
catenating. Combining NMD and NVD obtains a slightly
better detection result although extra computation overhead
is introduced.

F. Crafting OOD Data by Pixel Permuting
As discussed in Sec. 5.3, if no OOD example is accessi-

ble, we craft artificial OOD examples by randomly permut-
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Figure 8. We redo the proof-of-concept experiment in Fig. 3 with an un-trained ResNet-34. The batch size is 8.

ing pixels of in-distribution examples and use the crafted
OOD examples to guide our detector for finding the deci-
sion boundary. The premise of using crafted OOD example
is that the method has high generalizability across datasets
(i.e., for unseen OOD data) as validated in Sec. 5.5. Specifi-
cally, we do pixel permuting in the block granularity instead
of in the pixel granularity [73] to avoid tuning the hyperpa-
rameter “mutation rate”. Taking CIFAR-10 example as an
example, we split an image into 16 non-overlapping (8× 8)
blocks and randomly permute their positions. Results of
detection performance without OOD examples are shown
in Fig. 5 and Tab. 6.

G. Training and Inference Efficiency
In Sec. 5.6, we compare the training and inference

costs of the proposed Ours-MLP with baselines as shown
in Fig. 1. Training and inference time are measured on a
machine with one NVIDIA GPU 1080 Ti and a Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz. Some approaches
conduct model fine-tuning using MIT 80 Million Tiny Im-
ages Dataset which is not available any more. For those
methods, we use the target OOD dataset (i.e., CIFAR-100
training set) to do fine-tuning but with the same number of
iterations as using MIT 80 Million Tiny Images Dataset.
For methods which require repeating experiments for sev-
eral times to search hyper-parameters, we count all such
time into training time. To measure the inference latency,
we repeat single example detection for 10,000 times and
compute the average inference time for a single example.

A recent study, MOOD [56], achieves state-of-the-art in-
ference efficiency leveraging early exiting [3]. We do not
include MOOD in Tab. 5 because it depends a special ar-
chitecture with dynamic exits. In addition, our method is
orthogonal to MOOD and could be combined for a future
work as discussed in Secs. 5.7 and 7.

Method Fine-tuning Training Inference

Gram True 330s 0.37s
Maha False 1397s 25.7ms
ODIN False 1270s 16.0ms

G-ODIN True 1830s 22.1ms
OE True 560s 6.72ms

GOOD True 756m 47.4ms
ACET True 201m 6.89ms

Energy-FT True 620s 7.24ms

Plain ResNet-34 - - 6.72ms

Ours-MLP False 94s 7.54ms

Table 5. Training and inference time comparison with CIFAR-
10against CIFAR-100 (OOD) detection on ResNet-34. (Also
see Fig. 1)



In-dist
(model) OOD Energy (w/o FT) Gram (w/o FT) G-ODIN (w/ FT) 1D (w/ FT) Ours-MLP (w/o FT)

TNR at TPR 95% / AUROC / Detection acc.

CIFAR-10
(ResNet-34)

iSUN 60.4 / 92.2 / 87.0 99.3 / 99.8 / 98.1 95.3 / 98.9 / 95.6 76.9 / 86.3 / 92.9 99.7 / 99.9 / 98.6
SVHN 58.4 / 90.6 / 85.5 97.6 / 99.5 / 96.7 89.5 / 97.8 / 92.9 86.2 / 95.1 / 88.9 97.7 / 99.6 / 96.6
Texture 41.1 / 85.5 / 80.8 88.0 / 97.5 / 91.9 81.4 / 95.0 / 88.9 72.4 / 91.1 / 84.9 94.0 / 98.9 / 94.6

LSUN-C 89.2 / 98.0 / 93.8 89.8 / 97.8 / 92.6 93.9 / 98.8 / 94.0 77.1 / 92.9 / 86.5 93.9 / 98.8 / 94.5
ImageNet-C 67.4 / 93.6 / 88.7 96.7 / 99.2 / 96.1 90.8 / 98.2 / 94.3 81.9 / 94.6 / 88.5 96.1 / 99.2 / 95.6
CIFAR-100 43.1 / 87.1 / 80.7 32.9 / 79.0 / 71.7 36.3 / 85.5 / 79.3 57.4 / 87.2 / 80.8 63.8 / 90.1 / 83.4

Table 6. Comparison of detection methods when only in-distribution dataset is accessible. (Also see Fig. 5)
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