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Lighting is a critical element of portrait photography. However, good
lighting design typically requires complex equipment and signi�cant time
and expertise. Our work simpli�es this task using a relighting technique
that transfers the desired illumination of one portrait onto another. �e
novelty in our approach to this challenging problem is our formulation
of relighting as a mass transport problem. We start from standard color
histogram matching that only captures the overall tone of the illumination,
and show how to use the mass-transport formulation to make it dependent
on facial geometry. We �t a 3D morphable face model to the portrait, and
for each pixel, combine the color value with the corresponding 3D position
and normal. We then solve a mass-transport problem in this augmented
space to generate a color remapping that achieves localized, geometry-
aware relighting. Our technique is robust to variations in facial appearance
and small errors in face reconstruction. As we demonstrate, this allows
our technique to handle a variety of portraits and illumination conditions,
including scenarios that are challenging for previous methods.
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1 INTRODUCTION
Good lighting is a key component of portrait photography. Pro-
fessional photographers design complex con�gurations of strobe
lights and re�ectors to accentuate di�erent aspects of a subject’s
appearance, and achieve a particular look. Designing these lighting
setups requires signi�cant time and expertise, making high-quality
portrait photography challenging for casual photographers and
time-consuming for professionals.

�e goal of our work is to make portrait lighting easier by allow-
ing users to transfer the illumination from a reference portrait to
an input photograph to create high-quality relit images . We wish
to do this without any calibration of the lighting or any additional
meta-data, thereby enabling post-capture portrait relighting. In
addition to allowing users to easily explore di�erent lighting con-
�gurations, our work has applications in portrait retouching, and
post-production editing and compositing.
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While face relighting has been studied extensively [Shashua and
Riklin-Raviv 2001; Wang et al. 2009; Wen et al. 2003], it remains
a challenging problem due to, for instance, variations in appear-
ance, pose, identity, and expression. Furthermore, human observers
are sensitive to the subtleties of facial appearance, and have a low
tolerance to errors in processed face images. Standard face edit-
ing approaches �t low-dimensional parametric models to facial ap-
pearance data to achieve robustness, but these models o�en do not
achieve high visual �delity. We address these challenges with a novel
approach to portrait relighting: we pose it as a multi-dimensional
mass transport problem that computes a non-parametric mapping
between the input and reference images.

We start with standard color histogram matching which captures
the global color and tone of lighting by transferring the color dis-
tribution of the reference onto the input portrait. �is approach
ignores the fact that shading depends on face geometry, and un-
surprisingly produces subpar results. We extend this technique to
make it aware of the geometry of the face. First, we �t a generic 3D
model to the portrait [Yang et al. 2011]. We use this model to aug-
ment the color at each pixel with position and normal information.
We then exploit the known formulation of histogram matching as
a mass-transport problem, and extend it from color space to the
higher-dimensional {colors} × {positions} × {normals} space. �is
generates a color mapping that is aware of face geometry, and is
able to capture the localized, directional nature of lighting changes.
We further make this process robust to variations in face appearance
and geometry by smoothing the color distributions of the input and
reference. Despite the high-dimensionality of the exact mapping,
we explain how this can be achieved using stochastic sampling,
which allows us to use an existing mass-transport solver [Rabin
et al. 2012] to e�ciently compute our results.

Our approach has several advantages. Being non-parametric, it
makes few assumptions on face appearance and illumination, which
enables it to handle a wide range of lighting conditions and sub-
jects, including non-photorealistic images. �e robustness resulting
from the regularization allows us to rely on a generic 3D model
and makes our results robust to possible minor misalignment. We
demonstrate these properties on a variety of subjects and illumi-
nations, and show via a user study that our algorithm produces
plausible relighting results that are superior in many cases to other
relighting techniques.

Contributions. In summary, our contributions are:
1. A novel approach to face relighting that uses a mass-transport

formulation to transfer illumination between images.
2. A regularization scheme that makes the technique robust to

variations in face appearance and geometry.
3. A complete pipeline that improves the state of the art in face

relighting and compositing.
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2 RELATED WORK

Single-Image Face Relighting. Face relighting using a single
image has been studied extensively in the context of face recogni-
tion [Adini et al. 1997; Georghiades et al. 2001]. Shashua and Riklin-
Raviv [2001] proposed the quotient (or ratio) image technique for
face relighting, where an input face image is relit by multiplying it
by the ratio of a known reference face captured under novel lighting
and the original input lighting.

Subsequent work relaxed the requirement for reference images
under calibrated illumination by reconstructing face geometry and
using it to estimate low-frequency illumination [Wang et al. 2009;
Wen et al. 2003]. Ratio images have also been used to transfer sub-
tle shading variations caused by changes in expression [Liu et al.
2001], and match lighting for face compositing [Bitouk et al. 2008].
Chen et al. [2011] use edge-preserving €lters to create base and
detail illumination layers which are used to transfer low-frequency
lighting between images. Blanz and VeŠer [1999] proposed using
low-dimensional shape and texture models to reconstruct face ge-
ometry, albedo, and scene lighting from a single image. Œey used a
combination of ambient illumination and a single directional light
source. Œis was later extended to handle complex illumination and
harsh lighting [Wang et al. 2009].

Œese techniques assume speci€c appearance models, e.g., Lam-
bertian shading under distant lighting, and require accurate 3D
reconstruction. Œey perform well when these assumptions are
satis€ed but as we shall see in the result section, their accuracy
decreases when these assumptions do not hold. For instance, some
sophisticated lighting setups may not be well represented by these
models and 3D reconstruction o‰en su‚ers from minor inaccuracy
and misalignment. In contrast, our formulation does not assume
a speci€c illumination model and is robust to small imperfections,
which allows it to perform well on cases where other techniques
fail.

Lightstage Face Relighting. Debevec et al. [2000] estimated the
reƒectance €eld of a subject's face from images captured under
a dense set of illumination directions. Œis data can be used to
drive that subject's facial performances under arbitrary illumina-
tion [Alexander et al. 2009]. Peers et al. [2007] used the reƒectance
data of one subject to compute ratio images which are used to relight
another subject's facial performance. While these techniques pro-
duce very impressive relit faces, they depend on complex calibrated
acquisition setups. On the other hand, our work is a lightweight
face relighting technique that does not require any additional data.

Color Transfer for Relighting. Color transfer techniques [Rein-
hard et al. 2001] match color and tone statistics between images and
can capture the overall tone of the reference illumination. Piti�e et
al. [2005] proposed a multi-dimensional histogram matching scheme
that transfers the full 3D color distributions of a reference photo-
graph to the input. Our mass transport formulation extends these
techniques by incorporating geometry, and by using a di‚erent op-
timization scheme to produce more robust transfer results. Recent
work has used localized color transfer to produce results that are
more representative of lighting variations [La‚ont et al. 2014; Shih
et al. 2013]. In particular, Shih et al. [2014] transfered a particular

photographer's style, including lighting, to a given image. Œeir
technique assumes the e‚ect of lighting is low-frequency and as
we show, it has limited ability to handle con€gurations like side
illumination and high-contrast shading.

Mass Transport for Image Editing. Bonneel et al. [2011] used
mass transport to interpolate displacements between high-dimensio-
nal distributions, and apply it to problems such as BRDF interpola-
tion and histogram transfer. Solomon et al. [2015] proposed an algo-
rithm for computing optimal mass transport on geometric domains
using an approximate distance metric that can be evaluated e•-
ciently using convolutions. Rabin et al. [2012] proposed an e•cient
approximate mass transport solver that uses a series of 1D histogram
matching operations on the axes of the problem space to compute
the Sliced Wasserstein distance. Œey applied this algorithm to the
problem of texture mixing. Similarly to these works, our approach
uses mass transport but for a di‚erent application, portrait relighting.
Furthermore, while these existing techniques use mass transport in
the domain on which their application data are de€ned, e.g., the 3D
space of colors for histogram transfer, we cast the relighting problem
in the higher-dimensional spacef colorsg � f positionsg � f normalsg
to make our algorithm aware of local face geometry.

3 MASS-TRANSPORT FORMULATION
In this section, we describe the core component of our approach,
the mass transport formulation. We €rst express color histogram
transfer as a mass-transport problem in the context of portrait re-
lighting, and introduce an algorithm that incorporates positions and
normals.

Given an input imageI and a reference imageR, we create a
relit output imageO with the lighting of the reference and the
pose, identity, and expression of the input photograph. We €t a
3D face model to the 2D portrait using the Expression Flow algo-
rithm [Yang et al. 2011]. We project the 3D positions and surface
normals of the 3D model onto the image plane to get per-pixel po-
sitions and normals. Œis gives us a color{position{normal vector
¹c; p; nº at every pixel of the input and reference images. We trans-
fer lighting from the reference to the input image by matching the
distributions of these high-dimensional vectors in the joint space
f colorsg � f positionsg � f normalsg. From this matching, we retain
only the colors of the transformed input distribution and use them
in conjunction with the original positions to create the €nal relit
image. Figure 1 illustrates the pipeline of our technique.

3.1 Reformulating Color Histogram Transfer
Reinhard et al. [2001] matched the color of two images by transfer-
ring the color statistics from one image to the other. Piti�e et al. [2005]
extended this by transferring the full 3D color histogram, thereby
encompassing all color-related statistics. As shown in Figure 2, for
face relighting, this approach generates approximate results that
only capture the overall color and tone of the lighting. We will dis-
cuss this issue in more detail later but €rst, we present the previously
known interpretation of the color histogram matching process as a
mass-transport problem. Œis interpretation will be the foundation
of our solution to generating beŠer face relighting results.
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Fig. 1. Pipeline of portrait lighting transfer. We fit a generic 3D face model to the input and reference images. We use this model to extract per-pixel positions
(2D) and normals (3D), extrapolate them from the face to the background, and concatenate them with the image RGB channels. We then compute the optimal
mass transport from the input to the reference using the 8D data to obtain our output relit image. The output position and normal channels are discarded.
Images courtesy: Flickr userGeo€ Stearns(input), Flickr userrpavich(reference).

Histogram transfer is known to be related to mass transport, e.g.,
[Bonneel et al. 2011]. Intuitively, the input and reference histograms
can be seen as sand heaps and one seeks to move the sand to trans-
form the input heap into the reference heap while minimizing the
amount of work (de€ned by the product of the transported mass by
the distance over which it is transported). In the context of color
histogram transfer, the mass-transport approach seeks to match the
target histogram by modifying the input colors as liŠle as possible,
which is a desirable property for many applications. Formally, the
mass-transport problem in the context of color histogram transfer
is de€ned as follows: We useHI andHR to denote the normalized
color histograms of the input and reference images, respectively,
andi andj to index the input and reference colors. For the distance
between input pixel with colori and reference pixel with color
j , we use theL2 norm in color space,kci � cj k, whereci and cj
are 3D vectors representingi andj colors. With this notation, the
mass-transport problem seeks to minimize:

arg minTi j

Õ

i

Õ

j

kci � cj k2 Ti j (1a)

such that: Ti j � 0 (1b)
Í

j Ti j = HI ¹ci º (1c)
Í

i Ti j = HR¹cj º (1d)

where the unknownsTi j represent the proportion of the pixels with
colori that are assigned to colorj . Œe sum in Equation 1a represents
the total amount of work needed to transformHI into HR. Œe
constraint (1b) enforces the non-negativity of the masses, and (1c)
and (1d) ensure that the entire input histogram is matched to the
entire reference histogram. Œe minimal amount of work (Eq. 1a)
is known as the Earth Mover's Distance [Rubner et al. 2000] or
the Wasserstein Distance [Villani 2003, 2008] between the input
and reference histograms. Equation 1 is o‰en refered to as the
Kantorovich formulation of the transport problem and amounts to
a linear program [Villani 2003, 2008].

Deriving a Mapping. TransportT creates correspondences be-
tween the input and reference colors. Œe solution of the above
mass-transport formulation (Eq. 1) is acoupling, i.e., an input color
may be associated to more than one reference color. In our context,
a coupling of this form is undesirable because it could introduce dis-
continuities in regions of uniform color. Instead, we seek a solution
that is amapping, i.e., all the pixels with the same color are associ-
ated to the same reference color. Formally, we are interested in the
case where each input colorci is assigned a single reference color.
We namej i the index of that reference color andf the function
that mapsci to cj i , i.e.,f ¹ci º = cj i . In this context, the transport
problem becomes:

arg minf

Õ

i

kci � f ¹ci ºk2 HI ¹ci º (2a)

such that: Hf ¹I º = HR (2b)

Œe energy above (Eq. 2) is known as the Monge formulation of
the transport problem and unlike the coupling case, it may not
always have a solution, for instance when the input and reference
images have di‚erent numbers of colors. Œat being said, there exist
solvers that provide approximate solutions, e.g., [Bonneel et al. 2011;
Rabin et al. 2012]. We use the Sliced Wasserstein Distance algorithm
[Rabin et al. 2012] that estimates a mappingf such thatHf ¹I º � HR.
As we shall see in our validation section, this is su•cient to generate
visually pleasing results. We further describe the Sliced Wasserstein
Distance solver and its characteristics in Section 3.4.

3.2 Incorporating Positions and Normals
Œe problem with the color transfer technique discussed in the
previous section is that it ignores the geometry of the face. For
instance, a pixel on the forehead in the input image might have the
same color as a pixel on the cheek. Œe color-only transfer will map
both of these pixels to the same reference color leading to a relit
result that does not capture the geometric dependence of lighting
changes (Fig. 2c).
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