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Abstract—We present a decentralized control algorithm for
robots to aid in carrying an unknown load. Coordination occurs
solely through sensing of the forces on or movement of the
shared load. Robots prevent undesired motion of the load
while permitting movement in the task-relevant subspace, and
stabilize against unexpected events by a transient decrease in
compliance. The algorithm requires no direct communication
between agents, and minimal knowledge of the system or
task. We demonstrate the approach in simulation using a
commercially available compliant robotic platform.

I. INTRODUCTION

Collective transport is the phenomenon or task in which

an arbitrary number of independent agents move an object

too heavy or unwieldy for one to handle alone. In the natural

world, this activity is most commonly associated with ants

[1], [2]; in swarm robotics, it is a mechanism allowing

groups of small robots to move much larger items [3], [4].

A sub-category of this task might be termed “collaborative

transport”: one informed agent has a destination in mind, and

the others aid in moving an object without necessarily having

knowledge of the goal or environment. Imagine needing to

move a large table: one person may have an intended target

location, and recruit a group of friends, who lift the table

and then follow the first person’s lead in moving it in the

horizontal plane. In such a scenario, the coordination between

carriers may take place without explicit communication;

each follower can feel the motion of the table and respond

accordingly.

In this work we present a decentralized control scheme that

allows independent autonomous robots to act as the followers

in this scenario. No direct communication is required, nor

knowledge of the number of other robots or geometric or

physical properties of the object being carried. The approach

can accommodate physical perturbations and changes in the

number of robots mid-task, and does not require specialized

gripping hardware that constrains the available degrees of

freedom to conform to theoretical assumptions.
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The approach involves decoupling the object’s motion

in the horizontal plane from movement out of plane; each

robot stabilizes the object against movement corresponding

to roll and pitch, while permitting and following horizontal

movement, which it uses as a proxy to gauge forces exerted

on the object by the leader. A key element of the approach

is to use active changes in compliance to respond to sudden

movements of the object. This strategy corresponds to that

intuitively used by the people in the table-moving analogy: in

response to an unexpected shift, a human temporarily stiffens

their muscles. Similarly, an adaptive stiffness term in the

robot control law stabilizes against large system unknowns

or disturbances.

The approach is generalizable to any robot platform with

sufficient degrees of freedom and actively compliant joint

control. Here we present the control algorithm and its the-

oretical basis, and demonstrate its operation in simulation

using a commercially available mobile manipulator.

II. RELATED WORK

Much of the past work in decentralised collective transport

using force as an implicit communication medium is con-

strained to two dimensions (i.e., pushing or pulling an object

along a flat surface) [5], [6], and often requires explicit com-

munication between agents [7] or a shared knowledge base

encompassing trajectory and/or payload information [8], [9].

Previous work on shared manipulation in three dimensions

requires knowledge of the inertial parameters of the payload

[10], [11]; these can be determined at run-time by the robots,

but doing so involves an extensive parameter estimation

phase, in which robot behavior is explicitly coordinated and

the number of agents is known beforehand [11].

When moving from theory or simulation to physical reality,

the control constraints of many collective transport algo-

rithms frequently assume restrictions on motion that then

require specialized gripper hardware to satisfy [12]–[14].

This need to limit the degrees of freedom in the interaction,

and the accompanying necessity for bespoke hardware or

specialised payload affordances, can restrict the ability of



robots using these approaches to spontaneously transport

objects, or to handle widely varying load types.

III. CHALLENGES AND APPROACH

For a single robot seeking to transport an unknown object,

lack of information about the inertial properties of the load is

one of the main impediments to developing stable and effec-

tive force-feedback control. Without an accurate full-system

model, calculating the appropriate joint control commands to

counteract internal and interaction wrenches on the payload

is challenging, especially if the load is heavy and/or has a

mass centroid far from the grasp point. Such a scenario can

easily lead to system instability. For a group of collaborative

robots without the ability to directly coordinate, the issue is

compounded by disturbances from the motion of other agents

which result in additional external forces transmitted through

the payload.

Assuming the requirements of a transportation task are

largely concerned with in-plane motion, we can expect most

out-of-plane torques and vertical forces to be due to the

mass and inertial properties of the load to be transported.

Hence, we can decompose the collective follower’s task

into two parts, firstly the identification of planar forces that

indicate a guiding impetus, and secondly the rejection of

out-of-plane torques and forces. We must accomplish the

latter without generating conflicts with guiding forces or the

other agents’ attempts at stabilisation of the same object. In

essence, the robots must be able to settle on a mutually agreed

force equilibrium at the end-effector. We can enable this by

allowing some degree of compliance in both the end-effector

and joint space of each robotic agent (Fig. 1), and tuning this

compliance according to the priorities of the collaborative

task. Hence, we must fully decouple each robot’s impedance

behaviour in the end-effector space, and project these force

and compliance constraints to torque and stiffness commands

in the joint space.

Our approach implements an adaptive joint torque con-

troller on each robot that uses only local sensor information.

A human carrying an unknown load tends to adjust their joint

stiffness according to the weight and/or out-of-plane rotation

of the load [15]. Similarly, we introduce a variable stiffness

control in the joint space to compensate for errors in the task

space (estimated by a disturbance observer) which cannot be

compensated for by the internal system model of each robot

(e.g., a payload with significant weight or off-axis inertia).

Finally, in order to generate in-plane signals that can be

used for reaching a directional consensus during transport, we

decrease each robot’s end-effector stiffness in the X-Y plane

(as estimated from the robot’s local frame of reference). The

follower robots can obtain the needed information from the

load either by sensing forces exerted on the gripper, or by

registering movement of the load via that of the end-effector.

An advantage of the latter approach is that the signal from

planar motion is minimally affected by forces exerted in other

dimensions, and can be used to robustly detect the in-plane

forces exerted by a leader. These signals inform an outer

control loop (acting independently of the robot’s manipulator

Fig. 1. System configuration and degrees of freedom. The end-effector space
comprises the 6DoF pose in the world frame. The joint space of the robot
comprises the rotational degrees of freedom of the manipulator (7 in this
example). We can decompose the end-effector space into a high-accuracy
“task space” and a low-priority “null space”, which also includes the joint
positions. Null-space control forces are de-prioritized until the desired task
space accuracy has been achieved. Information from the end-effector can be
used to control the motion of the mobile base.

linkages), which then drives the mobile base of the robot

along the environmental plane.

IV. CONTROL METHODOLOGY

A. Core assumptions

Each robot agent is assumed to have a full suite of joint

state sensors (position/velocity/acceleration), and a mod-

erately accurate internal model of its own dynamic and

kinematic parameters. For this paper, it is also assumed

that the robots are equipped with the necessary sensors and

analytical subsystems to negotiate a secure grasp on the

payload object. Finally, we assume that the transportation

task involves only lateral motion with no intentional out-of-

plane rotation imparted by the lead agent, and that the object

to be transported is rigid and can be grasped securely without

significant slippage.

TABLE I
KEY CONTROL VARIABLES

Variable Description Notation

Position of end-effector in robot base frame (x, y, z)
Orientation of end-effector in robot base frame (θ, φ, ψ)

Joint state vector (angular position/velocity/acceleration) (q, q̇, q̈)
Task space impedance gains Be,Ke

Null space impedance gains Bν ,Kν

Control gains for mobile robot base Bm,Km

B. Object stabilisation

We consider each individual robot agent to consist of a

multi-DoF manipulator mounted on a mobile base. To fully



Fig. 2. A diagrammatical representation of the control system for each independent agent. Internal sensing enables accurate forward and inverse kinematic
and (unloaded) dynamic models of each robot’s manipulator. The mobile base control loop uses only position information fed to the system from the
manipulator. The leader (another independent agent) can apply a guiding force at any point on the load. Neither leader nor followers have any knowledge
of the number or location of the other collaborative agents.

control the task space impedance of the end effector, we

need to map the forces experienced in this task space to

the corresponding joint space torques, and differentiate the

torques resulting from forces we wish to reject (e.g., gravity,

disturbance forces) from those the robot should follow (e.g.,

forces applied by a leader). We adapt a method described in

[16] to decouple the force control of a redundant manipulator

by devolving the control law into task space vs. null space

elements, where the task space describes the end-effector

motion where high accuracy is desired, and the null space

includes all remaining degrees of freedom. This type of con-

trol is commonly used to absorb collisions via the compliant

joint space without affecting task space performance, thus

ensuring robot safety around human operators.

Assuming the transport task consists largely of motion in

the plane, and out-of-plane wrenches are likely to be from

payload inertia or external disturbances, we choose our task

space to comprise the vertical displacement and out-of-plane

rotation of the payload (z, θ, φ), while the null space consists

of the robot’s n-dimensional joint space (q) and the end-

effector motion in the lateral world plane (x, y, ψ).
The decoupled control algorithm is formulated as follows.

The manipulator and the portion of the payload it grasps

can be considered as an independent subsystem, with the

following local system dynamics:

M(q)q̈+C(q, q̇)q̇+ g(q) + τ ext = τ (1)

where τ ext is the (n× 1) vector of external torques resulting

from interaction with the environment (and which are likely

to include the distributed payload inertia and any forces

imparted by the actions of other robot agents). While these

torques can be directly measured via appropriately placed

sensors, we can also design a disturbance observer using

other signals from the workspace (Figure 2).

We can write a generalised impedance control law of the

following form:

Md(q̈d − q̈) +Bd(q̇d − q̇) +Kd(qd − q) = τ ext (2)

where Md,Bd,Kd describe the desired impedance behaviour

of the end-effector. Let Md = M; then the desired

impedance behaviour can be achieved via the following joint

torque control:

τ = M(q)q̈c +C(q, q̇)q̇+ g(q) + τ ext (3)

where q̈c is the command joint acceleration

q̈c = q̈d +M−1(Bd
˙̃q+Kdq̃− τ ext) (4)

and q̃ = qd − q is the joint space error.

Using this control formulation, we decompose the com-

mand torque into task-space and null-space elements:

τ = τ task + τ null +C(q, q̇)q̇+ g(q) (5)

where τ task is the joint space torque command that satisfies

the task space motion requirements, and τ null is the torque

controlling the impedance behaviour of the remaining (null)

degrees of freedom, including the joint impedance.

1) Task space control torque: We choose a task space

acceleration control of the form:

ẍc = ẍd +Be
˙̃x+Kex̃ (6)

where Be,Ke describe the desired task space impedance,

x̃ = xd−x describes the task error, and ẍc is the task-space

command acceleration. To project this control law into the

joint space, so it can be substituted into (5), we need to devise

a suitable m× n task Jacobian J(q) such that

ẋ = J(q)q̇ (7)



where x is the m × 1 task state trajectory vector (in this

transport scenario, m = 3), and n is the length of the joint

state vector q.

We note that the standard Jacobian transpose mapping

between torques and forces is incomplete for redundant

manipulators in motion. Because of the system redundancy,

at any given configuration there is an essentially infinite set

of joint torque vectors that could theoretically be applied

without affecting the resulting end-effector forces. However,

for a real robot with non-zero inertia, only one generalised

Jacobian inverse is consistent with the system dynamics [17]:

J#(q) = M−1JT (JM−1JT )−1 (8)

By calculating a corresponding task inertia matrix Λx [16],

the required task space acceleration can now be projected to

a joint torque command:

τ task = JT
(

Λx

(

ẍd +Be
˙̃x+Kex̃

)

+ J#T
τ e

)

(9)

where τ e is an estimate of the external torque.

2) Disturbance observer: We use the task space error

and (controllable, known) joint impedance to calculate an

estimate of the external torque:

τ e = KνJ
#x̃ (10)

3) Null space control: For controlling the null dimensions,

we choose a low-stiffness impedance control law:

ν̇c = −Λ−1
ν ((µν +Bν)ν − ZTKν q̃) (11)

The null space stiffness Kν is equivalent to the internal

stiffness on the joint impedance drivers, and Bν describes a

suitable null-space damping matrix [18]. Λν , µν are the null-

space inertia matrix and Coriolis matrix [16]. The null space

state velocity vector ν must be derived from the task space to

joint space decomposition. For a task-space command with

m control dimensions, the impedance behaviour projected

into the null space gives us n equations with r = n − m

dimensions, meaning that the null space equations are not all

independent. To overcome this, we introduce an (n× r) ma-

trix Z [18] such that JZ = 0. We choose Z =
[

JT
r J

−T
m I

]T

where Jm,Jr are the submatrices of a Jacobian partition

J = [Jm Jr] such that Jm is full rank and invertible. We

can now establish a set of null space variables ν and an

extended Jacobian matrix JE(q) such that
(

ẋ

ν

)

= JE(q)q̇ =

(

J(q)
Z#(q)

)

q̇ (12)

The joint control torque corresponding to the desired null

space impedance behaviour can now be calculated:

τ null = −Z#T
(

ΛνŻ
#q̇+ (µν +Bν)ν − ZTKν q̃

)

(13)

C. State observer and adaptive stiffness control

For a system with a highly accurate internal dynamic

model handling a known load, and with only constant ex-

ternal disturbance forces, the above control law would be

stable and sufficient. However, we find that if the robot’s

inertial estimates are inaccurate (e.g., when the robot is

asked to manipulate an unknown load), or the disturbance

is dynamic (e.g., the number of agents in the system varies

during the task), this control law may have suboptimal task-

space accuracy and convergence speed (see Results, Figure

5). Taking advantage of the variable stiffness tuning offered

by modern force-sensitive manipulators, we can implement

an adaptive stiffness control that adjusts the compliance in

the null space according to the task space performance.

Consider equation (13). We see that joint space impedance

is chiefly driven by the joint space error term q̃ (modulated

by the desired joint stiffness Kν). A task-state observer can

be used to estimate and update the goal joint state according

to the instantaneous system dynamics and goal task state:

qd = q+ αJ#x̃ (14)

(q is the current joint state, α is some small scaling constant

proportional to the control loop time step, β is a scalar gain

term). We now replace the constant stiffness matrix Kν with

an adaptive diagonal joint stiffness matrix Kvar(t):

Ki,i
var(t) = kν +

(

βq̃i(t)

1 + ˙̃qi(t)

)2

(15)

where q̃i represents the projected state error for joint i and

kν is a minimum equilibrium stiffness (corresponding to the

null state stiffness chosen earlier).

When the task error becomes large, the joints “stiffen” until

the robot returns to a controllable state, in the same way a

human performing a carrying task might stiffen their joints

in response to slippage or disturbance, until reaching a more

controllable configuration.

D. Leader-follower collective transport

Once multiple agents following the above control schema

have a secure grasp on a shared load, we can examine how

this system can be used for collaborative transport.

The leader applies a force on the shared load in the

direction of a goal position in the plane. Through the body of

the load, this force is imparted to the manipulators at the grip

points. Appropriate force-sensing at the grip points (e.g., thin-

film resistive force sensors) could disambiguate the direction

and type of the resultant localised forces. Alternatively, by

permitting the grippers to move freely in the lateral plane, a

robot can use the relative distance traveled by the robot end

effector as a proxy to estimate forces (Fest = kenv ∗∆x). The

latter method significantly reduces the processing required,

as extracting reliable and relevant force data from contact

sensors is not always trivial. The inertia of the load itself

also acts as a low-pass filter on the transmitted signal.

E. Mobile base outer control loop

The mobile base control algorithm seeks to maintain a

constant relative position between end-effector and base cen-

troid, by moving the base in accordance with force or position

error signals relayed by the manipulator. In simulation, we

assume we have full control over the mobile base trajectory

and implement this control as a simple position-based PID

loop:

Fm = Kme+Bmė (16)



where Fm is the force driving the mobile base, Km, Bm

are the chosen PID gains, e = (x(t), y(t)) − (x0, y0), and

(x0, y0) represents a starting or neutral position of the end-

effector in the mobile base frame. Choosing high damping

and low displacement gains minimises overshoot which could

lead to oscillatory behaviour at the end-effector.

V. EXPERIMENTAL PLATFORM

The experimental platform used for validation and testing

was the 7DoF active compliant manipulator Franka Emika

Panda [19]. We created a simulation of this platform in

the Unity engine, including accurate dynamic and kinematic

models and active impedance drivers on all joints [20]. To

test the transport algorithm, multiple instances of the Panda

manipulator were mounted on planar mobile bases.

The individual agent control was validated on a single

robot with (a) a holding task (Section VI-A), where the

goal was to maintain a task space position in the presence

of external disturbances, and (b) a trajectory-following task

(Section VI-B), where the robot attempted to move along

a predefined task-space trajectory while supporting an un-

known mass, near the payload limit of the manipulator.

Finally, to demonstrate how this decoupling of manipulator

compliance can be used to effect collective transport, we

implemented a transportation task using four robots and a

load represented by a heavy (20 kg) dining table with struts

suitable for secure grasping (Fig. 3, Section VI-C). The

simulation is initialized with the table already in the robots’

grasp. Each robot seeks to hold the task-space variables

(z, θ, φ) steady, and transmit any end-effector motion in the

(x, y) plane to the mobile platform controller. The leader

does not apply any stabilising forces, but adds a lateral force,

bounded at 40N, in the direction of a target destination, in ac-

cordance with the proportional-distance controller described

earlier. The robots stabilising the load have no knowledge of

each other’s poses or the waypoint position, nor any direct

communication with the leader.

All experiments were undertaken using the following con-

trol parameter values (where appropriate): Be = diag [1, 1, 1],
Ke = diag [80, 80, 80], Bν = diag [0.4, 0.4, 0.4, 0.4], Kν =
diag [15, 5, 5, 5, 5, 5, 5], Bm = 20, Km = 2000.

VI. RESULTS

A. Validation: Selective control of the end-effector space

Disturbance forces during transportation may include dy-

namic or abrupt external torques. Fig. 4 shows the re-

sponse of the manipulator to (top) smoothly varying and

(bottom) stochastic and abrupt external disturbances at the

end-effector. In both cases, the robot’s task space consists of

the (z, θ, φ) end-effector dimensions. The disturbance forces

induce motion in the other (null-space) dimensions, but the

robot maintains task space accuracy even with the application

of sudden and unpredictable forces.

B. Adaptive stiffness

Fig. 5 shows the utility of dynamic stiffness, plotting the

accuracy of a trajectory-following task when the robot is

Fig. 3. Four simulated robots hold and transport a 20kg table, not modified
to facilitate manipulation by robots. See accompanying video.

Fig. 4. Non-constant external forces applied to the Panda end-effector. Left:
external Cartesian forces applied; right: the corresponding end-effector pose
(x, y, z, θ, φ).

supporting an unknown load of significant mass. Without

knowledge of the inertial properties of the payload or any

compensatory adaptive behaviour, the accuracy of the task-

following is impaired. Adding a dynamic stiffness term not

only improves the task space accuracy, it also reduces the

overall torque exerted by the joint actuators. Although the

stiffness term is quadratic (so that higher internal joint forces

might be expected), the corresponding improvement in task

space error means that the total joint forces resulting from

both task- and null-space control torques are significantly

lower with the adaptive term in place, and also converge

more speedily to a stable steady-state force application.

C. Collective transport

To test the performance of the described algorithm in a

collaborative transport task, we examine the motion of a

heavy payload (Fig. 3) being transported by four autonomous

robotic agents, following guidance forces imparted by a

(disembodied) leader. The leader applies a force at one end

of the table in the direction of a goal whose location is

not known to the follower agents. The followers attempt

to stabilize the load in the local task space (z, θ, φ), while

using sensed motion of the end-effector in the (x, y) plane

to control the motion of the mobile base.



Fig. 5. Joint forces and task space performance without (left) and with
(right) dynamic joint stiffness tuning. (A) Trajectory-following performance.
Dotted lines represent the desired trajectory, solid lines represent the robot
end-effector position. (B) Joint forces. Dynamic stiffness control (β = 100)
allows for smaller position error and smaller overall joint forces, with faster
convergence to steady-state torque application.

Fig. 6 and the video show the behaviour of the centre of

mass of the payload table under different transport conditions.

In the first, no external disturbances are introduced, and we

see the payload move smoothly to the goal location. In the

second, an external force of 50N is applied for a short time

to the end-effector of one of the follower agents, in the

horizontal plane and perpendicular to the direction of motion,

to simulate an impact or collision. Some minor out-of-plane

rotation is experienced at the centre of the table during the

force application, but it quickly returns to the initial pose

after the force is removed. Part 2 of the video attachment also

shows the performance of the system with transient planar

perturbation of a single robot in both perpendicular and

parallel directions, and with an in-plane torque. In the third

demonstration, an agent fails its initial grasp on the table.

This disturbance entails brief spurious forces on the load

during the first ∼1 second and then, after the robot’s grasp

slips away entirely, a loss of 25% of the carrying capacity

of the system, resulting in a very uneven load distribution

for the remaining agents. While the loss of an agent has a

noticeable effect on both in-plane and out-of-plane rotation,

the payload pose remains within controllable bounds and

the transportation task is still accomplished quickly and

smoothly.

VII. DISCUSSION AND FUTURE WORK

We present a framework for collaborative transport, in

which an arbitrary number of independent robots help an

informed agent move a shared load in a desired way, while

requiring minimal system knowledge on the part of indi-

vidual agents. Force sensitivity (whether directly sensed, or

inferred from movement of the load) and adaptive stiffness

allow implicit communication and fast, intuitive handling of

disturbances in a process analogous to that seen in physical

human collaboration.

The ability to decouple compliance in the end-effector

operational space means that as long as the broad parameters

Fig. 6. The motion of the centre of mass of a large payload during a
collective transport task with four independent agents and an external guiding
force (represented by a hand at the force application point), with target
location shown by a red X. Top: Start state and end state of the given
transport task. Middle left: Motion of the table with no external disturbance
on the system. Middle right: Motion of the table when one agent has a large
(50N) force exerted on the end-effector for 2s (shaded area). Bottom left:
Motion of the table when one agent fails to grasp the table. Bottom right:
A closer examination of the out-of-plane rotations experienced by the table
under different transport conditions. Solid lines: no disturbance; dashed line:
external force for 2s; dotted line: missing agent. See also video attachment.

of the task are known in advance (i.e., in which task-

space dimensions the agent can expect to receive a guiding

force signal), disturbances and inertial wrenches from the

payload can be successfully rejected, while guiding signals

can be sensed at the end-effector and transmitted to an outer

navigational control loop. We also show that in the case

of a heavy payload, one which causes significant mismatch

between the robot’s internal model and the real system

behaviour, an adaptive stiffness control at the joint level will

enable the robot to rectify its performance without needing

to explicitly estimate the inertial payload parameters. To-

gether, these control elements result in a robust collaborative

transport algorithm which can cope with significant system

disturbances.

We note that for this work, each task domain is explicitly

declared in the individual robots’ control algorithm. However

the inherent force sensitivity of the manipulators opens the

way for a task encoding framework which could allow the

leader to signal a switch between constrained dimensions

via force application, particularly if tactile force sensing is

added to the follower’s grippers (eg. a vibrational signal

transmitted through the collective load). Immediate future

research includes developing such a framework, including

a real-world system demonstration on a realistic problem

scenario, and providing the leader with a control algorithm

which incorporates force sensing at the payload as well as

position feedback, allowing adaptive trajectory generation for

energy-optimal navigation of complex environments.
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