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Abstract— We describe a system in which autonomous robots
assemble two-dimensional structures out of square building
blocks. A fixed set of local control rules is sufficient for a
group of robots to collectively build arbitrary solid structures.
We present and compare four versions in which blocks are (1)
inert and indistinguishable, (2) uniquely labeled, (3) able to be
relabeled by robots, (4) capable of some computation and local
communication. Added block capabilities increase the availability
of nonlocal structural knowledge, thereby increasing robustness
and significantly speeding construction. In this way we extend the
principle of stigmergy (storing information in the environment)
used by social insects, by increasing the capabilities of the
blocks that represent that environmental information. Finally,
we describe hardware experiments using a prototype capable of
building arbitrary solid 2-D structures.

I. INTRODUCTION

In this paper we present a system for automated construc-
tion, in which autonomous mobile robots transport modular
building blocks to build a user-specified structure. We present
simple, fixed, local control rules by which robots can collec-
tively construct arbitrary two-dimensional structures without
internal holes. This is achieved with no direct communication
between robots, but rather by using the partially built structure
for implicit coordination. We describe significant advantages
to be gained from enhancing the blocks’ ability to store and
process information. If blocks are given some ability for
computation and communication with their neighbors in the
structure, then robot capabilities can be less, robustness is
improved, and the speed of building can be much greater. For
applications not permitting blocks of this complexity, allowing
blocks to store state (e.g., using passive, low-cost RFID tags)
can still substantially improve speed and robustness.

Automating construction could facilitate endeavors such
as the production of low-cost housing, and alleviate prob-
lems such as high accident rates reported with traditional
construction [1]. Automation would be particularly useful in
settings where human presence is dangerous or problematic.
For instance, robots could be sent to build habitats in extrater-
restrial environments, to await later human travelers. Similarly,
robot construction systems might be especially well-suited to
underwater settings, where human building activity is difficult,
but the environment has advantages such as effective weight-
lessness and mobility in three dimensions; conceivably their
use could one day even open up the oceans for colonization.
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Swarm approaches, involving larger numbers of simpler
robots rather than one or a few with more sophisticated capa-
bilities, can have advantages in such endeavors, in particular
with respect to parallelism, decentralization, and robustness.
Such systems are suited to work on many subtasks of a
project simultaneously. They further can typically absorb the
loss of many components without a significant impact on
task completion; similarly, they tolerate components acting in
no exact order, which is useful because of the difficulty of
preplanning robot behavior in detail in uncertain environments.

Swarms of building robots can draw inspiration from social
insects such as ants and bees. These insects use stigmergy to
guide their building activities: e.g., termites deposit materials
in ways influenced by their immediate surroundings, and in
turn influence those surroundings by depositing material. In
this way the insects communicate implicitly through manipu-
lation of the environment.

Stigmergy is a powerful and simple tool, with limitations:
while it can be used to produce structures with given qualita-
tive characteristics [2], it does not easily allow the consistent
production of specific structures; and no general principle has
been described for taking a particular desired structure and
extracting a set of low-level behaviors that building agents can
follow to produce it. Here we address both these limitations,
describing fixed sets of low-level control rules that can be
applied to reliably generate particular structures according to
a high-level user-specified design. Further, we discuss benefits
to be gained from extended stigmergy, increasing the ability of
the building materials to embody and process environmental
information. In a hardware prototype where a mobile robot
builds arbitrary solid structures out of self-aligning blocks, we
implement this extended stigmergy using writable RFID tags.

II. RELATED WORK

Our work is complementary to previous research on dis-
tributed approaches to automating construction. In some sys-
tems, where building elements are moved by robots [3]-[5] or
ambient fluid forces [6] to form a given structure, the sequence
of element placements is planned by hand in advance. Some
researchers have studied other issues related to construction,
such as inter-robot communication [3], [7] or debris cleanup
[8]. These studies have not focused on the problem of building
a particular desired structure given a high-level description.
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Fig. 1. Overview sketch of the system. As the structure is assembled, it

forms a grid with an implicit coordinate system, of which the marker can be
taken to be the origin.

Self-reconfigurable modular robots [9], [10] face the related
task of needing to rearrange modules from one configuration
to another, subject to some characteristic set of movement
constraints, including the requirement that all modules remain
connected. In our system we separate the elements into mobile
robots and nonmobile blocks, since when building a static
structure, blocks need not move again once attached. In this
way robots can be reused for other structures, and blocks can
be optimized for better structural properties and lower cost.
However, some modular robotics researchers have addressed
the similar goal of achieving user-specified arrangements of
blocks in a decentralized manner [11], [12]; and some features
common in modular robot research are useful in a system
like that described here, e.g., self-aligning connectors and
communication links between physically attached modules.

When blocks are capable of communication and computa-
tion, the construction problem is related to that of programmed
self-assembly [13], [14]. Such work considers tiles which
can change state and binding properties, and investigates how
to program them so that they aggregate into desired shapes
when mixed. These studies offer alternate approaches for
generating rules to produce desired structures from certain
classes. However, they do not explicitly consider the geometry
of tiles, and constraints it imposes on attachment order.

III. THE COLLECTIVE CONSTRUCTION PROBLEM

In the scenario we consider, mobile robots and caches of
building blocks are deployed at random into an obstacle-free
workspace. A marker indicates the location for the start of
construction. The goal is for the robots to collect blocks from
the caches and arrange them into a desired solid structure (i.e.,
no internal holes), starting at the marker (Fig. 1). The marker
and caches broadcast distinct long-range signals which robots
can use to navigate to them. The marker is an object with the
same geometry and attachment mechanisms as a block, and
serves as a ‘seed’ to which blocks can initially be attached.

We assume that robots have the following capabilities: (a)
Robots can move in any direction in the plane, alone or while
holding a block, and avoid collisions. (b) They can follow
beacons to get to block caches and to the building site. (c)
They can follow the perimeter of the partially built structure
and recognize when they turn corners. (d) They can take blocks
from caches and attach them to the structure. We do not
assume that robots can communicate with one another. While
robots can be designed to communicate wirelessly, two-way
communication in a network with dynamic topology can be
unreliable, may scale poorly, and requires ad-hoc multi-hop

7%

7

Fig. 2. (A) Examples of valid and invalid prospective attachment sites for
a sample structure. Shaded squares represent grid sites already occupied by
blocks. A new block can be attached at sites 1 or 2; 3 and 4 are too spatially
constrained to allow a block to be maneuvered into position.

(B) Two separated blocks (sites 1, 5) may not be attached in the same row if
all sites between them are meant to be occupied. Otherwise, attaching blocks
at the intermediate sites (2, 4) will eventually result in an unfillable gap (3).
(C) Building up a structure by layers, always starting new rows from the end
and extending them clockwise, as shown by the arrows. Lighter blocks have
been attached more recently.

routing which is non-trivial for mobile entities. We will explore
the use of explicit inter-robot communication in future work.
The first three of the robot capabilities above have repeat-
edly been demonstrated in a variety of autonomous robotic
systems [15]. Manipulation of the environment, however, is
typically much more difficult. We thus impose two measures
for the sake of capability (d). First, we make the conservative
assumption that if there are blocks on opposite sides of
a potential attachment site, then the site is physically too
constrained for a robot to maneuver a new block into (Fig.
2A). This constraint will simplify the task of mechanical
design. Moreover, by preventing gaps like that at site 4,
situations where a robot needs to maneuver a block down a
longer ‘tunnel’ (like that around site 3) will also be prevented.
Secondly, we specify that while robots must be able to bring
a block to a desired location, they are not solely responsible
for precision alignment. Instead the blocks have self-aligning
connectors (active or passive), so that it is sufficient for the
robot to get the block close to the attachment site. In §VI
we present a hardware prototype that implements many of the
robot tasks mentioned above, including self-aligning blocks.
We require that any concavities in the desired shape be wide
enough for two perimeter-following robots to pass each other
unimpeded. The extent to which this constraint limits possible
structures will depend on the hardware implementation.

IV. DISTRIBUTED CONSTRUCTION ALGORITHMS

We represent the shape to be constructed using a lattice, with
a coordinate system whose origin is the marker. Each site in
this lattice specifies whether or not a block should be attached
at the corresponding site in the structure. We will call this
lattice the shape map. Building a prespecified structure then
means attaching blocks exactly at the sites specified by the
shape map.

If a robot with the shape map can determine its position
in the structure’s coordinate system, then it can trivially
determine whether or not a site should be occupied. Because of
limitations of position estimation and odometry, establishing
position is a very difficult task in general. However, robots can
use the structure as a reference to determine their location.
Additionally, block edges and other features can be used to
correct the effects of odometry errors.



Algorithm 1 Pseudocode procedures for assembly of a struc-
ture of inert blocks. An ‘end-of-row’ site is one where the
robot is either about to turn a corner to the left, or the site
directly ahead is not supposed to have a block according to
the structure design. Below, variant methods for establishing
position, for identical, distinct, or writable blocks.
while structure not complete do
get block from cache
go to structure
Establish-Position {see below}
5:  seen-row-start < false
while still holding block do
if (site should have a block) and
((site just ahead has a block) or
(seen-row-start and (at end-of-row)) then
10: attach block here
else
if at end-of-row then
seen-row-start «— true
follow perimeter counterclockwise

1 A-Establish-Position: {Identical blocks}
while not adjacent to labeled side of marker do
follow perimeter counterclockwise

1B-Establish-Position: {Distinct blocks}
while not adjacent to previously known label do
record label in temporary map
follow perimeter counterclockwise
fill in label map from temporary map

1C-Establish-Position: {Writable blocks}
read position from neighboring label

The order of attachment must be partially constrained, to
avoid unwanted gaps caused by intermediate configurations
which prevent robots from reaching desired sites. Two sepa-
rated blocks must not be attached in the same row if all sites
between them are meant to be occupied. If this condition is
violated, then further addition of blocks will eventually lead
to an unfillable gap (Fig. 2B). One strategy is to build up the
structure by layers, adding new blocks in rows along the edge
of the existing structure (Fig. 2C).

Building the structure in this way—effectively growing
layers outwards from the seed, to fill all sites the design
specifies should be occupied, while not allowing unwanted
gaps to form—will ultimately produce any desired shape.

We now describe four algorithms that follow this approach,
using different levels of capabilities in the robots and blocks.
In each case we describe the algorithm for a single robot, and
then discuss considerations for many operating simultaneously.

A. Identical, inert blocks

In the first algorithm we assume that blocks are indistin-
guishable, with no capacity for communication. In this case the
robots are responsible for knowing the shape map and avoiding
unwanted gaps. Alg. 1A sketches the following approach.

Establishing Location. For any fixed perceptual distance,
a robot will be able to distinguish only a limited number of
distinct local configurations. Solely local observations are then
insufficient if the system is to be capable of building arbitrary
structures; a robot needs additional state to infer its location.
One simple method to do this is to make one edge of the
marker distinct, and to position that marker edge along an
edge of the shape map. The marker then serves as a landmark,
which will be found by any robot following the perimeter of
the structure at any stage of construction.! Upon reaching the
structure, then, a robot follows the perimeter until reaching that
landmark. It then knows its position and orientation, which it
updates thereafter by keeping track of the number of blocks
it passes and turns it makes. In this way the partial structure
provides a source of odometry for the robot.

Avoiding Gaps. Alg. 1 ensures that no separated blocks will
be attached in the same row if all sites between them should be
occupied, as follows. (a) Line 8 allows a block to be attached
at a site that has two occupied neighbors, as with site 2 in
Fig. 2A. Such attachments correspond to adding new blocks
to existing rows, and cannot result in violation of the rule
against separated blocks. (b) Line 9 specifies that a new row
can be started only if the robot has verified on its tour that
no block has been placed earlier in that row, and there are
no sites further along in the row where a block might already
have been placed.

Unfillable gaps are thus avoided with this algorithm. It
will also result in blocks filling the whole area specified
by the structure design, as is straightforward to prove by
contradiction. Thus any solid structure will reliably be built.

Multiple Robots. Each robot following Alg. 1A acts in
such a way that further consistent actions will lead to the
successful completion of the structure. It makes no difference
whether those further actions are taken by the same robot, or
by other robots. Fig. 3 shows a group of ten robots, operating
independently in this way with no explicit cooperation through
coordination, nevertheless building an arbitrary prespecified
shape. The partially built structure provides cues for implicit
coordination; robots sense how much has already been built
and act appropriately. Extensions may be necessary to pre-
vent robots interfering with one another’s movement; but the
algorithm works equally for a group as for an individual.

B. Distinct, inert blocks

Alg. 1A requires robots to find the marker before they can
attach a block, and to keep track of their movement along the
structure, with unfavorable implications for construction speed

't is possible to establish location even if the marker is indistinguishable
from all other blocks. Using the grid formed by the blocks as a guide, a robot
can circle the structure, keeping track of its movement, and recognize when it
has returned to a previously visited site. It then knows the shape of the partial
structure it has circled. If all robots use the same convention to register this
partial structure with the shape map, they can reliably determine their position
in a common coordinate system (even if the partial shape they observe is out
of date because other robots have meanwhile been attaching blocks). However,
this approach is slower than that where the marker is distinct, and requires
more dynamic memory from the robots. Thus we explore it no further here.



Fig. 3. Simulated construction of a sample rectangular structure of inert
blocks, showing successive snapshots during the process of construction by
ten robots. White: blocks; brown: robots carrying blocks; gray: empty cells

where blocks should be attached; black: empty cells that should be left empty.
The marker is in the upper left corner.

and behavioral robustness (§V). An alternative is to make all
blocks distinct, so that each becomes a potential landmark.
Reliably distinguishing an arbitrary number of blocks could
be very difficult for robots if it is to be accomplished, e.g.,
visually. However, it could be done simply and reliably, e.g.,
by labeling each block with an RFID tag.’

The simplest labels are static, as with read-only RFID tags:
every block is distinct, but there is no advance information
regarding where blocks might end up attached to the structure.
A robot must then maintain a dynamic label map, storing the
labels and locations of all blocks in the structure. The initial
label map has the marker at the origin.

When the robot reaches the structure perimeter, it can estab-
lish its position by reference to a block label. Disambiguating
orientation may be done in a number of ways: the robot may
have its own compass; it can go on to find a second known
block (or, initially, a distinct edge of the marker as before);
or the four sides of each block can be distinct, with robots
storing in their label maps the orientation of each block as
well. Finding a legal attachment site, so as to avoid unwanted
gaps, can then be done as before.

Construction will proceed faster with this algorithm than
with identical blocks. A robot can establish its location more
readily, not needing to follow the perimeter all the way to the
marker to do so. The marker can be located in the middle
of the desired structure, rather than along an edge, allowing
construction to proceed on all sides.

Multiple Robots. With many robots adding blocks in par-
allel, each can encounter blocks at the structure whose labels
it has not previously seen. Thus upon reaching the structure,
a robot follows the perimeter, keeping track of block labels
along the way. It can add those labels to its label map once it
encounters a block whose position it knows. As it goes on to
search for a legal attachment site, it can continue to update its

ZPassive RFID (Radio-Frequency IDentification) tags are circuits that can
store information without a power source. When an external transceiver
focuses a RF beam at a tag, the current induced in the tag’s antenna enables
it to transmit a response—e.g., a unique ID code.

label map with any other unknown labels encountered along
the way. Alg. 1B summarizes this approach.

With the marker located in the middle of the structure
rather than along an edge, it is possible for a robot to
return to the structure to find no blocks it recognizes along
the entire perimeter. In such a case, this robot may not be
able to contribute any further to construction. However, it is
impossible for all robots to be lost in this way, since some
robot(s) must have placed the blocks that form the perimeter;
thus completion of the structure is not at risk. This form of
robot loss can be avoided by requiring the marker to be along
an edge of the desired structure, or by having robots directly
communicate map information to one another when they meet.

C. Writable, inert blocks

Robots may be able to change the state of block labels. For
instance, some RFID tags are writable, with on the order of 1
kb memory that any transceiver can write to and any other can
read from. In this case every block can store its coordinates
explicitly, and thus act as an unambiguous landmark. A robot
can quickly establish its position upon reaching the structure,
disambiguate orientation as with static labels, and proceed
directly to find a legal attachment site, writing coordinates
to the new block when it attaches it (Alg. 1C).

Robots need not maintain the (potentially extensive) dy-
namic memory for a label map; the blocks collectively do
that, embodying that information where it is needed. The cost
of dynamic rather than static labeling is that it represents a
more complicated capability for robots and blocks. However,
depending on the implementation (again, as with RFID tags),
that cost may be small or negligible.

Multiple Robots. As with Alg. 1A, actions taken by one
robot will not conflict with those taken by others. Because
every block label stores position information, robots need not
travel any distance along the perimeter to find the marker (Alg.
1A) or a known block (Alg. 1B) by which to establish their
position, so that construction will be still faster. Similarly,
there is no risk of robot loss through not recognizing any
labels around the perimeter. Further, if blocks are rearranged or
replaced during the course of construction (as may occur, e.g.,
if error correction becomes necessary [16]), robots operating
with statically-labeled blocks could encounter conflicts be-
tween their label maps and observations, whereas dynamically-
labeled blocks will simply be rewritten.

D. Communicating blocks

We can extend the capabilities of blocks to store, pro-
cess, and communicate information by embedding processors
in them. Blocks have a direct physical connection to each
other once they are connected to the structure; that link
can be the basis for reliable, unambiguous, rapid commu-
nication. The structure then becomes a distributed network
with nearest-neighbor connectivity. Sensor nodes, such as
the Berkeley motes, have demonstrated low-power, low-cost
computing devices [17], while modular robot research has



Algorithm 2 Pseudocode procedure for assembly of a solid
structure of communicating blocks.
A: Blocks
loop
for all sides S do
if a robot asks to attach a block to S then
if (design specifies a block there) and (no blocks are
yet attached in that row) then
get confirmation from other blocks in this row that
they will not allow attachment in that one
allow attachment
else if (design specifies a block there) and (a block
is attached in that row adjacent to that site) then
allow attachment
else
forbid attachment

B: Robots

while structure not complete do
get block from cache
go to structure
while still holding block do
ask any adjacent structure blocks if block can be
attached here
if all structure blocks answer yes then
attach block here
else
follow perimeter counterclockwise
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Fig. 4. Examples of block faces in each of the four possible states, with
the finite state machine for a single face. Dotted lines show the potential
attachment site associated with a face.

demonstrated designs for reliable communication between
physically-connected devices [9], [10].

The responsibility for determining whether or not a site is
available for block attachment can then be shifted from the
robots to the structure itself. Robots become responsible only
for transporting blocks to available sites.

Alg. 2 outlines control rules for robots and blocks for build-
ing a solid structure. Blocks along the structure perimeter must
be able to communicate with robots traversing the perimeter,
albeit at short range and with low bandwidth. Robots simply
circle until they find a site that gives them permission to
attach. Blocks in the structure have the shape map, and give
permission for attachment at a site only if the same two criteria
are satisfied: (1) the shape map specifies a block there; (2)
there are no separated blocks in the same row, unless the shape
map specifies a deliberate gap between them.

Block Algorithm. A sufficient decentralized algorithm for
blocks is as follows. Each block stores the shape map, its own
location in the shared coordinate system, and a state for each
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Fig. 5. Example of block algorithm. The shape map specifies that blocks are
to be attached everywhere except at the two shaded sites. See text for details.

of its faces. This latter state is associated with where blocks
have already been attached in the row the face borders. There
are four possible states (Fig. 4): open, if no blocks have yet
been attached in the adjoining row, so that attaching at that
face would start a new row; closed, if attaching at that face
would put two separated blocks into the same row; corner,
if an adjacent block means that the site in question has two
neighbors; done, if a block has been attached to that face.
Faces bordering sites that the shape map specifies should be
left empty are always closed.

New blocks can be attached to open or corner faces. When a
robot is given permission to attach a new block to an open face,
the structure block sends a message along that row in both
directions; each recipient sets its corresponding face, formerly
open, to closed, and passes the message on, thus locking out
the rest of the row from attachment. Once a block attachment
is completed, the original structure block sets its face to done,
and passes a message to neighbors on both sides to set their
face to corner.

Fig. 5 illustrates an example, focusing on the south faces
of the blocks in the lower row. Initially (A) the leftmost is
closed, because no block is meant to be attached at site 1;
the other three are open, since no block has yet been attached
in the row of sites 2—4. When a robot is given permission to
attach at site 4 (B), the adjacent block sends a message along
its row, and the blocks bordering sites 2 and 3 set their south
faces to closed. After attachment (C), the block to which the
new one was attached sets its south face to done, and sends a
message to its neighbor to set its south face to corner.

A newly attached block obtains from its neighbors the shape
map and its coordinates, and sets the state of its faces as
follows. Define a function f : f(done) = corner, f(open) =
open, f({comer, closed}) = closed. Any faces x directly
attached to the structure are set to done. Any faces y adjacent
to those faces x are set to f(y’), where y’ is the face of the
block attached to x that is the same face as y (i.e., {north,
east, south, west}). The remaining face of the newly attached
block, if any, is set to open. This strategy allows new blocks
to set their states based on messages only from immediately
attached blocks.

In Fig. 5C, the new block sets its north face to done, because
of the attachment there; its west face to corner (= f(done)),
because there is a block to the north whose west face is done;
its east face to open (= f(open)), because there is a block to
the north whose east face is open; and its south face to open,
because no blocks are attached to its east or west faces.

Communication over distances further than a single block
is only necessary when the first block is being attached in a
new (open) row. Thereafter, permission for further attachment



Fig. 6. Simulated construction of a sample rectangular structure of communi-
cating blocks, showing successive snapshots during the process of construction
by ten robots. White: blocks; brown: robots carrying blocks; gray: empty cells
where blocks should be attached; black: empty cells that should be left empty.
Block side states are shown in the same colors as in Figs. 4 and 5. The marker
is in the center.

in that row can be given or denied without communication,
based on local state only; and communication when further
blocks are attached need not involve messages passed beyond
immediate neighbors. As Fig. 6 suggests, long open rows are
rare and communication beyond immediate neighbors is sel-
dom needed in practice. The number of inter-block messages
experimentally scales linearly with the number of blocks.

Block power could be supplied centrally from the marker,
or self-contained. Power on the order of 20 mW per block
would be sufficient, using, e.g., Chipcon CC1000 chips for
communication with perimeter-following robots and serial
connections for inter-block communication.

Multiple Robots. Finite message propagation speed means
that before a robot is given permission to attach a block in an
open row, the structure must ensure that no other robot is being
given permission at the same time elsewhere along the row.
Thus when a robot requests permission to attach at an open
site, communication along the structure row is necessary, to
notify the rest of the row of the intent to attach, and to obtain
confirmation that permission will not be granted elsewhere.
Collisions between messages corresponding to simultaneous
attachment requests must be resolved. Only then does the
structure block give the robot permission to proceed, and send
the message down the row to set faces to closed.

V. DISCUSSION AND COMPARISON

The four approaches we describe for construction have
many similarities. The robots use identical, simple control
rules that are the same irrespective of the shape being built.
There are no special leader robots that need to be elected
or maintained. The task is executed by many robots running
the same control rules asynchronously and in parallel. The
robots act independently of one another; a robot does not
maintain any state regarding other robots in the system. Robots
do not need to maintain any explicit multi-hop communica-
tion structure; instead, the partially built structure provides a
coordination mechanism. As a result of these properties, the

algorithms automatically adapt to unexpected delays and to
varying numbers of robots, which can be removed or added
during the course of construction. However, they also differ in
robustness, performance, and cost.

Robustness. With inert, identical blocks, robots must keep
track of their movement after passing the single landmark the
marker represents, over potentially long distances for large
structures. The grid of blocks they move along is a crucial
reference in this task. However, if a robot does miscount its
movements somehow, it will be misaligned with the structure
coordinate system and may attach a block at a site meant to
be left empty. If a robot drifts away from the perimeter, then
after regaining it, it will need to travel all the way back around
to the marker to ensure knowing its location correctly.

By contrast, with labeled or communicating blocks, location
references are available throughout the structure, and can be
used to correct such errors. Moreover, with communicating
blocks, robots need not be able to count blocks as they pass
them nor recognize geometric features of the structure; this
greater simplicity means fewer failure points in the robots.
Conversely, there are additional failure points in the more
complex blocks, though failure may be less likely than in
robots because no additional mobility or actuation is involved.

Performance. Construction with Alg. 1B will always build
a given structure as fast or faster than with Alg. 1A; Alg.
1C will always be as fast or faster than Alg. 1B, and Alg. 2
faster than Alg. 1C. Robots are eligible to attach blocks sooner
upon reaching the structure, and need not travel as far along
the perimeter—with identical blocks, they must first reach the
marker; with static labels, they must reach a known block;
with writable labels, any block will do; with communicating
blocks, robots are eligible to attach immediately upon reaching
the structure, without needing to survey a full row first to
ensure that no distant blocks have been attached. With any but
identical, inert blocks, the marker can be located in the middle
of the desired structure, so that construction can proceed on all
sides. With communicating blocks, new rows may be started
anywhere, not just at one end, and can be extended in both
directions. These factors will also tend to result in more sites
where block attachment is permitted at one time, so that the
parallelism of the group of robots can be better exploited.

The extent of these advantages can be explored with sim-
ulations. Experiments for each approach compared (1) the
total number of steps taken by a group of ten robots along
the structure perimeter, and (2) the maximum number of
sites where block attachment would be permitted, during
construction of square structures of varying side length.

Fig. 7 shows the results, averaged over ten runs for each
structure size. Robots using identical, inert blocks travel an
order of magnitude further along the structure than those using
communicating blocks, with the labeled approaches falling in
between. With identical, inert blocks, robots must start from
the marker to find an attachment site, forcing construction to
proceed in a highly stereotyped way; only a few sites are
ever eligible for attachment at once. Labeled blocks allow
many more simultaneous attachment sites, with no significant
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Fig. 7. Left: Number of steps taken along structure perimeter, as a function
of structure side length. Right: Maximum number of sites during construction
where block attachment would be allowed at any one time.

difference between the static and writable variants. With com-
municating blocks, not only is the maximum number of sites
simultaneously available for attachment much greater still, so
that robots can find one more readily and more robots can
attach at once; but this number also grows with the size of the
structure, contributing to the shorter travel distances observed.

Cost. Among inert blocks, labeled ones will be more
expensive in terms of materials and fabrication, and robots
will require the additional capabilities necessary to interact
with the labels. Depending on the implementation, e.g., using
RFIDs, these costs need not be great: at present, the cost
of RFID tags is on the order of $0.50, and of readers,
$100. Blocks capable of communication will in turn be more
expensive than inert ones. To what extent will depend in part
on the application; if our approach is applied to structures
assembled out of high-level prefabricated units, the additional
cost of communication capabilities will be more marginal
than for structures assembled out of bricks. Overall, work
on pervasive computation [17], modular robots [9], and RFID
technology for ubiquitous labeling [18] is reducing the costs of
components that could be used for systems like those described
here. Already significant progress has been made, and costs
will decrease further as use of these technologies becomes
more widespread.

VI. IMPLEMENTATION

While the approaches we describe are high-level algorithmic
ones, we have taken care to ground them on simple basic
capabilities that can be made robust and self-correcting, crucial
to a hardware realization. We have implemented a prototype
system that demonstrates these key capabilities and can build
arbitrary solid structures using any of the three algorithms
for inert blocks (communicating blocks have not yet been
implemented physically).

Fig. 8 shows the hardware: a laptop controller drives an ER1
(Evolution Robotics) wheeled base and gripper, and obtains
visual feedback from a CMUcam?2 mounted to one side and in
front, pointing downward. The camera is configured to register
white areas. In our environment, it is sufficient to outline
blocks with white borders; in a more complicated environment,
a more complex approach or the use of different sensors could
improve robustness. A RightTag RFID read/write board and

RightTag RFID
reader/writer

Gripper
~

RFID tag

4

ER1 wheeled base

Fig. 8. Hardware (robot and block).

antenna is mounted to the left of the robot, so that it will pass
over block centers as the robot follows the perimeter. Blocks
are 8.5” x 8.5” x 1.5”, made from sheet metal, with foam
handles affixed to the top surface for the gripper to grasp, and
RFID tags mounted atop the handles. For self-alignment, we
use neodymium magnets, mounted in alternating-polarity pairs
on each side so that two blocks brought into proximity will
be drawn together for any pair of faces.

The gripper has no vertical degree of freedom. It is mounted
such that a gripped block is held above the ground with about
2" of clearance. When the robot finds a site where a block
should be attached, it maneuvers so that the held block is
approximately above that site, and drops it; the magnets bring
it into alignment. The cache is implemented as a 2" pedestal,
on which blocks are placed by hand to await pickup (Fig. 9).
A line on the floor nearby acts as a visual reference to guide
the robot into position to pick up the block.

The robot demonstrates the key elements of our approaches
with inert blocks (Fig. 9): the ability to maneuver to a cache,
pick up a block, and bring it to the structure; perimeter-
following; recognition of grid points and sites where block
attachment is valid; reading and writing block labels; and
attachment of blocks to form a desired final structure. The
additional key elements necessary for communicating blocks
have been demonstrated in work on modular robots [9], [10].

To evaluate the reliability of the basic behaviors, we had the
robot travel around the perimeter of a 2x2 square structure,
measuring its progress by visual reference to the marked
block edges, and checking this discrete position estimate for
accuracy against the coordinates stored in read/write RFID
tags. In addition, each time it passed a block, it wrote two
random bytes to the tag and read them back. In approximately
30 minutes, it recognized 122 block boundaries to measure
its progress by, turned 41 corners, located 82 block tags, read
328 bytes from and wrote 164 bytes to those tags, without any
errors in any of these actions or in its position estimate.

The robot successfully found and retrieved blocks from the
cache in 10 of 10 trials. There are three kinds of sites where a
block might need to be attached: in the middle of a wall (Fig.
2A, site 1), just before turning a corner to the left (the site to
the left of site 1), or at a site with two neighbors (site 2). In



Fig. 9. Process of adding one block to the structure. The cache is at top, structure in progress at bottom, with the marker at its upper right. Inset: the robot’s
knowledge about the structure’s progress and its own position: desired structure in gray, existing blocks in white, robot location (if known) shown as arrow.
A: The robot, traveling toward the cache from the vicinity of the structure, initially knows only that the marker must be present.

B: Using the line on the floor as a reference, it maneuvers to and picks up a block from the cache.

C: Once at the structure, it can use its RFID reader to determine its position, and its camera to follow the perimeter. Existing blocks are added to the robot’s

map as it observes them.

D: Eventually the robot reaches an empty site where a block is desired, and where one may be attached according to Alg. 1.

E: It maneuvers to attach its block at that site, dropping it into place...
F: ...and writes the block’s new coordinates to its tag.

10 trials for each of these three classes, the robot successfully
attached blocks, and wrote their new coordinates to their RFID
tags, respectively 9, 10, and 9 times.

As expected, the hardest robot tasks were those involving
physical manipulation. This difficulty was compounded by the
fact that with the current hardware configuration, the camera
is the only source of feedback for position evaluation, and
is more than 75 cm away from the gripper. When attaching
a block, the robot adjusts its position using the camera at
the attachment site, and then maneuvers blindly to move the
gripper into place, relying on the not infallible precision of the
ER1 wheelbase. We believe that adding sensors at the gripper
in the next hardware revision, to allow adjustment after the
gripper is approximately in position, will greatly improve the
reliability of block attachment.

VII. CONCLUSIONS

In this paper we have outlined a system for automated
construction by a group of robots. We have described simple
algorithms by which robots could assemble arbitrary solid
structures out of blocks, compared variants using blocks
with increasing degrees of sophistication, and presented a
hardware prototype that demonstrates our approach. Since
particular robots are never assigned particular critical tasks,
nor do the algorithms depend on actions being executed
in any particular order, the system is highly robust to the
temporary or permanent loss of robots, so long as some robots
remain. Individual blocks, similarly, are not crucial for task
completion. With communicating blocks, it is undesirable for
them to fail after their attachment to the structure; but an error
correction procedure can recover from that eventuality [16].

While building structures from inert, indistinguishable
blocks is possible, incorporating communication abilities into
the blocks brings considerable benefits in speed and robust-
ness. It may be, depending on the application and implemen-
tation, that the cost or complexity associated with commu-
nicating blocks makes such an approach prohibitive. In such
a case, the use of passive labels on the blocks can achieve
the robustness advantage and a significant degree of the speed
improvement, more easily and inexpensively.

Various systems for automated construction are presently
in early stages of design, specifying inert (but specialized)

building materials [4], [5]. Our results suggest that incorporat-
ing a capability for communication into those materials, or at
least some heterogeneity using labels, could be of considerable
utility. Additionally, for automated construction systems based
on either inert or active [6] materials, our approach gives a
principled way to partially order assembly to generate desired
structures.
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