
Improving User Interface Personalization

Krzysztof Gajos, Raphael Hoffmann and Daniel S. Weld
University of Washington

Seattle, WA, USA
{kgajos,raphaelh,weld}@cs.washington.edu

ABSTRACT
SUPPLEuses decision-theoretic optimization to render an ab-
stractfunctional specificationinto an adaptive interface, which
is personalized both to an individual’s usage pattern and the
characteristics of a target device. This paper briefly describes
three enhancements to SUPPLE: 1) light-weight utility elici-
tation, 2) the ability to adapt to user’s behavior by generating
interfaces with multiple ways to access the same functional-
ity, and 3) generalization-based customization.

Categories and Subject Descriptors: D.2.2 [Design Tools
and Techniques]: User Interfaces, H.5.2 [User Interfaces]:
Graphical User Interfaces (GUIs)

INTRODUCTION
Interfaces shipped with today’s complex applications are de-
signed in a “one size fits all” manner; alas, by aiming to
address the needs of the “average user” they missessential
needs of most individual users. In contrast, we believe each
user deserves a custom-built UI that best reflects her needs.
Realizing this dream is complicated by the shift away from
the desktop and toward pervasive computing. Most of to-
day’s applications are designed to work with keyboard and
pointer and assume a small range of screen sizes. However,
people are using an increasing variety of display-equipped
devices, which employ different interaction techniques and
span a huge range of display sizes (e.g., cell-phones to live
boards).

In response, we are creating SUPPLE, a system that generates
an interface which optimizes the user’s expected utility on
the device at hand and adapts as appropriate to changes in
user activity. After a brief summary of SUPPLEas presented
in [3], we describe our recent progress:

• Since SUPPLE’s behavior depends on an accurate esti-
mate of the user’s utility function, we use every interaction
(e.g., user’s customization commands) to refine the sys-
tem’s utility estimate.

• SUPPLE can dynamically create “one touch” access to
commonly-used functionality, while maintaining a stable,
predictable interface structure.

• SUPPLE’s flexible customization facility uses machine learn-
ing to interpret a user’s request as potentially applying to
more than one aspect of an interface,e.g., perhaps to mul-
tiple applications.

Copyright is held by the author/owner.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA
ACM 1-58113-962-4/04/0010

Figure 1: Two examples of personalization in SUPPLE:
the left window features a dynamic section at the top
whose automatically updated content reflects the most
common activity; the right window was customized by
the user: some functionality was removed while duplex
printing and number of pages per sheet were added.

REVIEW: ADAPTATION AS OPTIMIZATION
We cast the user interface generation and adaptation as a
decision-theoretic optimization problem, where the goal is to
minimize the estimated user effort for manipulating a candi-
date rendering of the interface. SUPPLE takes three inputs: a
functional interface specification, adevice modeland auser
model. The functional description defines thetypesof data
that need to be exchanged between the user and the appli-
cation. The device model describes the widgets available
on the device, as well as cost functions, which estimate the
user effort required for manipulating supported widgets with
the interaction methods supported by the device. Finally, we
model a user’s typical activities with a device- and rendering-
independentuser trace. Details of these models and render-
ing algorithms are available in [3].

UTILITY ELICITATION
User interface design is an inherently subjective activity. The
final choice is a matter of personal taste and preference.
Thus, instead of specifying the parameters of the cost func-
tion exactly, we provide a loosely specified cost function that
already produces reasonable results but can be tuned to the
needs of a particular user. The challenge is to find a frame-
work that allows SUPPLE to perform the fine-tuning with
minimal input from or disturbance to the user. Currently we
are using the minimax regret methods [1] for calculating op-
timal UI from a loosely specified cost function and for find-



ing a small number of binary queries (i.e., “which of the two
renderings do you prefer?”) to ask of the user to refine the
cost function parameters. In our previous work, we used user
traces to vary the weights assigned to different components
of the cost function [3] while this new method allows us to
vary the relative preference for different widgets.

ADAPTING TO USER BEHAVIOR – DYNAMICALLY
SUPPLEstrives to provide an optimal rendering of a UI for a
user. Consequently, as it learns more about the user’s activi-
ties, it should adapt the rendered UI to better serve the user.
Previously, we demonstrated how to produce different ren-
derings of the same hierarchically-defined UI given differing
traces of user actions [3]. While re-rendering the entire UI
might provide the user with a better tool, it may also lead to
confusion. Indeed, Shneiderman [5] and others have empha-
sized the importance of the user’s perception of control in
HCI, and advocated interfacestability to improve the user’s
sense of control. Yet an interface which makes common ac-
tions cumbersome is frustrating, even if stability enables fa-
miliarity. There is a fundamental tension betweenstability
and adaptation towards anoptimal organization for a user’s
ongoing behavior.

Our principle of partitioned dynamicity manages the stability-
adaptivity tradeoff by segmenting an interface into static and
dynamic areas [7]. The static area provides stable navigation
to all application functionality, while the dynamic part may
adapt to user activity, providing convenient “one touch” ac-
cess to frequently used functionality. For example, the new
Start menu in Windows XP illustrates this approach: one can
always reach all the programs through the “All Programs”
button, but frequently used items are shown in a separate
panel, whose contents change with time.

SUPPLE now uses partitioned dynamicity to organize the
adaptive interfaces it creates: every time it renders a con-
crete UI, it creates a rendering that corresponds exactly to
the hierarchical organization of the functional specification.
In addition, in each window (or a page on a cell phone), it
sets aside some space for dynamic content. As it learns more
about the user’s behavior, SUPPLEadapts the contents of the
dynamic sections of each window. The dynamic content may
include duplication of functionality which exists elsewhere in
the UI (e.g., adding widgets for controlling two-sided print-
ing on the main print dialog window) or navigational short-
cuts in the form of buttons or hyperlinks that take the user to
a different part of the UI that normally would require several
clicks on links, tabs, buttons, menus, etc.

Within this paradigm, there are two main strategies we are
exploring: adapting to user’s average behavior and adapting
to the immediate task at hand. In the first approach, SUPPLE
occasionally updates the dynamic part of the UI with ele-
ments that are predicted to save the user most effort over
extended periods of time (Figure 1). The second strategy
dictates that SUPPLEtries to predict user’s immediate actions
and change the dynamic part of the UI frequently in the antic-
ipation of the next action. So far we have implemented two
algorithms for adapting to user’s average behavior: a slow
but provably optimal algorithm and a much faster greedy ap-
proximation. Our initial experiments show that in practice
the greedy algorithm also tends to produce optimal solutions.

GENERALIZED CUSTOMIZATION
SUPPLE’s base customization capabilities are powerful: users
can delete, copy, or move any piece of functionality to any
other part of the UI (e.g., as in Figure 1). Any dialog win-
dow can be automatically skipped, as long as the user can
confidently set default values for required parameters.

In addition, SUPPLE has the novel capability togeneral-
izeuser customizations, proposing additional changes to the
user. For example, if a user customizes a print dialog
box in one application, similar customizations are proposed
in other applications. SUPPLE uses machine learning tech-
niques, in particular version space algebra [4], to quickly in-
duce ascopedescribing a set of similar situations where a
given customization might be desirable.

RELATED WORK
Our work builds on earlier research on model-based user in-
terface generation [6], but differs in two important aspects.
1) In contrast to previous rule-based approaches, we use
optimization to select widgets, design the navigation struc-
ture, and lay out the elements. 2) Ourfunctional specifica-
tion is at an intermediate level of abstraction between previ-
ously described “task specifications” and “abstract specifica-
tions” enabling SUPPLEto make flexible rendering decisions,
while still allowing the designer to specify the UI’s behavior.
Eisenstein et al. demonstrated the usefulness of refining the
utility function in the rule-based approach [2].

CONCLUSIONS AND FUTURE WORK
We are designing user studies to explore different adaptation
strategies and to evaluate the benefits of automatically gen-
eralizing customizations. In the future, we plan to endow
SUPPLE with the capability to explain its decisions to the
users. Perhaps the biggest barrier to adoption is SUPPLE’s
lack of an authoring tool, allowing designers to create inter-
faces in a way that preserves SUPPLE’s flexibility, yet allows
the designer to feel in control of the final product.
AcknowledgementsThis work supported by NSF grant IIS-
0307906 and ONR grant N00014-02-1-0932. Thanks to
James Landay, Kate Deibel and Anthony Wu for comments.

REFERENCES
1. C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans.

Regret-based utility elicitation in constraint-based decision
problems. Working Paper.

2. J. Eisenstein and A. Puerta. Adaptation in automated user-
interface design. InIUI’00 , New Orleans, LA, 2000.

3. K. Gajos and D. S. Weld. Supple: automatically generating
user interfaces. InIUI’04 , Funchal, Portugal, 2004.

4. T. Lau, P. Domingos, and D. S. Weld. Version space algebra and
its application to programming by demonstration. InICML’00,
June 2000.

5. B. Shneiderman.Designing the User Interface: Strategies for
Effective Human-Computer Interaction. Addison-Wesley, 3rd
edition, 1998.

6. P. Szekely. Retrospective and challenges for model-based in-
terface development. InDesign, Specification and Verification
of Interactive Systems ’96, Wien, 1996.

7. D. S. Weld, C. Anderson, P. Domingos, O. Etzioni, K. Gajos,
T. Lau, and S. Wolfman. Automatically personalizing user in-
terfaces. InIJCAI03, Acapulco, Mexico, 2003.


