

Usable AI: Experience and Reflections

Introduction
We believe that AI has much to offer HCI, in particular
allowing for the quick construction of personalized and
personalizable interfaces. In this position paper, we
report on our experience from four recent
investigations of automatic personalization. We then
step back and comment on the overall enterprise of
making AI usable.

Adaptive Interfaces: Do People Want Them?
Automatic adaptation of user interfaces is a contentious
area. Proponents (e.g., [1]) argue that it offers the
potential to optimize interactions for a user’s tasks and
style while critics (e.g., [4]) maintain that the inherent
unpredictability of adaptive interfaces may disorient the
user, causing more harm than good. Surprisingly,
however, there is very little past research explicitly
studying automatic adaptation in graphical user
interfaces. The existing research includes both positive
and negative examples of adaptation, sometimes
reporting contradictory results without analyzing the
reasons underlying the discrepancy (e.g., [4] and
[13]).

Copyright is held by the author/owner(s).

CHI 2008, April 5 – April 10, 2008, Florence, Italy

Workshops and Courses: Usable Artificial Intelligence.

Krzysztof Z. Gajos

Computer Science & Engineering

University of Washington

Seattle, WA 98195

kgajos@cs.washington.edu

Daniel S. Weld

Computer Science & Engineering

University of Washington

Seattle, WA 98195

weld@cs.washington.edu

 2

We have conducted four laboratory studies [5, 7, 8]
with two distinct applications (a software graphing
calculator and MS Word) and three very distinct
adaptation techniques (Figure 1). We have synthesized
our results with past research and began to outline how
different design choices and interactions make some
adaptive interfaces a pleasure to work with while others
are frustrating impediments.

In the three studies that directly compared different
adaptive techniques, Split Interfaces (where frequently
used functionality is copied to a specially designated
adaptive part of the interface) were shown to result in
significant improvement in both performance and
satisfaction compared to the non-adaptive baseline.
Our experiments and the analysis of past results also
indicated that a number of specific design and context
factors impact adoption of adaptive GUIs. Those factors

included the accuracy and predictability of the adaptive
algorithm, adaptation frequency, the frequency with
which the user interacts with the interface, task
complexity and the spatial stability of the interface
(i.e., to what extent the original interface gets modified
during the adaptation).

Of particular interest here is our most recent study [8]
where we explored the relative effects of predictability
and accuracy in the usability of adaptive interfaces. We
say that an adaptive algorithm is predictable if it
follows a strategy users can easily model in their heads
(we used a random and most recently used strategies
to simulate the two ends of the spectrum). We use the
term accuracy to refer to the percentage of time that
the necessary UI elements are contained in the
adaptive area of a Split Interface (we used 50% and
70% accuracy levels). We found that in that particular

figure 1. Three adaptive interfaces tested in our experiments (as implemented for Microsoft Word): (a) The Split Interface copies
frequently used functionality onto a designated adaptive toolbar; (b) The Moving Interface moves frequently used functionality from
inside a popup menu to a top level toolbar; (c) The Visual Popout Interface makes frequently used functionality more visually
salient.

 3

design, increasing the adaptive algorithm’s accuracy
had more beneficial effects on the participants’
satisfaction, performance and utilization of the adaptive
interface than did improved predictability. These results
suggest that there is an opportunity for machine
learning approaches to improve both performance and
satisfaction of people using adaptive user interfaces,
provided those approaches can deliver significant
performance improvements over simpler alternatives.
The results also pose an AI challenge: algorithms
whose behavior appears more predictable (while
maintaining high level of predictive accuracy) will result
in larger benefit than more opaque approaches.

Automatically Generating Custom Interfaces for Users
with Motor Impairments
Users with motor impairments often find it difficult or
impossible to use today’s common software
applications. While many believe that the needs of
these users are adequately addressed by specialized
assistive technologies, these technologies, while often
helpful, have two major shortcomings. First, they are
often abandoned, because of their cost, complexity,
limited availability and need for ongoing maintenance
(it is estimated that less than 60% of the users who
need assistive technologies actually use them [3]).
Second, assistive technologies are designed on the
assumption that the user interface, which was designed
for the “average user,” is immutable, and thus users
with motor impairments must adapt themselves to
these interfaces.

We developed an alternative approach: our Supple++
system [10] automatically generates interfaces which
are tailored to an individual’s motor capabilities and can
be easily adjusted to accommodate varying vision

capabilities (Figure 2). Supple++ uses automatically
generated custom regression models to predict users’
motor capabilities based on a one-time motor
performance test and uses these models in an
optimization process, generating personalized
interfaces.

figure 2. (a) The default interface for a print dialog. (b) A user
interface for the print dialog automatically generated for a user
with impaired dexterity based on a model of her actual motor
capabilities.

 4

In a study involving 11 participants with motor
impairments and 6 able-bodied participants, which
compared the automatically generated interfaces to the
baselines, our results show that users with motor
impairments were 26.4% faster using interfaces
generated by Supple++, they made 73% fewer errors,
strongly preferred those interfaces to the
manufacturers’ defaults, and found them more efficient,
easier to use, and much less physically tiring [9]. These
findings indicate that rather than requiring some users
with motor impairments to adapt themselves to
software using separate assistive technologies,
software can now adapt itself to the capabilities of its
users thanks to a combination of AI and HCI
innovations.

Preference Elicitation for Interface Optimization
Decision-theoretic optimization is becoming a popular
tool in the user interface community, but creating
accurate cost (or utility) functions has become a
bottleneck — in most cases the numerous parameters
of these functions are chosen manually, which is a
tedious and error-prone process. Supple’s cost
functions, for example, typically rely on more than 40
parameters reflecting complex and interacting decision
trade-offs. These parameters have to be chosen anew
for each new target device and interaction style.

We have thus built Arnauld, a system that allows users
to quickly come up with the right parameters just by
providing feedback about concrete outcomes [6].
Arnauld uses two types of interactions: system-driven
elicitation and user-driven example critiquing.

Users can freely switch between the two types of
interactions. During the system-driven elicitation,

(a)

(b)

figure 3. Two consecutive steps in the active elicitation process.
(a) Arnauld poses a ceteris paribus query, showing two renderings
of light intensity control in isolation; this user prefers to use a
slider. (b) Realizing that the choice may impact other parts of the
classroom controller interface, Arnauld asks the user to consider a
concrete interface that uses combo boxes for light intensities but
is able to show all elements at once, and an interface where
sliders are used but different parts of the interface have to be put
in separate tab panes in order to meet the overall size
constraints.

 5

Arnauld presents the user with a pair of outcomes,
always starting with a pair where only one easily
identifiable difference exists between the two
alternatives (Figure 3a). The user is asked to express
preference for one outcome or the other. If the
difference causes rippling effects in the larger context,
a follow-up query is issued illustrating those effects
(Figure 3b). These isolated and situated queries allow
Arnauld to identify not only absolute preferences but
also trade-offs: for example, in the two queries shown
in Figure 3, the user indicated that he preferred sliders
to combo boxes but not if they caused the interface to
grow so large that it had to be split into separate tab
panes.

The example critiquing interaction allows users to
change the widget choice or layout of any part of the
interface through direct manipulation (using the
customization framework, in the case of Supple) –
these interactions also provide input to the learning
algorithm.

The learning algorithm uses the max-margin approach
to find a set of parameters that optimally matches the
preferences expressed by the user through the two
types of interactions. Related problems have been
addressed using Support Vector Machines (requiring
solving quadratic optimization problems) [11] and
sampling-based algorithms [2]. Because of the
interactivity requirements, we developed a novel very

figure 4. MS Ribbon (a) a fragment of the MS Ribbon re-implemented in Supple; (b) Supple automatically provides the size
adaptations, which are manually designed in the original version of the MS Ribbon; (c) unlike the manually designed Ribbon, the
Supple version allows users to add, delete, copy and move functionality; in this example, New Container section was added, its
contents copied via drag-and-drop operations from other parts of the interface and the Quick Style button was removed from the
Drawing panel; the customized Supple version of the Ribbon can still adapt to different size constraints.

 6

fast algorithm, which only requires solving of a linear
optimization problem.

AI Can Improve Usability: The Case of MS Ribbon
Microsoft Ribbon is an interface innovation introduced
in MS Office 2007 as a replacement for menus and
toolbars. One of it’s important properties is that the
presentation of the contents of the Ribbon can be
adapted based on the width of the document window.
The adaptation is performed in several ways, including
removing text labels from buttons, re-laying out some
of the elements and replacing sections of the Ribbon
with pop-up windows. Figure 4a shows a fragment of
the Ribbon re-implemented in our Supple system, while
Figure 4b shows that same fragment adapted to fit in a
narrower window.

The size adaptation of MS Ribbon is not automatic –
versions for different window widths were designed by
hand. An unfortunate consequence of this approach is
that no manual customization of the Ribbon is possible:
unlike in the case of toolbars from earlier versions of
MS Office, in Ribbon there is no mechanism to allow
moving, copying, adding or deleting buttons, panels or
other functionality.

We were able to quickly re-implement the Ribbon in
Supple. Supple’s automatic interface generation
algorithm, which takes size as one of the input
constraints, automatically provided the size adaptations
(Figure 4b). More importantly, however, Supple’s built-
in customization mechanisms allow people to add new
panels to the Supple version of the Ribbon as well as
move, copy and delete functionality. The customized
Ribbon can be naturally adapted to different size
constraints by Supple (Figure 4c). In this case,

automatically generated and adapted interactions can
improve user’s sense of control compared to the
manually created solution.

Discussion Points
Stepping back a bit, we now offer some reflections on
the enterprise of “making AI usable.”

Using AI
Incorporating AI solutions in human-computer
interaction brings about many new usability challenges.
For example, increased complexity of an AI system’s
behavior makes it harder for people to create adequate
mental models of those systems. As the results our
studies of adaptive interfaces suggest, there is a
complex trade off between the benefit of improved
efficiency of interaction and the increased cognitive
complexity of the interactions. In some cases, when the
benefits of automation are sufficiently large, those
benefits may outweigh the costs and our results
demonstrate the need for further research in this area.

Further, noisy input combined with imperfect learning
and inference may result in erroneous behavior.
Horvitz [12] proposed a decision-theoretic framework
for systems to automatically reason about the costs
and benefits of potential actions based on the strength
of the evidence motivating system’s action and an
estimate of the actual impact the action would have on
the user.

Intelligence Guided by Usage
Similarly, HCI is a source of important, interesting and
new challenges for AI. In particular, people...

 are a source of noisy input,

 7

 have strong expectations regarding the
predictability of the system’s behavior and the
correctness of any “intelligent” behavior,

 may want reliable estimates of a system’s
confidence (if it cannot guarantee uniformly high
accuracy),

 often wish for an explanation underlying a
recommendation or proposed action, and

 are intolerant of long response times.

 While AI researchers have delivered technologies
that meet some of these requirements, they have made
little progress on others; thus developing useful and
usable systems, will require developing new AI
approaches and algorithms.

It is likely to be insufficient to try to add AI to an
existing interface, or to try to design a new interface for
an existing AI solution. Paraphrasing Dan Olsen:
“Choosing a machine learning algorithm independent of
the way it will be used by people is an approach
doomed to failure.” In our own work, we found that we
were particularly successful when we considered both
aspects of the problem together. This allowed us to
create useful and usable systems like Supple++,
identify the opportunities for machine learning for
adaptive user interfaces, and it inspired us to develop
new AI solutions, like the very fast max-margin
algorithm for Arnauld or a new optimization-based
algorithm for Supple++.

Usable HCI?
Many AI and machine learning techniques have been
packaged into toolkits like Weka, Mallet, the Graphical
Models Toolkit (GMTK), Crayons, EyePatch, and others,
allowing non-AI experts to easily apply those

techniques when solving problems in other disciplines.
While many problems still require substantial AI
expertise, there are many situations where the “typical”
application of an existing technique is sufficient;
toolkits support those typical applications. The fact that
many techniques originating from AI research are now
easy to use has spurred important innovations in other
fields, including HCI.

It can be argued, however, that even though there are
many situations where “typical” HCI methodologies are
applicable, those methods haven’t been packaged or
made accessible to non-HCI experts. For example, even
analysis of data collected from a simple user study is
fraught with pitfalls: timing data usually has to be log-
transformed for analysis with a t-test or ANOVA
because these tests are only valid if data is normally
distributed; subjective responses should be analyzed
with a different set of (non-parametric) tests; if testing
for multiple hypothesis at once (a very common
situation) p-values need to be corrected to avoid
accidentally significant results; if there are missing
data, model-based tests may be more appropriate, and
so on. Yet, despite the fact that many people conduct
similar types of experiments where timing, error and
preference data are collected, there are no common
and easy to use tools that would help design and
analyze such experiments.

We suggest that increasing the usability of the basic
HCI methodologies would give non-experts the
necessary tools to reason about and effectively
communicate the usability properties of inventions that
include an interactive component — thus encouraging
cross-pollination of the two fields.

 8

References
[1] Benyon, D. Adaptive systems: A solution to
usability problems. User Modeling and User-Adapted
Interaction, 3, 1 (1993), 65–87.

[2] Chajewska, U., Koller, D., and Ormoneit, D.
Learning an agent’s utility function by observing
behavior. In Proc. of ICML’01. 2001.

[3] Fichten, C., Barile, M., Asuncion, J., and Fossey, M.
What government, agencies, and organizations can do
to improve access to computers for postsecondary
students with disabilities: recommendations based on
Canadian empirical data. Int J Rehabil Res, 23, 3
(2000), 191–9.

[4] Findlater, L. and McGrenere, J. A comparison of
static, adaptive, and adaptable menus. In Proceedings
of ACM CHI 2004. 2004, 89–96.

[5] Gajos, K., Christianson, D., Hoffmann, R., Shaked,
T., Henning, K., Long, J. J., and Weld, D. S. Fast and
robust interface generation for ubiquitous applications.
In Proc. of Ubicomp’05. Tokyo, Japan, 2005.

[6] Gajos, K. and Weld, D. S. Preference elicitation for
interface optimization. In Proc. UIST 2005. Seattle, WA,
USA, 2005.

[7] Gajos, K. Z., Czerwinski, M., Tan, D. S., and Weld,
D. S. Exploring the design space for adaptive graphical
user interfaces. In Proc. AVI ’06. ACM Press, New York,
NY, USA, 2006, 201–208.

[8] Gajos, K. Z., Everitt, K., Tan, D. S., Czerwinski, M.,
and Weld, D. S. Predictability and accuracy in adaptive
user interfaces. In submission.

[9] Gajos, K. Z., Wobbrock, J. O., and Weld, D. S.
Improving the performance of motor-impaired users
with automatically-generated, ability-based interfaces.
In submission.

[10] Gajos, K. Z., Wobbrock, J. O., and Weld, D. S.
Automatically generating user interfaces adapted to
users’ motor and vision capabilities. In Proc. UIST ’07.
ACM Press, 2007, 231–240.

[11] Gervasio, M. T., Moffitt, M. D., Pollack, M. E.,
Taylor, J. M., and Uribe, T. E. Active preference
learning for personalized calendar scheduling
assistance. In Proc. IUI ’05. ACM Press, 2005, 90–97.

[12] Horvitz, E. Principles of mixed-initiative user
interfaces. In Proc. CHI ’99. ACM Press, New York, NY,
USA, 1999, 159–166.

[13] Sears, A. and Shneiderman, B. Split menus:
effectively using selection frequency to organize
menus. ACM Trans. Comput.-Hum. Interact., 1, 1
(1994), 27–51.

	usableAI 2008.pdf
	usableAI 2008.2.pdf

