
Automatically Generating User Interfaces Adapted to
Users’ Motor And Vision Capabilities

Krzysztof Z. Gajos,∗ Jacob O. Wobbrock†∗ and Daniel S. Weld∗
∗Dept. of Computer Science and Engineering

University of Washington
Seattle, WA 98195 USA

{kgajos,weld}@cs.washington.edu

†The Information School
University of Washington
Seattle, WA 98195 USA

wobbrock@u.washington.edu

ABSTRACT
Most of today’s GUIs are designed for the typical, able-bodied
user; atypical users are, for the most part, left to adapt as
best they can, perhaps using specialized assistive technolo-
gies as an aid. In this paper, we present an alternative ap-
proach: SUPPLE++ automatically generates interfaces which
are tailored to an individual’s motor capabilities and can be
easily adjusted to accommodate varying vision capabilities.
SUPPLE++ models users’ motor capabilities based on a one-
time motor performance test and uses this model in an op-
timization process, generating a personalized interface. A
preliminary study indicates that while there is still room for
improvement, SUPPLE++ allowed one user to complete tasks
that she could not perform using a standard interface, while
for the remaining users it resulted in an average time savings
of 20%, ranging from an slowdown of 3% to a speedup of
43%.
ACM Classification D.2.2 [Design Tools and Techniques]:
User Interfaces, K.4.2 [Computers and Society]: Social Is-
sues: assistive technologies for persons with disabilities
General Terms Algorithms, Human Factors
KEYWORDS: Motor impairments, vision impairments, mul-
tiple impairments, decision theory, optimization

INTRODUCTION
Designers today generally create graphical user interfaces
(GUIs) for able-bodied users [19], who are presumed to have
normal motor and vision skills, and a relatively narrow set of
input and output devices. For example, users are presumed
to have sufficient motor control for typing and operating a
mouse, to perceive screen elements with adequate vision. We
might say that desktop user interfaces are essentially “opti-
mized” for people with fine motor control, adequate vision,
and a stable work surface. Any deviation from these assump-
tions (e.g., hand tremor due to aging, use of a laser pointer
for cursor control, or use of a laptop on a jostling bus) may
drastically hamper users’ effectiveness — not because of any
inherent barrier to interaction, but because of a mismatch be-
tween users’ actual parameters and the assumptions underly-
ing the GUI designs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST07, October 7–10, 2007, Newport, Rhode Island, USA.
Copyright c© 2007 ACM 978-1-59593-679-2/07/0010. . . $5.00.

Generally speaking, assistive technologies address these chal-
lenges by giving users specialized devices that allow users to
adapt to standard GUI designs [2, 3]. For example, screen
readers allow 2D graphical designs to “become” 1D spoken
designs better suited to blind users. Of course, the graphi-
cal design does not change, but the user is able to adapt to
it. Unfortunately, assistive technologies can stigmatize their
users; they are also impractical for people with temporary
impairments caused by injuries; they do not adapt to users
whose abilities change over time; and finally, they are often
abandoned, even by users who need them, because of factors
like cost, complexity, and the need for ongoing maintenance
[6, 7, 20, 26].

Other approaches like universal design [23], inclusive de-
sign [19], and design for all [30] attempt to create technolo-
gies that have properties suitable to as many people as possi-
ble. We appreciate these approaches for their laudable goal,
but find them impractical in many cases, particularly where
complex software systems are involved [3]. A “one size fits
all” approach often cannot accommodate the broad range of
abilities and skills in vast and varied user populations.

In contrast to these approaches, we argue that interfaces
should be personalized to better suit individual users. Many
such interfaces will be needed because of the myriad distinct
individuals, each with his or her own diverse abilities and
needs [3]. Note that even people with the same medical di-
agnosis can have a wide range of motor capabilities [17, 22].
Therefore, traditional, manual UI design and engineering
will not scale to such a broad range of potential users. In-
stead, we enable GUIs to design themselves for users based
on users’ own functional capabilities. This approach em-
braces a current trend in designing for what users can do,
rather than for classes of users based on health conditions or
presumed skill sets [5, 22].

This paper presents SUPPLE++, a system which automat-
ically generates user interfaces tailored to an individual’s
functional motor capabilities. These interfaces are also easily
adjusted to accommodate users’ different vision capabilities.
Importantly, these two types of adaptations can be used to-
gether, allowing SUPPLE++ to adapt to people with a combi-
nation of motor and vision impairments, a population that is
poorly served by current assistive technologies. As an exam-
ple, Figure 1 shows an interface rendered by our system for
four different users. The majority of the paper explains how

Mouse User With Impaired DexterityTypical Motor Ability

Ty
pi

ca
l V

isi
on

Lo
w

Vi
sio

n

(a) (b)

(c) (d)

Figure 1: Four GUIs automatically generated under the same size constraints for four different users: (a) a typical mouse
user, (b) a mouse user with impaired dexterity, (c) a low vision user and (d) a user with a combination of low vision and
impaired dexterity. All but (a) were generated using SUPPLE++ described herein.

our system works; this explanation is then followed by a pre-
liminary study for initial validation. We make the following
contributions:

• We offer an algorithm to automatically select features and
train a custom regression model to predict users’ motor
capabilities based on a one-time motor performance test.
This accounts for the fact that some users with disabilities
may not adhere to Fitts’ law.

• We cast the generation of GUIs personalized to users’ mo-
tor capabilities as an optimization problem in which users’
expected movement times are minimized.

• We describe an efficient algorithm to solve this optimiza-
tion problem.

• We present a modification to the SUPPLE system [8],
which allows user interfaces to be manually adjusted to
users’ vision capabilities.

• We present the results of a pilot study, which indicate that
using functional capabilities to personalize user interfaces
can indeed improve users’ performance. We describe these
results, and the future directions to which they point.

We believe that, if it can be done successfully, software
should automatically adapt to users and their abilities, rather
than requiring users to adapt to software. This paper is a first
step in demonstrating the viability of this approach, and the
technology to make it possible.

RELATED WORK
Many others have recognized the benefit of creating GUIs
specialized for people with unusual motor and visual capabil-

ities. A number of specialized interfaces have been manually
designed, with EyeDraw serving as an example of a draw-
ing GUI optimized for eye trackers [16]. Others (e.g.,[11])
have developed new design methodologies for creating in-
terfaces that can be dynamically adapted by the end-user for
their individual needs. A few such interfaces have been cre-
ated, particularly in the web domain, but most lack any such
adaptation capabilities. A recent system [4] allows certain
interactors to be dynamically swapped in unmodified third-
party programs written in Java Swing to better support users
of certain input technologies. The limitation of that system
is that it can generally only replace GUI elements with simi-
larly sized alternatives (e.g., swapping combo boxes for text
fields) and cannot modify other attributes of the UI such as
visual cue sizes or sizes of the interactors.

There exist a number of tools, such as the Personal Universal
Controller (PUC) [25] or SUPPLE [8], which can automat-
ically generate user interfaces from abstract specifications.
In general, these tools have to be retargeted by their design-
ers for each new platform or user type. A recent extension
to SUPPLE is a notable exception – it allows the system to
adapt itself to the end user’s preferences [9], but not directly
to their abilities or context.

The work on Layout Appropriateness [28] offers a useful
technical insight: it shows how the layout of a dialog box
can be automatically optimized for optimal performance. In
our project we built on SUPPLE, which uses optimization to
choose layout, appropriate widgets, and the structure of the

interface; we also built on the insight from Layout Appropri-
ateness by using the expected movement time as the metric
to be optimized.

DESIGN REQUIREMENTS
As noted, people with special needs differ widely in their mo-
tor and vision capabilities [3, 17, 22]. In this work, we set out
to build a system that provides graphical user interfaces per-
sonalized to users’ individual needs without any intervention
on the part of designers or assistive technology specialists.
Also, our system must be simple and fast to setup, use, con-
figure, and maintain.

Currently, we focus on personalization for users who have
difficulty controlling the mouse pointer (due to motor im-
pairment, context, or input device) and users with low visual
acuity. At this stage, we do not address text entry, blindness,
or cognitive impairments.

A user’s ability to control a GUI with a mouse depends on
many factors. Among them are the distances among different
on-screen elements, the complexity of navigation (e.g., using
tabs or multiple widows), the types of operations required
to use the elements (pointing, dragging, double-clicks), and
the sizes of the elements. Thus, to support users with motor
impairments, we need to provide them with user interfaces
that strike the best balance among these competing factors.
Complicating this are the complex tradeoffs involved. For
example, widgets that are larger may be easier to manipulate
but may result in a larger interface, which requires farther
movements to use. To strike a balance among these tradeoffs,
we use an optimization-based approach where SUPPLE++
“searches out” the interface that can be manipulated by an
individual user in the least amount of time, as measured by
that users’ functional abilities. In order to do this, we need
to elicit and accurately model these abilities for each user of
the system. It is debatable, however, whether Fitts’ law ap-
plies to individuals with motor impairments. Prior work sug-
gests that in some cases it might [29], while in others it might
not [13]. Due to these concerns, we need a new approach for
modeling people’s individual movement characteristics.

For people with vision impairments, size of the display, light-
ing, and distance from the screen have a large impact on us-
ability. In such situations, the size of the visual cues can
affect both task time and accuracy [27]. Most current solu-
tions for low-vision users involve indiscriminately enlarging
all the contents of the screen. Thus, useful content and empty
space are enlarged equally, thereby wasting precious screen
real estate. Solutions like screen magnifiers show only a frac-
tion of the screen at a time and force serial rather than parallel
exploration of the interface [21]. Our goal is to generate user
interfaces that are legible and that can rearrange their con-
tent so that the entire interface fits on the user’s screen for
efficient exploration and interaction.

We note that a number of modern web browsers offer a “re-
size and reflow” feature where the user can enlarge the text
on a page and the page is then instantaneously re-rendered.
We intend to emulate this interaction for desktop GUIs in
general, which requires that our system should be able to re-
draw interfaces for different sizes interactively, and that suc-

cessive renderings resemble one another as much as possible
so as to reduce potential for confusion.

Finally, our system needs to support people with combina-
tions of motor and vision impairments – a population that
is poorly served by the current technologies because screen
magnifiers, the primary assistive technology for low vision
users, often make assumptions about users’ ability to control
the mouse pointer.

MODELING POINTING PERFORMANCE OF PEOPLE WITH
MOTOR IMPAIRMENTS
In this section, we present a study in which we collected
motor performance data from 8 participants who exhibited
a range of motor abilities and who used a variety of input
devices. We also describe an automated method for devel-
oping and training a personalized predictive model for each
participant.

Method
Eight people (3 female) aged 25 through 35 participated in
our study. Six of our participants used their own personal in-
put devices, and 3 used computers of their choosing. Table 1
lists the devices used and any health conditions that might
affect participants’ motor performance. The “code” column
refers to a shorthand designation that we will use throughout
the rest of the paper to refer to these individuals.

Code Device used Health condition
ET01 Eye tracker (ERICA) (click by dwelling)

HM01
Head Mouse (click w th right fist using a
switch)

spinal cord injury
(incomplete tetraplegia)

M03 Mouse
muscular dystrophy
(impaired dexterity)

M04 Mouse

TB01 Trackball (Kensington Expert Mouse)
spinal cord injury
(incomplete tetraplegia)

TP01 Trackpad (Apple MacBoook Pro)
VJ01 Vocal Joystick [14]
VJ02 Vocal Joystick [14]

Table 1: List of participants

Throughout the rest of the paper, we will sometimes refer to
typical users. These are users who utilize “typical devices”
to interact with the computer and whose motor capabilities
are unimpaired (i.e., M04 and TP01). In contrast, atypical
users will refer to those whose motor abilities are impaired
(i.e., HM01, M03, or TB01) and/or who use unusual input
devices (i.e., ET01, HM01, VJ01 or VJ02).

We used a set of pointing tasks based on the ISO 9241-9 stan-
dard [18] where we varied target size (10-90 pixels), distance
(25-675 pixels), and movement angle (16 distinct, uniformly
spaced angles). A typical task sequence is illustrated in Fig-
ure 2a. In all, between 387 and 572 pointing actions were
elicited per participant. (Some participants who tired faster
had fewer trials than other participants.) The study took be-
tween 20 and 40 minutes per participant.

For each pointing action, we recorded the time taken to suc-
cessfully acquire the target and the number of unsuccessful
clicks. A click was “successful” if the mouse button was
both pressed and released within the target, which is consis-
tent with the way most widgets work in modern GUIs.

(a) (b)
Figure 2: The setup for the performance elicita-
tion study: (a) for pointing tasks; (b) for dragging
tasks; here the green dot was constrained to move in
only one dimension, simulating the constrained one-
dimensional behavior of such draggable widget ele-
ments like scroll bar elevators of sliders.

Results and the Inadequacy of Fitts’ Law

We computed Fitts’ law parameters for each of our partici-
pants. The average R2 of the resulting models for the atyp-
ical participants was .51 ranging from .14 (ET01) to .81
(VJ02). As an example, Figure 3a (next page) shows how
movement time varied with distance and target size for par-
ticipant ET01. The high variance for target sizes of 10 and
15 pixels was due to the difficulty of acquiring small targets
with this particular eye tracker. Therefore, ET01’s perfor-
mance markedly improved at the 25 pixel target size but did
not change substantially beyond 40 pixels. The distance to
the target only marginally affected this participant’s perfor-
mance. As illustrated in Figure 3b, Fitts’ law poorly models
the observed performance of ET01. This is not entirely sur-
prising, because Fitts’ law assumes rapid, aimed movements
unencumbered by issues like eye-tracking jitter.

In fact, we observed a similar lack of fit to Fitts’ law for
HM01. His performance degraded sharply for distances
larger than 650 pixels when he could no longer perform the
movement with a single head turn and had to “skate”. On
the flip side, TB01 showed the opposite trend with respect
to target size. His performance improved very slowly for
small targets, but these improvements became much more
pronounced for sizes larger than 25 pixels. Again, we see
that Fitts’ law is a poor fit to users like these.

Another matter that would complicate our use of Fitts’ law
occurs because our generator has the option of changing
the sizes of widgets in a GUI and the distances between
them. These distances (D) will change as a linear function
of widget sizes (W) with D = aW + b, where the con-
stant term b is due to unchanged components of the wid-
gets (e.g., labels). In this case, Fitts’ index of difficulty
ID = log2(

aW+b
W +1) makes it clear that as W shrinks, ID

grows to infinity (limW→0 log2(
aW+b

W + 1) = ∞). But as
W grows to infinity, ID shrinks asymptotically to a constant
(limW→∞ log2(

aW+b
W + 1) = a + 1). Thus, if we were to

model all users using Fitts’ law, a single improvement strat-
egy would be implied for all: grow target sizes to infinity
unless size constraints force dramatic adverse changes in the
choice of widgets or organization. But as the diversity in our
observed results imply, our participants would likely benefit
from more individualized adaptations.

For these empirical and theoretical reasons, we proceed to
develop a different method for modeling each participant’s
unique motor performance abilities, as described in the next
section.

Automatically Creating Models of Pointing Performance
Our process for automatically creating models of pointing
performance for users with disabilities uses two steps. In
the first step, our technique finds the best set of features to
include in the model. In the second step, it trains a regression
model that is linear with respect to the selected features.

We consider seven possible features in our model: a constant
term, Fitts’ index of difficulty (ID), its two individual com-
ponents log2(D) and log2(W), as well as the raw measures
W, 1/W and D. For each user’s data set, SUPPLE++ evaluated
the 27−1 = 127 possible models with at least one feature us-
ing 10-fold cross validation1 and ordered them by the mean
squared error (MSE) they produced.

Cross validation is known to overestimate the algorithm’s er-
ror on test data so a common practice is to look for the most
parsimonious solution (i.e., one using the fewest features) in
a small vicinity of the optimum predicted by the cross val-
idation [15]. SUPPLE++ thus picks the most parsimonious
model whose performance is within 1% of the best model.
This one-time feature selection process takes less than two
minutes on a standard computer. Table 2 summarizes the
feature results for our participants.

D 1
/
W

W lo
g
(D
)

lo
g
(W
)

ID 1

ET01 x x
HM01 x x x
M03 x x x
M04 x x x x
TB01 x x x
TP01 x x x
VJ01 x x x x
VJ02 x x x

Table 2: Results of the feature selection process for
different participants. Although log(W) was not used
in modeling the performance of any of the participants,
it was used in modeling some devices tested by the
authors.

Whereas the mean R2 for Fitts’ law models for atypical par-
ticipants was .51 (ranging from .14 to .81), it improved to
.71 (ranging from .49 to .88) with the personalized models.
Unsurprisingly, for typical users the improvement was much
smaller (from .79 to .85 on average).

Modeling Dragging and Multiple Clicks We also explicitly
model participants’ ability to perform dragging operations.
These are constrained to one dimension, e.g., as for scroll
bars or sliders (Figure 2b). We also model users’ ability to
execute multiple clicks over targets of varying sizes.

We model dragging time using the same user’s pointing
time MTpoint (for the same distance and target size) as the
only non-constant feature. This is because we observed that

1Because data were divided randomly into the 10 folds in each instance,
we repeated the cross validation process 10 times and averaged the results.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 0 1 2 3 4 5 6 0 100 200 300 400 500 600

M
ov

em
en

t T
im

e
(m

s)

Distance to target Distance to targetFitts' Index of Difficulty (ID)

size 10

size 15

size 25 size 25

size 15

size 10

size-10 size-15 size-25 size-40 size-60size-10 size-15 size-25 size-40 size-60

R2 = 0 14

(a) (b) (c)

Figure 3: Movement time for the eye tracker user: (a) actual data, (b) Fitts’ law model, (c) automatically selected custom
model, which correctly captures the fact that this user was affected by the increasing target size but not by the movement
distance. The same y-axis scale is used on all three graphs.

movement times for both types of operations follow similar
patterns and the formulation we adopt for modeling MTdrag

allows us to elicit only a small number of dragging opera-
tions (around 40) from the user to accurately estimate the
parameters of the following equation:

MTdrag(D, W) = a + b ∗MTpoint(D, W) (1)

The users have the option of skipping the dragging task if
they cannot perform the dragging operation (the case with
ET01), in which case our system sets the a parameter to a
very large number to reflect the fact that dragging was not a
practical option for the user.

Equation 2 below shows the model we found to accurately
estimate the time per click when the user has to perform mul-
tiple clicks on a target of width W .

MTclick(W) = a + b ∗ log(W) (2)

OPTIMIZING GUIs FOR USER’S MOTOR CAPABILITIES
We seek a method for generating a GUI which minimizes the
user’s expected movement time (EMT) given a description
of a typical task performed on that interface. Since this prob-
lem is naturally one of optimization, we build our solution
upon SUPPLE [8], a system that uses decision-theoretic opti-
mization to automatically generate user interfaces. Note that
past work [9] has shown that SUPPLE can generate user in-
terfaces optimized for the user’s qualitative preferences, but
this is insufficient for our current needs. This section shows
how to use the same general optimization framework to gen-
erate UIs which are optimized for a user’s quantitative per-
formance. As we show the resulting optimizations are signif-
icantly harder, involve continuous parameters (e.g., widget
size), and require new heuristics to prune the space.

Review of SUPPLE
Similarly to the Personal Universal Controller [25] and sim-
ilar systems, SUPPLE uses a hierarchical representation,
called a functional specification (Sf), to abstractly describe
a user interface. Leaf nodes in the Sf correspond to individ-
ual pieces of data, described by their types (integer, string,

enumeration, etc.), which should be presented to or manip-
ulated by the user. Interior nodes in the Sf denote hierar-
chical groupings of child elements. SUPPLE treats interface
generation as a discrete optimization problem, considering
a finite set of concrete instantiations to use when render-
ing each node: type-compatible widgets for leaf nodes and
layout “widgets” (e.g., horizontal, vertical, tabbed layouts,
etc.) for interior nodes. SUPPLE searches the space of these
configurations, ensuring that all constraints (e.g., size restric-
tions) are obeyed, and returns the one whose estimated cost,
$, is minimal.

To do this optimization efficiently, previous SUPPLE imple-
mentations required that the cost function be factored in a
specific way:

$(R(Sf), T) =
∑

n∈Sf

M(R(n), T) + N(R(n), T) (3)

This equation states that the expected cost of executing a
trace (sequence of interactions), T , on a rendered interface,
R(Sf) is equal to the sum of the match (M) and navigational
(N) costs of each node n ∈ Sf . The match cost measures
how well the concrete widget, R(n) enables changes to the
value of the node, while the navigational cost penalizes extra
interactions that might be required by tab panes or pop-ups;
in both cases the component costs are weighted by the num-
ber of times they appear in the trace.

This factoring has two important properties: first, the cost of
each widget can be computed independently of others and,
second, the cost associated with navigating the interface is
separated from the usability of individual interactors. These
two properties were leveraged to develop an efficient branch-
and-bound search algorithm for finding the optimal render-
ing. Specifically, SUPPLE explores the space of partial ren-
derings; at each step in the search, SUPPLE uses the factored
cost function to compute a lower bound on the cost of the
best possible, reachable rendering. If that estimate is greater
than the cost of the cheapest solution found so far, then this
region of the search space may be pruned without sacrificing
optimality. By combining this use of an admissible heuris-
tic with efficient constraint propagation, SUPPLE avoids the

vast majority of possible renderings, finding optimal render-
ings in just one or two seconds [8].

Optimizing For A Person’s Motor Abilities
A more complex cost function than the one described above
is required, however, in order to optimize the interfaces for a
user’s expected movement time, EMT :

$(R(Sf , s), T) = EMT (R(Sf , s), T)
= EMTnav(R(Sf , s), T)

+
∑

n∈Sf

EMTmanip(R(n, s), T)

Here, EMTnav is the expected time to navigate the interface,
EMTmanip is the expected time to manipulate a widget (0
for layout widgets) and s is the minimum target size; that is,
the minimum size for all control elements of a widget that
can be manipulated with a pointer (see Figures 1 and 5 for
how widgets are drawn depending on the different values of
s). There are two important differences between this formu-
lation of the cost function and that of Equation 3:

1. The lengths and the target sizes for the movements be-
tween the widgets, and thus the EMTnav , cannot be com-
puted until all interactors and layout widgets have been
chosen. This is problematic because it makes it hard to
estimate the minimal cost of renderings consistent with a
partial assignment, blocking the use of branch-and-bound,
and ruining search efficiency.

2. Both the expected time to manipulate a widget and the
expected time to move between two widgets depend on
the new continuous parameter, s, transforming a dis-
crete optimization problem into a harder, hybrid (dis-
crete/continuous) one.

The rest of this section explains how we confront these prob-
lems. We begin, however, with a brief description of the pro-
cess for computing EMTmanip for widgets.

Computing EMTmanip Many widgets can be operated in
different ways depending on the specific data being con-
trolled and on the user’s motor capabilities. For example,
a list widget, if it is large enough to show every item, can
be operated just by a single click. However, if some of the
list elements are occluded, then the user may need to first
use the scroll bar before selecting one of the invisible ele-
ments. Scrolling may be operated by dragging the elevator,
clicking multiple times on the up/down buttons, depressing
an up/down button for a short period of time or clicking mul-
tiple times in the scrolling region above or below the eleva-
tor. Which of these options is fastest, depends on how far the
user needs to scroll and on how efficiently (if at all) she can
perform a drag operation or multiple clicks.

To accommodate the uncertainty about what value the user
will select while interacting with a widget, we assign a uni-
form probability to the possible values which might be se-
lected and then compute the expected cost. To address the
choice of ways the widget may be operated (e.g., dragging
the elevator vs. multiple clicks on a button), we compute the

EMTmanip for each possible method and choose the mini-
mal value. We cannot decide a priori which interaction type
is the fastest for a particular widget type because the out-
come depends on the circumstances of a particular user (e.g.,
the particular eye tracking software used by ET01 did not
provide support for dragging).

When computing movement times towards rectangular tar-
gets, we use the smaller of the two dimensions as the tar-
get size — as suggested by [24]. Although more accurate
models for two-dimensional pointing have been developed
for typical mouse users [1, 12], no such models are known
for atypical users, and we found the approximate approach
to be adequate for our purposes.

Finally, we note that in order to estimate the movement time
between widgets, one must take into account the size of the
target to be clicked at the end of the movement. That means
that the first click on any widget counts toward the navigation
time (EMTnav) and not the time to manipulate the widget.
Thus the EMTmanip for a checkbox, for example, is 0 and
the size of the checkbox affects the estimated time to nav-
igate the interface. This increases the urgency of bounding
EMTnav before all nodes in the Sf have been assigned a
concrete widget; the next subsection explains how this may
be done.

Computing a Lower Bound for EMTnav The key to SUPPLE’s
efficient branch-and-bound search depends on being able to
efficiently bound the cost, including EMTnav for widgets
that have not yet been chosen. Indeed, we confirmed it when
our initial attempts to use blind methods to optimize layouts
failed — search took many hours, for even simple specifica-
tions.

To compute a lower bound on EMTnav , which is applicable
even when some widgets and layouts have yet to be chosen,
we proceed as follows.

First, for each unassigned leaf node, n, we compute a rect-
angular area which is guaranteed to be covered by all of the
widgets which are compatible with n; that is, we compute
the minimum width of all compatible widgets and separately
find the minimum height, as illustrated below.

1
2
3
4
5

min widget size (,) =

We may now propagate these bounds upwards to form
bounds on interior nodes in the functional specification. For
example, the width of an interior node with a horizontal lay-
out is greater than or equal to the sum of the lower bounds
of its children’s widths. If an interior node has not yet been
assigned a specific layout, then we again independently com-
pute the minimum of the possible widths and the possible
lengths.

Button A Button A Button Amin widget size (,) =

Note, however, that in this case for each element contained
within a layout element (like the Button A above), our esti-
mate also provides the minimum distance from the edges of
the layout element to the contained element. As a result, we
can compute the most compact possible layout for an inter-
face and thus the shortest possible distance between any pair
of elements, as illustrated below:

Button A Button B

min distance
rom Button A
to Button B

To provide a lower bound on the time to move between el-
ements ns and nt we use the shortest possible distance be-
tween the pair and the largest possible target size among the
set of widgets which are compatible with the target, nt. We
update these estimates every time an assignment is made (or
undone via backtracking) to any node in the functional spec-
ification during the branch-and-bound search process.

More complex layout elements such as tab panes, pop-up
panes or pop-up windows make this process only slightly
more complicated — most notably they require that multiple
trajectories are considered if a node on a path between two
widgets can be represented by a tab or a pop-up. However,
the principle of our approach remains unchanged.

As documented in the Evaluation section, our lower bound
on EMTnav resulted in dramatic improvements to the algo-
rithm performance.

Finding the Optimal Target Size. In contrast to the origi-
nal SUPPLE implementation, SUPPLE++ must also optimize
s, the minimum target size, which is a continuous param-
eter. Figure 4 shows how the cost (the EMT) of the best
GUI varies as the minimum target size ranges between 0
and 100 pixels. Because these curves include numerous lo-
cal minima, we can’t apply any of the efficient, convex op-
timization, techniques — instead, it is necessary to search

0 10 20 30 40 50 60 70 80 90 100

Trackball

Head position tracker

Optimum

Optimum

Minimum target size (s)

Ex
pe

ct
ed

 m
ov

em
en

t
tim

e
(E

M
T)

Figure 4: The estimated movement times (EMT) of
the optimal GUIs generated with different values of the
minimum target size parameter for two participants.
Y-axis corresponds to the EMT but the curves were
shifted to fit on one graph so no values are shown.

the space exhaustively. Fortunately, the specter of continu-
ous optimization is only an illusion. In practice, only integer
sizes are used. Furthermore, we may approximate matters
by discretizing the space even more coarsely — e.g., at 5
pixel intervals — yielding 21 discrete settings (in the range
between 0 and 100) for the size parameter. Because this ap-
proach lets us continue to exploit branch-and-bound, search
is very fast in practice because a great many values can be
pruned quickly. Figure 5 (next page) shows 2 GUIs gener-
ated by our algorithm.

Implementation
We were able to change the presentation of the widgets (to
allow for resizing of interaction targets, icons and fonts) by
re-implementing parts of the Java Swing’s Metal Look and
Feel. We have further implemented three additional simple
widgets for our system to use as alternatives to a checkbox,
a set of radio buttons and a spinner, respectively:

ADAPTING TO USERS WITH LOW VISION
To adapt to a person’s vision capabilities, we vary only one
parameter, namely the visual cue size. As mentioned previ-
ously, we allow users to directly control this parameter via
a keyboard shortcut and a simple GUI — akin to the mech-
anism provided by most modern web browsers. This poses
two challenges. First, the interaction should be nearly instan-
taneous. Second, as the font size varies, the changes between
successive renderings must be kept to a minimum to avoid
disorientation.

To address the first challenge, we added a caching system to
SUPPLE++ and noted that only 8 discrete visual cue settings
adequately cover the range from the font size 12 (the default
font size used in Metal Look and Feel) and 50. Thus GUIs for
the remaining 8 cue sizes can be pre-computed in the back-
ground while the user is inspecting the first one (a feasible
option because our system requires less than two seconds per
GUI when generating preference-based interfaces).

To address the challenge of maintaining consistency between
successive renderings of an interface, we augment the cost
function by adding a penalty to enlarged renderings that don’t
resemble the original (using similarity characteristics dis-
cussed in [10]).

Figure 6 (next page) shows an email client configuration GUI
which has been automatically generated for a typical user
(left) using original SUPPLE and for a low vision user (right)
using SUPPLE++, with font sizes enlarged by a factor of 3
and other visual cues adjusted accordingly. The GUI with
large cues uses the entire area of a 1440× 900 screen. While
not all elements could be shown side by side and some were
thus put into tab panes, the logical structure of the entire in-
terface, as well as the action buttons at the bottom of the
interface, are all visible at a glance. If instead a full screen
magnifying glass were used (or if the display resolution was
lowered) to achieve the same font size, only a fraction of the
original interface, outlined by the dashed line, would have

(a) (b) (c)

Figure 5: Three renderings of a synthetic interface used in the preliminary study and automatically generated under
the same size constraint: (a) base line preference-optimized GUI; (b) personalized for the mouse user with muscular
dystrophy (M03); (c) personalized for the eye tracker user (ET01). GUIs (b) and (c) were generated by SUPPLE++.

Content
organ zed

nto tab
panes

Figure 6: An email client configuration GUI automatically generated for a typical user (left) and for a low vision user (right)
– both GUIs shown to scale. The latter interface allows the user to see the structure of the entire interface at a single
glance. If a screen magnifier was used to enlarge the original interface to achieve the same font size, only a small fraction
(marked with a dashed line) would have fit on the screen at a time.

been visible, forcing the user to explore the contents of the
GUI serially rather than in parallel.

ADAPTING TO BOTH VISION AND MOTOR CAPABILITIES
We have now presented technical solutions for adapting
GUIs to both a user’s motor and vision abilities. We ob-
serve that our two approaches are orthogonal and combine
trivially to provide custom GUIs for users who are atypical
with respect to both their motor and vision abilities (refer to
Figure 1 for an example). The only limitation being the fact
that ability-optimized GUIs can take up to several minutes
to generate so the instantaneous preview of interfaces gener-
ated for different cue sizes may not always be available so
our system allows users to set a system-wide preference for
visual cue size and that’s the first value for which SUPPLE++
generates new interfaces.

EVALUATION
Algorithm Computation Time
For interfaces illustrated in Figures 1 and 5, SUPPLE++
needed between between 3.6 seconds and 20.6 minutes to
compute the personalized GUIs for our participants. These
results take advantage of our lower-bound estimation method
for EMTnav , which reduced the runtime for one of the less
complex interfaces from over 5 hours to 3.6 seconds, and

without which more complex interfaces would have required
days to be rendered.

We note that execution times on the order of 10-20 minutes
(in the worst case) will still allow practical deployment of the
system if caching is used for users whose conditions do not
change frequently.

Preliminary User Study
We conducted a preliminary study of our system with five of
the participants who took part in the model eliciting study
described above. We used a synthetic user interface designed
so as to include many of the types of data commonly ma-
nipulated in standard GUIs. The functional specification
included 11 leaf nodes: 4 numerical inputs (with different
ranges and input accuracy requirements), 3 choice elements
and 4 booleans. See Figure 5 for sample renderings.

Each participant was presented with two sets of automati-
cally generated GUIs. Typically, one GUI in each set was
generated using preference-based SUPPLE as a baseline (us-
ing preferences collected in earlier work [9]), one was op-
timized using SUPPLE++ for that user (the “personalized”
GUI), and one or two others personalized for other partici-
pants for comparison. All GUIs in a set were rendered under
the same size constraint (the “condition” column in Table 3)

partici
pant condition

SUPPLE++
(personalized)

SUPPLE
(baseline)

M03 small A 28.47 34.73 31.50 (ET01) 27.45 (VJ02)

full screen 26.02 30.04 26.88 (VJ02)

ET01 small A 56.16 not usable 48.03 (M03)

small B 59.04 not usable 47.95 (M03) 57.99 (VJ02)

HM01 medium A 29.96 52.40

medium B 29.94 47.96

TB01 small B 43.59 42.52 47.19 (M03) 43.44 (ET01)

full screen 47.99 48.77 39.45 (VJ02) 38.15 (ET01)

VJ02 small B 55.55 63.41 56.24 (M03) 61.52 (ET01)

full screen 52.76 72.94 57.93 (M03) 70.45 (TB01)

personalized for others

Table 3: Study results (bold = fastest; underline = rated
as easiest to use; VJ02 did not express a clear pref-
erence in one condition). SUPPLE++ allowed ET01
to complete tasks she was not able to accomplish at
all with the baseline interface while for the remaining
users it resulted in an average time savings of 20%.

and the sizes were chosen to accentuate differences among
renderings within each set. The participants were not told
until after the study how the interfaces were generated. With
each GUI, participants performed 4 brief task sets, each re-
quiring between 10 and 12 operations. The first task set was
a practice set and was not included in the results. We were
interested in expert performance, so the participants were led
through the tasks by an animated visual guide, which limited
the effect of visual search time and thinking time (for ET01,
the experimenter read the instructions aloud for each opera-
tion). Participants performed the same tasks on all interfaces
and the order of interfaces (personalized, baseline, others)
was randomized. Participants were instructed not to use the
keyboard during the study. Some of the concrete GUIs gen-
erated for the participants are shown in Figure 5 and Table 3
summarizes the results.

Results
On average, the personalized interfaces allowed participants
to complete tasks in 20% less time than the baseline inter-
face, with the time differences ranging from a slowdown of
3% to a speedup of 43%. In addition, ET01 was not even
able to use the baseline interface because it required drag-
ging, which her particular software configuration did not sup-
port. In 5 out of 10 conditions, participants were fastest using
a personalized GUI, and in 6 out of 10 cases, they rated the
personalized GUI as easiest to use.

In 4 cases, however, interfaces optimized for a different par-
ticipant resulted in fastest performance pointing to limita-
tions of our current performance model. We find that the
current version of our model significantly underestimates the
time necessary to manipulate those list widgets where only
a small fraction of items is visible at a time because it does
not take into account the visual verification time. We believe
that this limitation is primarily responsible for the observed
shortcomings and that it can be remedied in future versions.

Observations of individual participants HM01’s (Head Mouse,
incomplete tetraplegia) performance improved by up to 43%
with respect to the baseline when using the personalized
GUIs. His main difficulty in operating the baseline interface
was caused by combo boxes which caused long lists with
scroll bars to drop down – any accidental clicks while oper-

ating those lists would cause the combo box to collapse the
list and force the participant to start over with that widget.

The particular software setup used by ET01 made it impos-
sible for her to perform drag operations. This made the base-
line GUIs unusable for this participant because they included
sliders which, in the particular Swing implementation used,
could not be set to a desired value with just a single click.

For both sets of interfaces, this participant preferred the per-
sonalized interfaces over the alternatives. However, she per-
formed the slowest with those interfaces. The personalized
interfaces included list widgets that showed fewer values at a
time than the alternative GUIs. The time to manipulate those
lists was much longer in practice than what our model pre-
dicted. For larger target sizes, both the heights and the widths
of list cells were enlarged thus moving the values away from
the slider toward the left of the list. That made it much harder
for this participant to use her peripheral vision to monitor the
values as she was using her gaze to click on the slider. She
suggested that in some cases larger fonts for list would be
beneficial because peripheral vision is naturally less acute.

TB01 (trackball, incomplete tetraplegia) was often able to
work quickly with GUIs containing small targets, but he tired
more quickly when using them and had to take longer breaks
compared to when he was using GUIs with larger targets.

M03 (mouse, impaired dexterity) perceived the slider to be
difficult to use and in the small condition ranked the VJ02
interface, which used it, as least easy to use even though she
was most efficient using it. She was most satisfied with the
ET01 interface, which used the largest targets (but which also
required more scrolling to operate the lists and subsequently
was second slowest to use). The baseline interface was the
only one not to use tabs but despite being the easiest to navi-
gate, it was slowest to use for this participant.

VJ02 (VocalJoystic, able-bodied) perceived the preference-
optimized GUI as most aesthetically pleasing and most fa-
miliar looking and said that this probably made him perceive
it as more usable than it perhaps was in practice.

Implications For Future Work
While personalized interfaces generated by SUPPLE++ were
generally faster and easier to use than the baseline, the study
suggested a few improvements to the system.

In particular, we will extend our model to better predict list
selection times. The results of an initial follow-up study with
TB01 and 4 additional able-bodied participants suggest that
list selection times can be modeled accurately at the expense
of adding additional tasks to the one-time motor performance
elicitation test for each user. The strategies employed by the
different participants varied widely so, just as with modeling
pointing times, we have to automatically develop personal-
ized models for each participant.

HM01’s difficulty with combo box lists, which would dis-
appear after an unintended or misplaced click, suggests that
we should also explicitly model the cost of recovering from
errors. It will affect the expected costs of individual wid-
gets (those for which errors are costly to recover from will

become more expensive), as well as layout and spacing of
interactors.

We are currently planning a larger study of this system. We
will broaden the diversity of motor differences represented
(in particular by recruiting participants with tremors and age-
related impairments) and we will also evaluate our system’s
ability to adapt to low vision requirements and combinations
of vision and motor impairments.

CONCLUSION
We have presented SUPPLE++, a system which automati-
cally generates user interfaces adapted to the user’s motor
and vision capabilities. Noting the great diversity of abil-
ities among users, our system does not rely on profiles of
health conditions, which would necessary stereotype users
into discrete classes, but instead it automatically adapts to
the user’s individual motor performance and allows manual
adjustment to accommodate varying vision capabilities. Im-
portantly, SUPPLE++ supports combinations of vision and
motor impairments.

Our technical contributions include a method for automati-
cally selecting features of a custom regression model for each
user, noting that Fitts’ law often does not adequately describe
the performance of people with unusual motor abilities or
devices. We also developed a novel optimization-based al-
gorithm for automatically generating GUIs adapted to user’s
motor performance.

Results of a preliminary study indicate that while there is
still room for improvement, SUPPLE++ shows promise as
it allowed one user to complete tasks, which she could not
perform using a standard interface while for the remaining
users it resulted in an average time savings of 20%.

Acknowledgments We acknowledge the following individ-
uals (in alphabetical order) for their advice, help in recruit-
ing the participants and comments on this manuscript: Ey-
tan Adar, Anna Cavender, Dan Comden, Susumu Harada,
Mark Harniss, Curt Johnson, Kurt L. Johnson, Kayur Patel,
Ali Rahimi, Joe Stuckey and Michael Toomim. Jing Jing
Long helped develop early prototypes of the system. This re-
search was funded in part by NSF grant IIS-0307906, ONR
grant N00014-06-1-0147, DARPA project CALO through
SRI grant number 03-000225, the WRF / TJ Cable Profes-
sorship and a Microsoft Graduate Research Fellowship.

REFERENCES
1. Accot, J. and S. Zhai. Refining Fitts’ law models for bivariate

pointing. Proc. CHI’03, 193–200, New York, NY, USA, 2003.
ACM Press.

2. Anson, D. Alternative Computer Access: A Guide to Selec-
tion. Davis FA, 1996.

3. Bergman, E. and E. Johnson. Towards Accessible Human-
Computer Interaction. Advances in Human-Computer Inter-
action, 5(1), 1995.

4. Carter, S., A. Hurst, J. Mankoff, and J. Li. Dynamically adapt-
ing GUIs to diverse input devices. Proc. Assets’06, 63–70,
New York, NY, USA, 2006. ACM Press.

5. Chicowski, E. It’s all about access. Alaska Airlines Magazine,
28(12):26–31, 80–82, 2004.

6. Dawe, M. Desperately seeking simplicity: how young adults
with cognitive disabilities and their families adopt assistive
technologies. Proc. CHI’06, 1143–1152, 2006.

7. Fichten, C., M. Barile, J. Asuncion, and M. Fossey. What
government, agencies, and organizations can do to improve

access to computers for postsecondary students with disabili-
ties: recommendations based on Canadian empirical data. Int
J Rehabil Res, 23(3):191–9, 2000.

8. Gajos, K. and D. S. Weld. Supple: automatically generating
user interfaces. Proc. IUI’04, 93–100, Funchal, Madeira, Por-
tugal, 2004. ACM Press.

9. Gajos, K. and D. S. Weld. Preference elicitation for interface
optimization. Proc. UIST’05, Seattle, WA, USA, 2005.

10. Gajos, K., A. Wu, and D. S. Weld. Cross-device consistency
in automatically generated user interfaces. In Proceedings
of Workshop on Multi-User and Ubiquitous User Interfaces
(MU3I’05), 2005.

11. Gregor, P., A. Newell, and M. Zajicek. Designing for dynamic
diversity: interfaces for older people. Proc. Assets’02, 151–
156, 2002.

12. Grossman, T. and R. Balakrishnan. A probabilistic approach
to modeling two-dimensional pointing. ACM Trans. Comp.-
Human Interaction (TOCHI), 12(3):435–459, 2005.

13. Gump, A., M. LeGare, and D. L. Hunt. Application of fitts’
law to individuals with cerebral palsy. Percept Mot Skills, 94(3
Pt 1):883–895, June 2002.

14. Harada, S., J. A. Landay, J. Malkin, X. Li, and J. A. Bilmes.
The vocal joystick:: evaluation of voice-based cursor control
techniques. Proc. Assets’06, 197–204, New York, NY, USA,
2006. ACM Press.

15. Hastie, T., R. Tibshirani, and J. H. Friedman. The Elements of
Statistical Learning. Springer, August 2001.

16. Hornof, A., A. Cavender, and R. Hoselton. Eyedraw: a system
for drawing pictures with eye movements. Proc. Assets’04,
86–93, 2004.

17. Hwang, F., S. Keates, P. Langdon, and J. Clarkson. Mouse
movements of motion-impaired users: a submovement anal-
ysis. Proc. Assets’04, 102–109, New York, NY, USA, 2004.
ACM Press.

18. International Organization for Standardization. 9241-9 Er-
gonomic requirements for office work with visual display ter-
minals (VDTs)-Part 9: Requirements for non-keyboard input
devices, 2000.

19. Keates, S., P. Clarkson, L. Harrison, and P. Robinson. Towards
a practical inclusive design approach. ACM Press New York,
NY, USA, 2000.

20. Koester, H. Abandonment of speech recognition by new users.
Proc. RESNA’03, 2003.

21. Kurniawan, S., A. King, D. Evans, and P. Blenkhorn. Design
and user evaluation of a joystick-operated full-screen magni-
fier. Proc. CHI’03, 25–32, 2003.

22. Law, C., A. Sears, and K. Price. Issues in the categorization
of disabilities for user testing. Proc. HCI Intl., 2005.

23. Mace, R., G. Hardie, P. Jaine, and N. C. S. U. C. for Uni-
versal Design. Accessible Environments: Toward Universal
Design. Center for Accessible Housing, North Carolina State
University, 1990.

24. Mackenzie, S. I., and W. Buxton. Extending fitts’ law to two-
dimensional tasks. Proc. CHI ’92, 219–226, New York, NY,
USA, 1992. ACM Press.

25. Nichols, J., B. A. Myers, M. Higgins, J. Hughes, T. K. Harris,
R. Rosenfeld, and M. Pignol. Generating remote control inter-
faces for complex appliances. Proc. UIST’02, Paris, France,
2002.

26. Phillips, B. and H. Zhao. Predictors of assistive technology
abandonment. Assist Technol, 5(1):36–45, 1993.

27. Scott, I. U., W. J. Feuer, and J. A. Jacko. Impact of graphical
user interface screen features on computer task accuracy and
speed in a cohort of patients with age-related macular degen-
eration. Am. J. of Ophthalmology, 134(6):857–862, December
2002.

28. Sears, A. Layout appropriateness: A metric for evalu-
ating user interface widget layout. Software Engineering,
19(7):707–719, 1993.

29. Smits-Engelsman, B., Rameckers, E., Duysens, and J. Chil-
dren with congenital spastic hemiplegia obey fitts law in a
visually guided tapping task. Experimental Brain Research,
177(4):431–439, March 2007.

30. Stephanidis, C. Towards the Next Generation of UIST: Devel-
oping for all Users. HCI Intl., 473–476, 1997.

