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ABSTRACT
We present a method for obtaining lab-quality measurements
of pointing performance from unobtrusive observations of
natural in situ interactions. Specifically, we have devel-
oped a set of user-independent classifiers for discriminating
between deliberate, targeted mouse pointer movements and
those movements that were affected by any extraneous fac-
tors. To develop and validate these classifiers, we developed
logging software to unobtrusively record pointer trajectories
as participants naturally interacted with their computers over
the course of several weeks. Each participant also performed
a set of pointing tasks in a formal study set-up. For each
movement, we computed a set of measures capturing nuances
of the trajectory and the speed, acceleration, and jerk profiles.
Treating the observations from the formal study as positive
examples of deliberate, targeted movements and the in situ
observations as unlabeled data with an unknown mix of delib-
erate and distracted interactions, we used a recent advance in
machine learning to develop the classifiers. Our results show
that, on four distinct metrics, the data collected in-situ and fil-
tered with our classifiers closely matches the results obtained
from the formal experiment.
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INTRODUCTION
We present a method for obtaining lab-quality measurements
of pointing performance from unobtrusive observations of
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natural in situ interactions. In controlled laboratory stud-
ies, participants are instructed to focus entirely on the task at
hand and proceed as quickly as possible while keeping error
rates minimal. The measurements collected in such studies
reflect primarily the motor abilities of the participants and the
properties of the input device used. In contrast, in naturalis-
tic settings people’s pointing performance is also affected by
a number of cognitive, perceptual, or environmental distrac-
tions such as deciding what task to perform next, looking for
the right user interface element, or watching TV. Thus, data
obtained from in situ observations of natural pointing inter-
actions differs substantially from data collected in laboratory
settings [2]. Yet, if lab-quality data could be collected in situ,
it might enable measuring longitudinal fluctuations in a user’s
motor performance (e.g., due to medication, fatigue, or pro-
gression of a disease) [11], automatic detection of pointing
problems and the need for assistive technology [10], auto-
matic adaptation of user interfaces to the changes in the user’s
motor abilities [7], and more realistic assessments of novel
input devices.

To enable such lab-quality measurements of pointing perfor-
mance from in situ observations we have developed a set of
user-independent classifiers for discriminating between de-
liberate, targeted mouse pointer movements and those move-
ments that were affected by any extraneous factors. As illus-
trated in Figure 1, these classifiers can be used to effectively
filter the naturalistic data such that the filtered in situ data is
nearly indistinguishable from the data obtained from the same
person through a formal experimental set-up.

To develop and validate our approach we developed logging
software to unobtrusively record mouse pointer trajectories
from 18 participants as they naturally interacted with their
computers over the course of several weeks. Each participant
also performed a set of pointing tasks using a formal study
set-up. For each movement, we computed a set of measures
capturing properties of the movement trajectory as well as
the speed, acceleration, and jerk profiles. Treating the ob-
servations from the formal study as positive examples of de-
liberate, targeted movements and the in situ observations as
unlabeled data with an unknown mix of deliberate and dis-
tracted interactions, we used a recent advance in machine
learning [4] to develop user-independent classifiers capable
of discriminating between trajectories of deliberate and dis-
tracted mouse pointer movements.
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Figure 1. (a) Mouse pointer movements collected in situ from one participant by unobtrusively observing his interactions with the computer. (b) A
subset of these movements classified by our system as deliberate targeted interactions; the distribution of these movements, as represented by the Fitts’s
law parameters computed from them, is nearly indistinguishable from (c) the movements collected from the same participant in a formal experiment.
Trend lines are shown in black.

We evaluated our approach on four different tasks —
estimating the mean of a measurement, conducting tests for
statistically significant differences, estimating Fitts’ through-
put, and building Fitts’ law models to generate movement
time predictions — and the results obtained from data col-
lected in situ and filtered with our classifier closely matched
the results obtained from a formal experiment.

The main contribution of this paper is the development and
the evaluation of a machine learning–based method for dis-
criminating between mouse pointer trajectories that came
from deliberate, targeted movements and those that were pro-
duced when the person was distracted or not focused on the
task. We also make available on our web site our data set of
over 7800 mouse pointer trajectories, our source code, and
the user-independent classifiers trained on these data.

PRIOR RESEARCH
Unobtrusive observations of user behavior have previously
been used to characterize naturally occurring mouse pointer
interactions [2]. The analysis of these data confirmed that
naturally occurring pointing interactions have different prop-
erties from those observed in controlled laboratory studies.
Meanwhile, Hurst and colleagues demonstrated that labora-
tory studies are insufficient for properly characterizing the
motor performance of people with motor impairments be-
cause the motor abilities of these users tend to vary sub-
stantially over time due to medication, fatigue, and changes
in the underlying medical condition [11] — longitudinal in
situ measurements are needed instead. Hurst and colleagues
also demonstrated that lab-quality pointing performance data
could be used to automatically detect the certain kinds of mo-
tor impairments and to predict the benefit of particular assis-
tive technologies [10] and, again, argued that their methods
would be most useful if the data could be collected unobtru-
sively.

The SUPPLE system [6] uses models of an individual’s motor
performance to automatically generate user interfaces opti-
mized for that user’s unique motor abilities. Currently, lab-
quality measurements are needed to build appropriate models
of users’ motor abilities. The data collection process used by
SUPPLE can take up to an hour for people with moderate to
severe impairments to complete. Such significant upfront ef-
fort will deter many users from adopting ability-based adap-
tations, especially if the effort has to be repeated each time
a person’s abilities fluctuate or their computing environment
changes.

Unobtrusively collected behavioral measures — capturing
temporal patterns in scrolling, mouse movements, clicks, text
entry, and periods of apparent inactivity — have also been
used to predict the reliability of contributions by workers on
the Amazon Mechanical Turk crowdsourcing platform [19].
Our work could provide another mechanism for assessing
participant effort (and therefore data quality) for tasks that
involve pointing as part of the overall interaction.

The very recent work on the Input Observer [5] is aimed at
developing a logging and analysis system for both keyboard-
and mouse pointer–based interactions. It uses a conservative
heuristic for identifying parts of movements that can be used
to compute Fitts’ model parameters characterizing a particu-
lar individual’s motor performance. If combined with Input
Observer, our work may enable more efficient use of the col-
lected data.

GOALS AND APPROACH
Our high level goal, illustrated in Figure 1, is to obtain results
from in situ observations that are of the same quality as the
results obtained from controlled laboratory experiments.

Our approach is to relax requirements for how the data are
collected and instead filter the observations by identifying de-
liberate, targeted mouse pointer movements and separating
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them from those that were affected by any extraneous factors
such as cognitive effort related to a difficult choice, visual
search for the correct target, lack of effort, or an environmen-
tal distraction.

Our approach hinges on the assumption — which our results
confirm — that deliberate, targeted mouse pointer movements
can be distinguished from “noisy” ones by a careful analysis
of their trajectories as well as the speed, acceleration and jerk
profiles.

To collect examples of deliberate, targeted mouse pointer tra-
jectories, we asked each participant to perform a set of point-
ing tasks based on the ISO 9241-9 standard [12]. To obtain a
broad and representative sample of mouse pointer trajectories
affected by extraneous factors, we asked participants to in-
stall a Firefox browser plugin on their computers for a period
of several weeks to record the trajectories of the mouse move-
ments performed while participants were interacting naturally
with their computers.

We evaluate the approach by examining its reliability on four
representative tasks:

• estimating a mean of a directly measured variable for each
participant (we use movement time divided by Fitts’ Index
of Difficulty);

• testing for statistically significant differences in the values
of those means across participants;

• estimating the per-participant value of the Index of Perfor-
mance;

• computing parameters of the Fitts’ law model for each par-
ticipant and using the model to make movement time pre-
dictions for a range of tasks.

We briefly review Fitts’ law, and the related concepts of Index
of Difficulty and Index of Performance in the Data Processing
section.

Definitions
For ease of exposition, we will refer to the data collected
from the formal pointing experiment test as experimental data
or movements. Natural data or movements will denote the
mouse pointer trajectories collected unobtrusively with the
browser extension. Finally, our approach will classify the nat-
ural movements into deliberate and distracted.

DATA COLLECTION

Participants
18 participants (10 male, 8 female; aged 19 to 64) success-
fully completed all parts of the study. Participants were re-
cruited nationally from the broad population through adver-
tisements delivered via email or posted on various community
portals. All participants were regular computer users. Almost
all participants reported using a touchpad, a mouse, or a com-
bination of the two as their primary input devices. Only one
participant used a tablet. These data are summarized in Ta-
ble 1.

!"#$%&%'"($ Pointing device used typically Age Gender

!"# $%&'()*+ #, -
!". -%&/0 1# 2
!,3 $%&'()*+ ." -
!,4 $%&'()*+ .# 2
!## $%&'()*+ #" 2
!#5 -%&/06$%&'()*+ #5 -
!#1 $%&'()*+ ." -
!." $%&'()*+ ,7 2
!., $%&'()*+ ## -
!.. $%&'()*+899/%-0$:-0/9-%&/0 #3 2
!5" -%&/0 5# -
!5, -%&/0 #7 -
!5. $%&'()*+ #" 2
!55 -%&/0 ;5 2
!54 -%&/06$%&'()*+ 1# 2
!57 -%&/0 1# -
!;" $*<=0$ ., -
!;. -%&/0 .# -

Table 1. The Participants.

No participants reported any major impairments or other fac-
tors that might affect their computer usage except for P48
who reported slightly reduced visual acuity (partially cor-
rected with an anti-glare screen) and P44 whose mouse acted
“sticky.”

Participants received monetary compensation for taking part
in the study.

Apparatus
We have built two data collection tools: a web-based formal
experimental tool based on the ISO 9241-9 standard [12] (to
collect the experimental data) and a Firefox browser exten-
sion to record trajectories of the mouse pointer movements
that occurred naturally within the browser content window.
The formal experimental tasks were presented as sets of tar-
gets arranged in a circular pattern. The next target to be
clicked was highlighted in yellow. A number of task sets were
presented to each user varying in target sizes (10, 15, 25, 40,
and 60 pixels) and the distances between successive targets
(three distances dependent on the size of each participant’s
screen). Up to 10 clicks were collected per condition and the
conditions were presented in a random order.

The data recorded with both tools included all mouse move-
ment events and clicks. The tools also recorded when the
mouse left and re-entered the browser content window so that
we could identify those movements for which the trajectory
data was incomplete (our software had no access to mouse
events triggered outside of the browser content window). For
the explicit diagnostic tasks, we recorded whether a click was
a hit or a miss. For data captured with the Firefox extension,
we were able to identify only a subset of meaningful inter-
actors (those that were marked with tags such as A, INPUT,
SELECT, etc., and those with appropriate ARIAA [22] tags).
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When a click occurred on such a target, we recorded the tar-
get type, its dimensions and location. When a click occurred
on any other part of the page, we also recorded it, but because
we could not tell if the element clicked was a valid interactor,
we could not reliably determine if the click was a miss or a
deliberate interaction.

To maintain participants’ privacy, our software did not col-
lect the URLs or the content of the pages visited by the par-
ticipants, nor did it capture any information entered by the
users on the pages. All data collected on participants’ com-
puters were identified by a study code and were periodically
automatically transmitted to our server over an encrypted and
authenticated connection.

Procedure
Interested participants responded to our advertisements by
visiting the study web site where they were presented with a
brief overview of the study purpose and procedures, followed
by an informed consent form. Participants who consented
were asked to provide basic contact information and were
given instructions on how to download and install the Firefox
extension. They were then contacted by a researcher, who
conducted a phone interview to collect basic demographic
information and who confirmed the study procedures and
helped resolve any technical issues.

The unobtrusive recording of a participant’s mouse pointer
movements began the moment a participant consented to par-
ticipate in the study and installed the Firefox extension.

Participants were instructed to do the formal experiment at as
quick a pace as possible and at a time when they would not
be distracted. They were told that they could take a break
from those tasks at any point they needed to. Our software
automatically resumed where the participant had left off. Par-
ticipants were encouraged to complete the diagnostic tasks as
soon as possible, but were free to do so any time before the
completion of the study.

After 4 weeks, participants were contacted again by a re-
searcher with instructions on how to uninstall the Firefox ex-
tension.

DATA PROCESSING

Extracting Individual Mouse Movements
We parsed the collected sequences of mouse pointer events
to extract individual movements. We defined a movement as
a sequence of mouse move events starting immediately after
a click that ended a previous movement or after a pause of
at least 1 second. Valid movements ended with a click on a
recognized interactive element. Because our software could
not identify all interactors on every page, if a click occurred
outside one of the recognized interactors, we could not reli-
ably determine if such a click was a mistake or an intentional
action — we did not include such movements in the analy-
sis. We also discarded movements during which the mouse
pointer left the browser content window, the user switched to
a different tab, or a page load event was registered.

Because we could not always obtain the exact position of a
clicked target, we calculated movement distance as the dis-
tance from the location of the first movement event to the
location of the final click.

We used the following formulation of the Fitts’ law to com-
pute any Fitts’ law–related measures:

Movement Time = a+ b ∗ log2

(
A

W
+ 1

)
Where A is the movement amplitude, or distance, and W
stands for the target size. Constants a and b are estimated
from the data. The logarithm term is referred to as the Index
of Difficulty, or ID and is measured in bits. The reciprocal
of b is called the Index of Performance and is measured in
bits per second, and is occasionally used as an informative
diagnostic measure for comparing performance of devices or
people [15, 21]. We used the smaller of the target width and
height as the target size [17] (more sophisticated approaches
are available [1, 8]; we chose the min model because it pro-
vides reasonable accuracy with minimal complexity).

Data Cleaning
We removed extreme outliers from the data collected during
the formal experimental tasks. From each participant’s data
we removed those movements where the Movement Time di-
vided by ID was two standard deviations or more away from
that participant’s mean. This resulted in removal of between
3 and 11 movements per participant (between 2% and 7% of
each participant’s data).

Filtering Trajectories
To enable robust computation of trajectory-related statistics,
we first smoothed the pointer trajectories to remove any
sampling-related artifacts. We started by resampling pointer
position trajectories at regular time intervals (10 ms resulting
in a 100 Hz sampling rate) and we subsequently filtered them
with a 30 Hz low-pass NER filter [14]. To compute succes-
sive derivatives (speed, acceleration, and jerk), we used a dif-
ferentiating filter [14]. Once the derivatives were computed,
we passed position, speed, acceleration, and jerk time series
again through a 7 Hz low-pass filter. This overall process has
been used previously by a number of researchers (e.g., [21,
13, 18, 20]) to ensure that low-level sampling-related artifacts
are removed, while significant phenomena are preserved.

Computing Movement Features
In addition to movement time, we recorded a number of other
performance-related measures (or features) for each move-
ment. These measures have been described, illustrated, and
motivated more extensively by the researchers who originally
proposed them, but we briefly summarize them below for
completeness. In defining some of the measures, we will refer
to the task axis, which is the straight line passing through the
end points of the movement. The following measures refer
directly to the movement trajectory:

Length to Distance Ratio [2] is the ratio of the length of move-
ment’s overall trajectory to the straight line distance between
the movement’s end points.

4



Number of Task Axis Crossings [16] captures how many times
the pointer crossed the task axis.

Movement Direction Changes [16]—if the movement trajec-
tory were rotated such that both end points were on the x-axis,
this measure captures the number of times the y-component
of the movement direction changed sign (i.e., it captures di-
rection changes toward/away from the task axis).

Orthogonal Direction Changes [16]—as above, but for the
x-component of the movement direction (i.e., it captures di-
rection changes toward/away from the target).

Movement error [16] is computed as the average absolute dis-
tance of the mouse pointer from the task axis.

Movement variability [16] captures the standard deviation of
the distance of the points on the trajectory from the task axis.
Intuitively, it captures the level of “wiggliness” of the move-
ment.

Speed, acceleration, and jerk profiles. Following [21], we
also computed several measures of the speed, acceleration,
and jerk profiles:

• the number of peaks

• the number of x-axis crossings

• time from the start of the movement to the first peak

• the relative time (with respect to the total movement dura-
tion) from the start of the movement to the first peak

• time from the start of the movement to the last peak

• the relative time to the last peak

• time from the start of the movement to the maximum peak

• the relative time to the maximum peak

Finally, we computed correlations between task properties
(distance, target size, and the Index of Difficulty) and the val-
ues of each of the features. We found that 4 features (move-
ment time, and the time of the last peak for each of speed,
acceleration, and jerk) correlated substantially with the In-
dex of Difficulty. Because our goal is to use these features
to identify differences in participant performance that are in-
dependent of the task, we replaced each of these 4 features
with a transformed version by dividing the original by the In-
dex of Difficulty. Lastly, we added Movement Time divided
by the movement distance, and Movement Time divided by a
logarithm of the movement distance to the list of features.

Thus, for each movement we computed a total of 34 features.

Overview of the Data
In the end, we extracted a total of 7847 usable mouse pointer
trajectories (2762 from the formal experimental tasks and
5085 from the browser extension). The browser extension
was much easier to develop than recording tools that inte-
grate directly with the operating systems, but it resulted in
a relatively low data collection rate: A large fraction of the
recorded movements were affected by the mouse pointer leav-
ing the content window, slow page loads, or tab switches.
Some sites also prevented recapturing of mouse click events.

The extended data collection period ensured, however, that
sufficient data were collected for the purposes of this study.

As a diagnostic check, we computed the Index of Perfor-
mance for each participant’s experimental movements. The
results ranged from 4.1 bits/second for our oldest partici-
pant to 10.5 bits/second for the youngest, with the mean of
6.9 bits/second (a number that is consistent with the results
from other studies, e.g., [21]).

CLASSIFYING MOUSE MOVEMENTS
Given the collected data, we aimed to develop a classifier ca-
pable of discriminating between mouse pointer trajectories
corresponding to deliberate and distracted interactions. Note,
however, that our data did not match the assumptions of typ-
ical classification approaches: while the experimental data
could be assumed to contain mostly examples of deliberate
movements, the natural data was an unlabeled mix of deliber-
ate and distracted movements, and we could not even justify
making assumptions about the relative proportions of the two
types of movements. While typical classification approaches
assume that all data are labeled and that all classes are rep-
resented in roughly equal proportions, our data set contained
some positive labeled examples (the experimental data) and
the remaining data had no labels at all (the natural data).
Many other classification problems that arise in HCI would
be most naturally treated as learning from positive and unla-
beled examples (e.g., a user quickly inspects a large number
of images and marks a small number as interesting — the re-
maining images will be more correctly treated as unlabeled
rather than uninteresting). We therefore briefly summarize
the state of the art in machine learning to support other re-
searchers in adopting these techniques in their work.

The problem of learning from positive and unlabeled ex-
amples has been addressed by several machine learning re-
searchers. Some early approaches involved using heuristics
to identify an initial set of likely negative examples among
the unlabeled data and then falling back on better understood
semi-supervised learning techniques (e.g., [23]). Other ap-
proaches make assumptions about the relative proportions
of the positive and negative examples in the unlabeled data
(e.g. [3]). All of these approaches can be very sensitive to the
accuracy of the initial guesses. A more recent approach [4]
overcomes the limitations of the earlier work. This approach
builds on the observation that if the labeled examples are
drawn completely at random from the pool of all positive in-
stances in the training data, then, informally:

p(instance x is positive) =
p(instance x would be labeled)

fraction of positive instances that are labeled

In other words, to learn from positive and unlabeled exam-
ples, we can first fall back on a more traditional classification
problem where we assume that all unlabeled examples are in
fact negative. Then p(instance x would be labeled) is a prob-
ability estimate that a mainstream classifier would return if
trained on a data set where all unlabeled examples are tem-
porarily given a negative label. This probability then needs to
be adjusted by a constant specific to the data set: the fraction
of positive instances that are labeled. This quantity cannot be
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observed directly, but the reader will find three methods for
estimating it in Elkan and Noto’s paper [4].

This overall method is well-motivated theoretically and is
also easy to implement because it relies on existing classi-
fication methods for estimating the probabilities. The main
requirement is that the underlying mainstream classification
method produces well-calibrated probabilities. Many of the
standard classification techniques used in the HCI commu-
nity, such as decision trees, support vector machines, or naive
Bayes, do not satisfy this requirement. Instead, logistic re-
gression is an appropriate choice, and this is what we use in
the work presented here.

EVALUATION PROCEDURE

Evaluation Measures
Intuitively, our goal is to measure how “alike” the data ob-
tained from the formal experiment and the natural data fil-
tered with our approach are. Formal measures of distribu-
tion similarity are unlikely to be illuminating, however. We
therefore turn to four functional metrics that reflect common
purposes for which such data might be used. Using the ex-
perimental data as the base line for all error computations, we
compute per-participant error rates for the following primary
measures:

Mean Movement Time divided by the Index of Difficulty
(MT/ID). For each participant, we compute the difference
in the estimates of the mean value of Movement Time di-
vided by the Index of Difficulty (MT/ID) between the ex-
perimental data and the natural data classified as deliberate.

Tests for statistically significant differences. For each pair
of participants, we test whether the difference in their mean
values of MT/ID is significant. We use a t-test at α = .01
and we log-transform the data before applying the test to
correct for the non-normal distribution. We perform these
tests separately for both data sets (the experimental data set
and the data set being evaluated). To make the comparison
between the two data sets meaningful, we randomly sub-
sample the larger data set such that the two data sets have
the same number of measurements for each participant. To
make the results less susceptible to chance, we repeat each
test 100 times redoing the resampling each time. We con-
sider the outcome of the test as significant if more than half
of the repetitions returned p ≤ .01. We limited the testing
to only those pairs where at least 50 data points were avail-
able for each participant.

Movement time predictions of Fitts’ models. For
each participant, we estimate the parameters of the Fitts’
models separately from the experimental data and the nat-
ural data classified as deliberate. We compute the relative
difference between the predictions of the two models with
the model derived from the experimental data serving as
the baseline of the comparison. We perform this compar-
ison for a set of Index of Difficulty values ranging from
2 to 7 at intervals of 0.2. Because the models may cross
(i.e., each model may produce higher estimates for a part
of the range of the IDs considered), we calculate the mean
absolute relative difference in the predictions.

Mean Index of Performance. For each user, we compute
the relative difference between the estimates of the Index
of Performance derived from the experimental data and the
natural data classified as deliberate. This is the most sensi-
tive of our measures because it is estimated with the least
squares method, which is particularly sensitive to outliers
for extreme values of ID.

In addition to the above error measures, we also compute
three more informative statistics:

Standard deviation of the MT/ID. While the errors in the
estimates of the mean value of MT/ID capture the system-
atic errors in the measurements, standard deviation cap-
tures the variance in the measurements and provides an-
other indication of the data quality. We compute the mean
per-user standard deviation.

Recall. Recall captures the fraction of the experimental
movements that the classifier identifies as deliberate. As-
suming that our participants completed the formal experi-
mental tasks conscientiously and without distraction, it is
desirable for this number to be close to 100%.

Fraction of natural movements classified as deliberate.
This measure provides some insight into how generalizable
the model used by the classifier is—a very small fraction
of natural movements classified as deliberate may indicate
that the classifier was overfitting to the data from the train-
ing set. This number is also informative for estimating how
many more in situ observations would need to be collected
than in a controlled experiment for similar quality of the
results.

Cross-validation Procedure
We used a per-participant cross-validation procedure for eval-
uation: for any configuration tested, we trained the classifier
on data obtained from all but one participant. We applied the
resulting classifier to the data from the remaining participant
to identify the deliberate movements and we computed the
values of all of the evaluation measures on those filtered data.
This procedure ensured that the results reflect the capability
of this approach to make accurate classification decisions on
data collected from previously unseen users.

Feature Selection Procedure
The choice of features impacts the ability of machine learning
algorithms to generalize robustly. We have identified over 30
potential features (discussed in the Data Processing section),
but which of them are actually useful for discriminating be-
tween deliberate and distracted movements?

We used a variant of the stepwise discriminant analysis as
our feature selection algorithm. Starting with an initial (po-
tentially empty) set of features to consider, our algorithm pro-
ceeded in the following steps: First, it removed one feature at
a time from the current set of features. If removing any one
feature resulted in an improvement, the best of such reduced
feature sets was kept as the current best and the process was
restarted with this set as the starting point. If removing fea-
tures did not improve performance, the algorithm attempted
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Table 2. Summary of the results. Errors are reported as percentages of the values derived from the experimental data.

to extend the model by adding one feature (trying each of the
unused features in turn). If any of such expanded feature sets
resulted in an improvement, the process was restarted with the
best of such expanded sets as the starting point. The process
terminated when neither shrinking nor expanding the feature
set resulted in an improvement. To reduce the chance that the
final result would be a local minimum, the process was re-
peated with a number of different randomly chosen starting
sets of features.

The numerical criterion used to evaluate the performance of
classifiers trained on different subsets of the feature was the
sum of the mean and worst-case values of the MT/ID error,
error in the movement time prediction of the Fitts’ models,
and the error in the Index of Performance estimate.

RESULTS
In this section, we report on the performance of four variants
of our approach, each making different assumptions about the
type and quantity of the available data.

We begin by evaluating how informative the raw unfiltered
natural data are for evaluating the quantities listed in the Eval-
uation Measures section. These and other results are summa-
rized in Table 2. As expected, the natural data resulted in sub-
stantial overestimates of the mean value of MT/ID and much
larger variance in the data. Next, nearly half of the pairwise
statistical tests resulted in a conclusion different from what
was obtained from experimental data: Not surprisingly, most

of the errors were false negatives: nearly 77% of the statisti-
cally significant differences present in the experimental data
were not detected in the natural data. Of larger concern are
the false positives and the small fraction of tests that indicated
the presence of a significant difference, but in the direction
opposite to that observed in the experimental data. A larger
number of natural observations may help correct the false
negative errors, but the other two types of errors are likely
due to the different distributions of “noise” in each partici-
pant’s natural data and may not be correctable even if larger
amounts of data were collected.

The natural data also resulted in Fitts’ models that substan-
tially differed in their predictions from the models calculated
from the experimental data.

Index of Performance is the most indirect measure we col-
lected from the data. The mean absolute difference between
the estimates obtained from natural and experimental data is
27%. Closer inspection of the results shows a strong bias to-
ward underestimates: for all but three participants the Index
of Performance estimated from the natural data is lower than
the ground truth.

Approach 1: Identifying Deliberate Movements
The first approach addresses the situation where movements
have to be classified on-line, one-by-one. We assume that
both the movement trajectory and the size of the target are
available.
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Approach 1 
Filtered 

Approach 2  
Normalized & Filtered 

Approach 3 
Filtered,  

Target-Agnostic Features Only 

Approach 4 
Normalized & Filtered,  

Target-Agnostic Features Only 

1. Movement time divided by the Index of 
Difficulty 

2. Movement time divided by logarithm of 
movement distance 

3. Movement error 
4. Movement variability 
5. Relative time to the first peak in speed 
6. Relative time to the maximum peak in 

speed  
7. Relative time to the first peak in 

acceleration 
8. Relative time to the maximum peak in jerk  

1. Movement time divided by the 
Index of Difficulty (normalized) 

2. Movement time divided by 
logarithm of movement distance 
(normalized) 

3. Movement error 
4. Movement variability 
5. Number of submovements 
6. Number of submovements 

(normalized) 
7. Relative time to the first peak in 

acceleration 
 

1. Movement time divided by 
movement distance  

2. Movement error 
3. Relative time to the first peak in 

speed 
4. Relative time to the first peak in 

acceleration 
5. Relative time to the maximum 

peak in acceleration 
6. Relative time to the maximum 

peak in jerk 

1. Movement time divided by movement distance 
(normalized) 

2. Movement time divided by logarithm of 
movement distance (normalized) 

3. Movement error 
4. Movement variability 
5. Number of submovements (normalized) 
6. Relative time to the first peak in speed 
7. Relative time to the first peak in acceleration 
8. Relative time to the maximum peak in 

acceleration 
9. Relative time to the maximum peak in jerk 

!

Table 3. Sets of features that resulted in best performance in the four approaches evaluated.

The result of the feature selection process was a classifier us-
ing 8 out of 34 available features (shown in Table 3). Two of
the features relate to the speed of movement execution, two
are related to the shape of the path, and four use information
captured in the speed, acceleration, and jerk profiles.

On average, 25% of each participant’s natural movements
were classified as deliberate. The errors in estimating MT/ID
and the Fitts’ model predictions were reduced by factors of
8 and 7, respectively, to 22%. This improvement translated
into more reliable results of statistical tests: the probability of
declaring a statistically significant difference where none was
present was reduced nearly by half and there were no cases
where a statistically significant result was declared in the di-
rection opposite to what was observed in the experimental
data. The probability of missing a statistically significant re-
sult was reduced by a third, but still remained high.

The overall recall was 89%, meaning that on average 11% of
each participant’s experimental movements were classified as
distracted. Because the data collection occurred in an unsu-
pervised setting, this number may reflect the true quality of
our experimental data. What is a source of concern is the fact
that for one of the participants the recall was only 25%. This
was the only such extreme outlier—the next lowest number
was 69%. An inspection of the data revealed that the par-
ticipant with the lowest recall was P44, who was the oldest
person to take part in our study and who reported mechani-
cal difficulties with her mouse. This participant was by far the
slowest of the 18 as measured by the Movement Time divided
by the Index of Difficulty. P44 was, unsurprisingly, also the
outlier in terms of the fraction of natural movements classi-
fied as deliberate: only 4% of her movements were classified
as such.

Approach 2: Mitigating the Impact of Individual Differ-
ences
The results presented above suggest that the approach, as pre-
sented so far, is sensitive to individual differences among par-
ticipants: it identifies the best exemplars of deliberate move-
ments across the population. Instead, in most situations the
desired behavior would be to identify those movements that
reflected a particular individual’s best attempt at deliberate,
targeted pointing movements.

To mitigate the effects of such individual differences, we pro-
pose a second approach where in addition to the movement
trajectory and the size of the target, we also have available a
set of trajectories representative of that user’s typical natural
computer behavior.

In this approach, we normalized each participants’ data by
subtracting (separately for each feature) the mean value of the
feature over natural data and then dividing the resulting value
by the standard deviation (also computed over the natural
data). This normalization procedure eliminated participant-
specific differences in magnitude while preserving the rela-
tive differences between natural and experimental data. We
then created a new set of data that included both the original
features and the per-participant normalized counterparts for a
total of 68 features per movement.

We then re-run the feature selection procedure. The recall re-
sults for the resulting classifier indicate that the effects of dif-
ferences in individual motor performance have been indeed
attenuated: the recall is still the lowest for P44, but it is now
at 65% — a value that may reflect the participant’s problems
with a “sticky” mouse more than the limitations of the algo-
rithm. The fraction of P44’s natural movements classified as
deliberate is now at 27%.

Compared to the initial filtering method proposed, the nor-
malization procedure improved both the averages and the out-
lier results for all the metrics. This provides further evidence
that normalization improves the generalizability of the ap-
proach making it more robust to the individual differences
in motor performance. The normalization procedure does,
however, implicitly rely on there being a similar distribution
of deliberate and distracted movements in each user’s natural
interactions with the computer.

Approaches 3 & 4: Filtering with Target-Agnostic Features
Because most operating systems make it easy to capture
all pointer-related events, but reveal incomplete information
about the presence, location, and size of interactors [2, 5, 9],
in some cases researchers may not have access to the infor-
mation about the locations and sizes of targets, but may still
want to collect instances of lab-quality pointing movements.
The earlier two approaches both made use of the informa-
tion about the size of the target: Movement Time divided by
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Movement Time Vs. Index of Difficulty (Participant 30)
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Figure 2. Understanding errors

the Index of Difficulty was a feature included in both mod-
els. Could we determine if a movement was deliberate in a
target-agnostic manner?

To answer this question, we repeated our analysis using only
target-agnostic features. We used the same evaluation criteria
as in the previous analyses: although we recognize that target-
agnostic classification will not be used for building Fitts’ law
models, these measures indirectly indicate whether deliber-
ate, targeted movements are being identified correctly.

The result are two new approaches: Approach 3, which can
perform classification based just on the movement trajectory
information, and Approach 4, which (like Approach 2) re-
quires a sample of trajectories representative of the user’s nat-
ural interactions with the computer.

The features selected for the two resulting approaches are
listed in Table 3 and the results are summarized in the last
two columns of Table 2. Unsurprisingly, these approaches in
general do not perform as well as the previous two. In par-
ticular, they result in a high rate of false positives in the tests
for statistically significant differences. We have less confi-
dence that these two approaches can be used to reliably filter
individual interactions. However, we find that 86% of clas-
sification decisions of Approach 3, and 93% of Approach 4,
agree with the predictions of Approach 2.

Understanding Sources of Error
Lastly, we take another close look at the results to understand
the causes of the remaining errors — do they point to any spe-
cific limitations of our methods? To gain some insights, we
review the data of Participant 30 for whom both Approach 1
an 2 resulted in consistently high errors in the estimates of
MT/ID and Index of Performance — Participant 30 was not
an extreme outlier like Participant 44 discussed earlier, but
the error rates computed from her data were high and did not
improve from Approach 1 to Approach 2. The left panel in
Figure 2 contrasts the experimental data from this participant
with her natural data classified as deliberate using Approach
2. What this figure makes apparent, is that Participant 30
rarely moved as quickly in a natural setting as she did during

the experiment. A follow-up revealed that, when perform-
ing the formal experimental tasks, this participant “raced” a
friend who had also signed up for our study. Thus, the appar-
ent errors in our data can likely be explained by her extreme
effort level during the formal experiment.

Our approach cannot compensate for such situations. In our
data set, however, this was an unusual situation and the data
from our other participants tended to look more like that of
Participant 41 (illustrated the right panel of Figure 2), where
the deliberate movements in the natural setting were similar
to the movements observed in the formal experiment.

CONCLUSIONS AND FUTURE DIRECTIONS
We have developed and evaluated four user-independent clas-
sifiers (each making different assumptions about the type and
quantity of data available) capable of discriminating between
deliberate, targeted mouse pointer movements and those that
were performed when the participant was in any way dis-
tracted.

Our results demonstrate that the classifiers we have developed
can be used to filter pointing data collected in naturalistic set-
tings such that the resulting data have properties very sim-
ilar to the data typically collected in lab settings. This en-
ables some of the measurements that are currently performed
in laboratory settings to be conducted in situ, allowing for
larger-scale and longer-term observations.

In accessibility-related settings, in situ pointing performance
modeling can be used to adapt user interfaces to people’s
changing abilities [7, 6] and to understand how people’s abil-
ities change over time on different time scales (daily due to
medication or fatigue and over longer periods of time due
to progression of the disease or the effects of therapy) [11].
However, as the results for Approach 1 have demonstrated,
our methodology will need further refinement before it can
generalize to people with substantially atypical motor abili-
ties.

The methods we have described here provide a blueprint that
can be used to develop similar classifiers for other interactions
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(e.g., dragging, steering) and for different types of hardware
(e.g., touch screens).

Lastly, the methods we have presented may be used to as-
sess the quality of the data obtained from on-line experiments
conducted with unsupervised remote participants: for exper-
iments involving mechanical pointing tasks (i.e., tasks where
participants are not simultaneously solving a complex cog-
nitive task or need to engage in visual search), our classifier
can be used used to identify and exclude from the analysis
participants who appear to have been distracted during the
experiment.

ONLINE APPENDIX
To enable others to use, validate and extend our results, we
also make the following resources available from our web site
at http://iis.seas.harvard.edu/resources:

• the user-independent classifiers already trained on more
than 2000 deliberate movements and several thousands dis-
tracted movements collected in realistic conditions from 18
diverse participants;

• the data set containing 2762 experimental and 5085 natural
movement trajectories;

• and the source code of the software used in this work.
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