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Introduction

This chapter covers a broad range of interactive systems
which have one idea in common: that it can be worthwhile
for a system to learn something about individual users and
adapt its behavior to them in some nontrivial way.

A representative example is shown in Figure 20.1: the
COMMUNITY COMMANDS recommender plug-in for AUTO-
CAD (introduced by Matejka, Li, Grossman, & Fitzmau-
rice, 2009, and discussed more extensively by Li, Mate-
jka, Grossman, Konstan, & Fitzmaurice, 2011). To help
users deal with the hundreds of commands that AUTO-
CAD offers—of which most users know only a few dozen—
COMMUNITY COMMANDS (a) gives the user easy access to
several recently used commands, which the user may want to
invoke again soon; and (b) more proactively suggests com-
mands that this user has not yet used but may find useful,
given the type of work they have been doing recently.

Concepts

A key idea embodied in COMMUNITY COMMANDS and the
other systems discussed in this chapter is that ofadapta-
tion to the individual user. Depending on their function and
form, particular types of systems that adapt to their users
have been given labels includingadaptive user interfaces,
software agents, recommender systems, andpersonalization.
In order to be able to discuss the common issues that all of
these systems raise, we will refer to them with a term that
describes their common property explicitly:user-adaptive
systems. Figure 20.2 introduces some concepts that can be
applied to any user-adaptive system; Figure 20.3 shows the
form that they take in recommendations generated by COM-
MUNITY COMMANDS.

A user-adaptive system makes use of some type of informa-
tion about the current individual user, such as the commands
that the user has executed. In the process ofuser model ac-
quisition, the system performs some type of learning and/or
inference on the basis of the information about the user in
order to arrive at some sort ofuser model, which in gen-
eral concerns only limited aspects of the user (such as their
pattern of command use). In the process ofuser model ap-
plication, the system applies the user model to the relevant
features of the current situation in order to determine how to
adapt its behavior to the user; this process may be straight-
forward, or it can involve some fairly sophisticated decision

Figure 20.1: Screenshot showing how COMMUNITY-
COMMANDS recommends commands to a user.
(Image supplied by Justin Matejka. The length of the darker bar for a com-
mand reflects its estimated relevance to the user’s activities. When the user
hovers over a command in this interface, a tooltip appears that explains the
command and might show usage hints provided by colleagues. See also
http://www.autodesk.com/research.)

making on the part of the system.

A user-adaptive system can be defined as:

An interactive system that adapts its behavior to individual
users on the basis of processes of user model acquisition
and application that involve some form of learning, infer-
ence, or decision making.

The second half of the definition is necessary because oth-
erwise any interactive system could be said to “adapt” to
its users, even if it just responds straightforwardly to key
presses. It is the processes of user model acquisition and
application that raise many common issues and challenges
that characterize user-adaptive systems.

This definition also distinguishes user-adaptive systems from
purely adaptablesystems: ones that offer the user an op-
portunity to configure or otherwise influence the system’s
longer-term behavior (for example, by choosing options that
determine the appearance of the user interface). Often, what
works best is a carefully chosen combination of adaptation
and adaptability. For example, if the user of COMMUNI -
TYCOMMANDS is not interested in the command MATCH-
PROP, she can click on the “close” button next to it to specify
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Figure 20.2: General schema for the processing in a user-
adaptive system.
(Dotted arrows: use of information; solid arrows: production of results.)
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Figure 20.3: Overview of adaptation in COMMUNITY-
COMMANDS.

that it should not be recommended again. Keeping the user
“in the loop” in this way can be an essential part of effective
and well-accepted adaptation.

Chapter Preview

The next two sections of this chapter address the question
“What can user-adaptivity be good for?” They examine in
turn a number of different functions that can be served by
user-adaptivity, giving examples ranging from familiar com-
mercially deployed systems to research prototypes. The sub-
sequent section discusses some usability challenges that are
especially important in connection with user-adaptive sys-
tems, challenges which stimulated much of the controversy
that surrounded these systems when they first began to ap-
pear in the 1980s and 1990s. The next section considers a
key design decision: What types of information about each
user should be collected? The chapter concludes with a re-
flection on the current state of the art and the future chal-
lenges for user-adaptive systems..1

1Interested readers may also want to consult the chapters on this topic
in the first two editions of this handbook (Jameson, 2003, 2008), which
include discussions of earlier user-adaptive systems thatcan still serve as
instructive examples, as well as discussions of typical issues and methods
associated with empirical studies of user-adaptive systems.

Functions: Supporting System Use

Some of the ways in which user-adaptivity can be helpful
involve support for a user’s efforts to operate a system suc-
cessfully and effectively. This section considers four types
of support.

Adaptively Offering Help

The first form is the one illustrated by the COMMUNITY-
COMMANDS recommender: In cases where it is not suffi-
ciently obvious to users how they should operate a given ap-
plication, a help system can adaptively offer information and
advice about how to use it—and perhaps also execute some
actions on behalf of the user. That is, the system can act
like a helpful friend who is looking over the user’s shoulder–
a service which users often greatly appreciate but which is
not in general easy to automate effectively. The adapta-
tion can make the help which is offered more relevant to
the user’s needs than the more commonly encountered user-
independent help.

The main way in which COMMUNITY COMMANDS helps the
user is by recommending possibly useful commands that
the user has not yet employed. The basic recommendation
technique iscollaborative filtering, which is discussed later
in this chapter in connection with systems that recommend
products. The central idea is: “People who use commands
like the ones that you have been using also use the following
commands, which you may not be familiar with: . . . .”

Matejka et al. (2009) explain how the basic collaborative fil-
tering algorithm had to be adapted and supplemented to yield
good performance for command recommendation. For ex-
ample, if a user already knows the commandA, it makes lit-
tle sense to recommend a commandB which is just a similar
or less efficient way of achieving the same effect; so hand-
crafted rules were added to prevent such recommendations.

Experience with the deployment of COMMUNITY-
COMMANDS as an AUTOCAD plug-in has indicated
that this approach appears to have general feasibility and
usefulness for systems that offer a large number of com-
mands. This case study can also be seen as a successful
application of the strategy of looking for a relatively light-
weight approach to adaptation that still offers considerable
added value. Attention to the details of the adaptive algo-
rithms and of the user interface design appears to be more
important here than the use of more complex adaptation
technology.

Systems that offer help in an adaptive way have a long his-
tory. Perhaps the most obvious—but also the most difficult—
scenario is one in which a user is trying to achieve a partic-
ular goal (e.g., align the objects in a drawing in a particular
way) but does not know how to achieve the goal with the sys-
tem. A helper could in principle automatically recognize the
user’s difficulty and suggest a way of solving the problem. A
good deal of research into the development of systems that
can take the role of a knowledgeable helper was conducted
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in the 1980s, especially in connection with the complex op-
erating system UNIX .2 During the 1990s, such work be-
came less frequent, perhaps partly because of a recognition
of the fundamental difficulties involved: It is in general hard
to recognize what goal a user is pursuing when the user is
not performing actions that serve their goal. And sponta-
neously offering help can be distracting, since the system
cannot be sure that the user is interested in getting help. The
OFFICE ASSISTANT, an ambitious attempt at adaptive help
introduced in MICROSOFT OFFICE 97, was given a mixed
reception, partly because of the inherent difficulty of its task
but especially because of its widely perceived obtrusiveness
(cf. the section on usability challenges below).

For these reasons, more recent research has focused on less
ambitious but still potentially useful ways of adaptively of-
fering help. A strategy in this category—one which is is
quite different from that of COMMUNITY COMMANDS—is
to view the process of offering help as involving collabo-
ration and dialog with the user. A representative of this
paradigm is the DIAMOND HELP system, which assists users
in the operation of complex consumer devices (see, e.g.,
Rich et al., 2005). DIAMOND HELP is somewhat reminis-
cent of the (nonadaptive) “wizards” that walk users through
procedures such as the configuration of new software; but is
more flexible and adaptive in that it applies amixed-initiative
paradigm, allowing the user to perform sequences of actions
on her own if she likes and trying to keep track of what she is
doing. Rich (2009) offers a recent discussion of this general
paradigm.

Taking Over Parts of Routine Tasks

Another function of adaptation involves taking over some
of the work that the user would normally have to perform
herself—routine tasks that may place heavy demands on
a user’s time, though typically not on her intelligence or
knowledge. Two traditionally popular candidates for au-
tomation of this sort (discussed briefly below) have been
the sorting of email and the scheduling of appointments and
meetings.

The system TASKTRACER illustrates a number of typical
functionalities of systems in this category.3 The tedious
work that is taken over by TASKTRACER is not a single, sep-
arate chore but rather parts of many of the routine subtasks
that are involved in everyday work with a normal desktop
(or laptop) computer. The central insight is that a user is typ-
ically multitasking among a set ofprojects, each of which is
associated with a diverse set ofresources, such as files, web
pages, and email messages. Since these resources tend to be
stored in different places and used by different applications,

2A collection of papers from this period appeared in a volume edited by
Hegner, McKevitt, Norvig, and Wilensky (2001).

3See Dietterich, Bao, Keiser, and Shen (2010), for
a recent comprehensive discussion of TASKTRACER and
http://eecs.oregonstate.edu/TaskTracer/ for further information and
references.
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Figure 20.5: Overview of adaptation in TASKTRACER.

a significant proportion of everyday computer work involves
locating and accessing the resources that are relevant to the
project that is currently in the focus of attention.

The user of TASKTRACERcreates a structured list of projects
that they sometimes work on; once they have done so, the
system does two things largely autonomously: (a) By ob-
serving the user, it learns which resources are associated with
which projects. (b) It tries to figure out which project the user
is working on at any given moment (see, e.g., Shen, Irvine, et
al., 2009) As can be seen in Figure 20.5, these two functions
constitute the adaptive aspects of the system.

Even if these inferences by the system are not entirely accu-
rate, they can help the user in various ways: For example,
when the user wants to save a document that they have cre-
ated, TASKTRACER can save them some mouse clicks by
suggesting 2 or 3 folders associated with the current project
in which they might like to store the new file. And when a
user switches to a project, TASKTRACER can offer a list of
the resources associated with the current project, sorted by
recency of access, so that the user can quickly locate them
again (see, e.g., Figure 20.4).

A more difficult form of support that still represents a chal-
lenge involves supporting the user in executingworkflows
(see, e.g., Shen, Fitzhenry, & Dietterich, 2009). That is,
instead of just recognizing that the user is working on the
project “quarterly report”, the system (a) learns by observa-
tion what steps are involved in the preparation of a quarterly
report; (b) keeps track of how much of the quarterly report
workflow the user has executed so far; and (c) supports the
user in remembering and executing subsequent steps. The
tendency of users to multitask makes this type of support
potentially valuable, but it also makes it challenging for sys-
tems to do the necessary learning and activity tracking.

Two traditionally popular candidates for automation of this
sort have been sorting or filtering email and scheduling ap-
pointments and meetings. Classic early research on these
tasks included the work of Pattie Maes’s group on “agents
that reduce work and information overload” (see, e.g., Maes,
1994). Another perennially studied task in this category is
the scheduling of meetings and appointments (T. Mitchell,
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Figure 20.4: Screenshot showing one of the ways in which TASKTRACER helps a user to find resources associated with a given
project.
(Here, the various resources associated with “IUI Article”are listed in order of recency. Image retrieved from http://eecs.oregonstate.edu/TaskTracer/ in March
2011, reproduced with permission of Thomas Dietterich.)

Caruana, Freitag, McDermott, & Zabowski, 1994; Horvitz,
1999; Gervasio, Moffitt, Pollack, Taylor, & Uribe, 2005): By
learning the user’s general preferences for particular meet-
ing types, locations, and times of day, a system can tenta-
tively perform part of the task of entering appointments in
the user’s calendar.

Systems of this sort can actually take over two types of work
from the user: 1. choosing what particular action is to be
performed (e.g., which folder a file should be saved in); and
2. performing the mechanical steps necessary to execute that
action (e.g., clicking in the file selector box until the relevant
folder has been reached). Adaptation to the user is required
only for the first type of work; but the second type of work
cannot be performed without the first type.

In the ideal case, the system could make the correct choice
with such confidence that it would not even be necessary to
consult the user, and the entire task would be automated,
with the user perhaps not even being aware that it was be-
ing performed. In many cases, though, the user does have
to be involved in the choice process, because the system can
only help to make the choice, not make it autonomously. In
these cases, the amount of mental and physical work saved is
much lower. Hence there is a trade-off between the amount
of control that the user has over the choices being made and
the amount of effort they save. Users can differ as to where
they want to be on this trade-off curve at any given time, de-
pending on factors like the importance of making a correct
choice and the amount of other work that is competing for
their attention. The typical pattern is for users to begin by

exercising careful control over the performance of the task
and then to relinquish control gradually to the system, as the
system’s competence increases (because of learning) and/or
the user becomes better able to predict what the system will
be able to do successfully. Trade-offs of this sort will be
discussed in the section on usability challenges.

Adapting the Interface to Individual Tasks and Usage

A different way of helping a person to use a system more ef-
fectively is to adapt the presentation and organization of the
interface so that it fits better with the user’s tasks and usage
patterns. The potential benefit of this type of adaptation is
that it can improve the user’s motor performance by bring-
ing functionality that is likely to be used closer or making
interface elements larger; improve perceptual performance
by making relevant items easier to find; or improve cognitive
performance by reducing complexity.

An example of this type of an adaptive interface that will be
familiar to most readers is the font selection menus available
in popular productivity software. Figure 20.6(a) illustrates
the basic mechanism: The most recently selected items are
copied to the top part of the menu. This top part, clearly visu-
ally separated from the rest of the menu, holds the adaptive
content. If a desired font is present in the top section, the
user can select it either from that section or from its usual
location in the lower part of the menu.

The concept generalizes beyond menus; it can be used to
adapt many different types of user interface component, as is
illustrated in Figure 20.6. We use the termsplit interfacesto
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Figure 20.6: Examples of modern implementations of adaptive Split Interfaces.
(a: The most recently used fonts are copied to the clearly designated adaptive top part of the menu inAPPLEPAGES. A user wishing to select the Times New
Roman font, has the option of either taking advantage of the adaptation or following the familiar route to the usual location of that font in the main part of the
menu. b: Recently or frequently used programs are copied to the main part of theWINDOWS 7 start menu while also remaining accessible through the “All
Programs” button. c: Recently used special symbols are copied to a separate part of the dialog box in the symbol chooser inMS OFFICE 2007. d: Recently
used applications are easily accessible on aWINDOWS MOBILE phone.)
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Figure 20.7: Overview of adaptation in Split Interfaces.

refer to the successful general design pattern in which adap-
tation is used to copy functionality predicted to be most rel-
evant to the user to a designated adaptive part of the user
interface.

Several studies have demonstrated that split interfaces reli-
ably improve both satisfaction and performance (Findlater
& McGrenere, 2008; K. Z. Gajos, Czerwinski, Tan, & Weld,
2006). What makes split interfaces successful is that they
offer an effort saving to those users who are willing to take
advantage of the adaptation while not upsetting the familiar
routine for those who prefer to use the basic interface con-
sistently.

Designs that require users to alter their behavior are often
rejected. A widely known example of an early adaptive in-
terface that elicited mixed reactions from users is the SMART

MENUS that Microsoft introduced in WINDOWS 2000 (Fig-
ure 20.8; see McGrenere, Baecker, & Booth, 2007, for an
extensive comparison of this type of adaptation with user-
controlled customization). To reduce the apparent complex-
ity of the software, these menus were designed to show only

Figure 20.8: In Microsoft SMART MENUS, rarely used items
are removed from the menu thus reducing the apparent com-
plexity of the application.
(Hovering over the menu or clicking on the double arrow belowthe last item
causes the menu to be expanded showing the elided items. If a hidden item
is selected by the user, it is immediately visible on the subsequent visits to
that menu.)

a subset of the features—the most basic ones and those that
the user used frequently or recently. The remaining features
were shown if the user dwelled on a menu without selecting
anything or if he clicked on a downward pointing arrow at the
bottom of the menu. The design had the promise of simpli-
fying the interaction most of the time for most users, but for
some users the confusion caused when trying to find infre-
quently used functionality outweighed the potential benefits.

An early illustrative example involves automatically re-
ordering menu items on the basis of the frequency of use
(J. Mitchell & Shneiderman, 1989). This approach resulted
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in poorer performance and lower user satisfaction than the
nonadaptive baseline. In this case, the lack of success of the
adaptive strategy can be attributed to the fact that because
of the constantly changing order of menu items, users could
never reach the level of visual search efficiency predicted by
Hick-Hyman law (Hick, 1952) for familiar interfaces.

A radically different approach to menu adaptation—
called ephemeral adaptation—was introduced recently by
Findlater, Moffatt, McGrenere, and Dawson (2009). In
ephemeral adaptation, the menu items that are predicted to
be most likely to be selected by the user are displayed imme-
diately when the menu is opened, while the remaining items
fade in gradually over a short period of time (e.g., 500 ms).
This adaptation takes advantage of the fact that an abrupt ap-
pearance of a new object involuntarily captures our attention,
while its gradual onset does not. Because the user’s attention
is drawn to the small subset of items that are shown immedi-
ately when the menu opens, it is easy for users to locate these
items quickly. This adaptive mechanism focuses entirely on
users’ visual search performance. It has been demonstrated
to improve overall performance without increasing selection
times for the items that are gradually faded in.

A user-driven alternative to the class of adaptive approaches
described in this section is customization. Customization,
however, requires significant upfront effort on user’s part
and consequently very few people choose to customize their
interfaces (Mackay, 1991; Palen, 1999) and even fewer re-
customize them as their needs change (McGrenere et al.,
2007). Mixed initiative approaches (e.g., Bunt, Conati, &
McGrenere, 2007) that combine the two approaches show
promise for providing good balance between efficiency and
user control.

The adaptive designs discussed in this section were proto-
typed and evaluated mostly with menus and toolbars, but the
underlying concepts can be generalized to a broader range of
settings. Findlater and Gajos (2009) provide a more in-depth
exploration of the design space of user interfaces that adapt
to users’ tasks.

Adapting the Interface to Individual Abilities

Next we consider systems that adapt their user interfaces to
theabilitiesof their users.

The promise of this type of adaptation is that it can provide
personalized experience to people whose needs with respect
to the user interface are unique, variable over time, or hard
to anticipate. This is precisely the situation of the many
users with impairments. Not only are these users different
from the “average” user, they are also significantly different
from each other: even people with very similar diagnoses
can have very different actual abilities (Bergman & Johnson,
1995; Hwang, Keates, Langdon, & Clarkson, 2004; Keates,
Langdon, Clarkson, & Robinson, 2002; Law, Sears, & Price,
2005). Currently, these users have to adapt themselves—
often using specialized assistive technologies—to the exist-

������
Figure 20.9: Example of the ability-based adaptation in SUP-
PLE: (a) the default interface for controlling lighting and A/V
equipment in a classroom; (b) a user interface for the same
application automatically generated by SUPPLE for a user
with impaired dexterity based on a model of her actual mo-
tor abilities.

ing user interfaces. Adaptive systems offer the possibility to
reverse this situation: why not adapt user interfaces to the
unique needs and abilities of people with impairments?

Impairments do not have to be permanent or to be a result of a
medical condition. For example, environmental factors such
as temperature may temporarily impair a person’s dexterity;
a low level of illumination will impact reading speed; and
ambient noise will affect hearing ability. These factors are
particularly relevant to mobile computing. Indeed, studies
have shown that in relation to standing still, walking results
in lower pointing speed and accuracy, as well as decreased
reading speed and comprehension (Barnard, Yi, Jacko, &
Sears, 2007; Lin, Goldman, Price, Sears, & Jacko, 2007).
These results suggest that there is both a need and an oppor-
tunity to adapt mobile interaction to the momentary effective
abilities of users.

The SUPPLEsystem (Gajos, Wobbrock,a Weld, 2007, 2008,
2010) provides an example of ability-based adaptation for
people with motor impairments. SUPPLE requires each user
to perform a one-time set of diagnostic tasks so that the sys-
tem can build a model of that person’s unique motor abili-

6



Model of the user’s 
motor abilities 

Automatic feature 
selection and 
regression 

Optimization 
procedure using user 
model as objective 
function 

Performance of user 
on a set of diagnostic 
tasks 

User interface 
predicted to be the 
fastest for the current 
user 

Figure 20.10: Overview of adaptation in SUPPLE.

Figure 20.11: The Walking UI—an example of an adaptation
to a temporary situationally-induced impairment. The larger
buttons address the decreased pointing speed and accuracy
of walking users; the larger fonts for song titles help with
impaired reading speed; and the differences in font sizes be-
tween titles and additional song information help direct frag-
mented attention.
(Screen shots courtesy of Shaun Kane.)

ties. After that, for any application the user wants to interact
with, SUPPLE uses optimization methods to automatically
generate user interfaces that are predicted to be the fastest
to use for this person. Figure 20.9 shows an example of a
dialog box automatically generated by SUPPLE for a user
with impaired dexterity due to a spinal cord injury. The re-
sults of an experiment involving 11 participants with a vari-
ety of motor impairments demonstrate that the automatically
generated interfaces that were adapted to users’ individual
motor abilities resulted in significantly improved speed, ac-
curacy, and satisfaction (see, e.g., K. Gajos, Wobbrock, &
Weld, 2008). On the average, these interfaces helped close
over 60% of the performance gap between able-bodied users
and users with motor impairments.

The WALKING UI prototype (Kane, Wobbrock, & Smith,
2008) shown in Figure 20.11 provides an example of what

an adaptation to the changing abilities of mobile users might
look like. The UI has two versions, one for when the user is
stationary and one for when they are in motion. The two ver-
sions follow a very similar design to ensure that the users do
not have to learn two separate user interfaces. The walking
variant has larger interactors to compensate for users’ im-
paired dexterity, larger fonts for song titles to accommodate
reduced reading ability, and a more visually salient presenta-
tion for song titles than for secondary information to mitigate
the effects of fragmented attention.

These types of system have been evaluated in laboratory
studies, but since they have not yet been widely deployed,
we cannot yet provide empirical evidence showing what the
main challenges to adoption of these systems are. But several
such challenges can be anticipated: Obtaining useful mod-
els of users’ abilities while placing minimum burden on the
users is clearly one such challenge. The studies evaluating
the SUPPLE system demonstrated that models created from
direct measurements of users’ abilities resulted in signifi-
cantly more successful interfaces than those that were based
on users’ expressed preferences, but those direct measure-
ments of abilities required users to go through a one-time
but hour-long set of diagnostic tasks. Another factor that
seems likely to have an impact on adoption of interfaces like
that of Figure 20.11 is the method for controlling the switch
between different user interface variants. A fully manual ap-
proach is likely to be found too inefficient, while one that is
fully automated may cause confusion.

Wobbrock, Kane, Gajos, Harada, and Froelich (2011)
present several other examples of ability-based interfaces,
discuss the rationale for ability-based design, and propose
a set of guiding principles.

Functions: Supporting Information Acquisition

Even back in the days when computers were chained to desk-
tops, people were complaining about information overload
and clamoring for tools that would help them to focus their
attention on the documents, products, and people that re-
ally mattered to them. Since then, the flood has grown to
a tsunami. Two of the most conspicuous developments have
been (a) mobile devices that enable people to produce and
consume information wherever they are; and (often in com-
bination with these) social networks, which are increasingly
replacing face-to-face communication.

This information overload constitutes a powerful motivation
for the development of systems that adapt to their users:
Computers have the technical capability to reduce the in-
formation tsunami to a trickle that people can manage; but
since people are generally not interested in the same trickle,
computers can do so effectively only by taking into account
properties of the user such as their interests, current tasks,
and context.
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Figure 20.13: Overview of adaptation in GOOGLE’s person-
alized news recommendations.

Helping Users to Find Information

We will first look at the broad class of systems that help the
user to find relevant electronic documents, which may range
from brief news stories to complex multimedia objects.

One type of document that has become more pervasive over
the past several years comprises news reports of the type tra-
ditionally found in printed newspapers. With so many news
sources now available online, the amount of choices avail-
able to a person who wants to read a few interesting news re-
ports has increased drastically, even when we take into con-
sideration the fact that one report may turn up in a number of
variations in different news sources.

One news website that addresses this problem is GOOGLE

NEWS. One of the solutions offered by the site is a section
of “recommended” stories and that are selected on the ba-
sis of the users’ previous clicks on other news stories within
the same site (see Figure 20.12). The first personalization
algorithms used for this purpose by GOOGLE were based on
collaborative filtering, which is found in several other sys-
tems discussed in this chapter. But as is described by Liu,
Dolan, and Pedersen (2010), it proved necessary to include
somecontent-basedfiltering as well, recommending stories
related to general themes that the current user had previously
shown an interest in. In particular, it is otherwise hard to
recommend hot-off-the-press news stories that have not yet
attracted many clicks from other users. Roughly speaking, in
this application the content-based filtering helps by revealing
what topics the current user is generally interested in, while
the collaborative filtering helps to keep track of temporary
trends (e.g., a surge of interest in the newly released iPad)
that apply to larger groups of users and that are likely to be
followed to some extent by any given individual user as well.

More generally speaking, user-adaptive systems that help
users find information4 typically draw from the vast reper-
toire of techniques for analyzing textual information (andto
a lesser but increasing extent, information presented in other

4Surveys of parts of this large area are provided by, among others,
Kelly and Teevan (2003) and several chapters in the collection edited by
Brusilovsky, Kobsa, and Nejdl (2007).

media) that have been developed in the field of information
retrieval. The forms of adaptive support are in part different
in three different situations, the first two of which can arise
with GOOGLE NEWS:

Support for Browsing

In the world-wide web and other hypermedia systems, users
often actively search for desired information by examin-
ing information items and pursuing cross-references among
them. A user-adaptive hypermedia system can help focus
the user’s browsing activity by recommending or selecting
promising items or directions of search on the basis of what
the system has been able to infer about the user’s informa-
tion needs. An especially attractive application scenariois
that of mobile information access, where browsing through
irrelevant pages can be especially time-consuming and ex-
pensive. In this context, the best approach may be for the
system to omit entirely links that it expects to be less inter-
esting to the individual user. Billsus and Pazzani (2007) de-
scribe a case study of an adaptive news server that operated
in this way. Stationary systems with greater communication
bandwidth tend to include all of the same links that would
be presented by a nonadaptive system, highlighting the ones
that they consider most likely to be of interest or present-
ing separate lists of recommended links. As is argued and
illustrated by Tsandilas and schraefel (2004), this approach
makes it easier for the user to remedy incorrect assessments
of the user’s interests on the part of the system.

Support for Query-Based Search

When a user is just checking the latest news or casually
browsing for interesting information, the user is not in gen-
eral expressing a specific information need. Hence it is rela-
tively easy for a user model to help noticeably by presenting
information that is especially likely to be of interest to this
particular user. By contrast, when a user formulates an ex-
plicit query, as in a web search engine, it is less obvious how
a user model can help to identify relevant information. And
in fact, thepotential for personalization(Teevan, Dumais,
& Horvitz, 2010) has been found to vary considerably from
one query to the next. If just about all of the users who is-
sue a given query end up choosing the same documents from
those returned by the system, there is little that an individual
user model can do to increase the usefulness of the search
results. But for queries that tend to result in very different
selections for different users (e.g., the query “chi”),person-
alized searchcan add value. The basic idea is that the list of
search results that would normally be returned is reordered
(or biased) on the basis of a user model, which is in turn
based on some aspects of the user’s previous behavior with
the system. GOOGLE has offered personalized search on its
main search engine for several years—though many users are
probably unaware of the personalization, which tends not to
change the ranking of the search results in an immediately
noticeable way for most queries.

The idea of assessing the potential for personalization is
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Figure 20.12: A small section of a front page of GOOGLE NEWS, including the personalized section.
(This user had recently selected a number of computer-related articles, and at this time the newly launched iPad was a popular topic.)

worth considering with other forms of adaptation as well:
If we can estimate in advance the possible benefits of adap-
tation, perhaps before designing or implementing any adap-
tive mechanism, we can more efficiently identify situations
in which the benefits of adaptation will outweigh the costs.

Spontaneous Provision of Information

A number of systems present information that may be useful
to the user even while the user is simply working on some
task, making no effort to retrieve information relevant to it
from external sources. An illustrative recent example5 is the
AMBIENT HELP system (Matejka, Grossman, & Fitzmau-
rice, 2011), which can also be seen as an approach to the
problem of offering adaptive help that was discussed at the
beginning of this chapter: While a user works with a com-
plex application on one computer monitor, AMBIENT HELP

uses a second monitor to display videos and texts with tu-
torial material that has some relevance to the user’s current
working context. A central design issue for this and similar
systems concerns the methods for making the retrieved in-
formation available to the user. Presentation of results via
means like popup windows risks being obtrusive (cf. the sec-
tion on usability challenges below); but if the presentation
is too subtle, users will often ignore the information that is
offered and derive little or no benefit from the system. AM-
BIENT HELP expands the space of design solutions by intro-
ducing an unobtrusive way of showing what a video has to
offer (with a dimmed image, a reduced frame rate, and muted
volume) and a scheme for allowing users quickly to explore
the content of the available videos. Previous work in the
same vein (e.g., by Billsus, Hilbert, & Maynes-Aminzade,
2005) suggests allowing users to adjust the relative obtru-
siveness of the proactively offered information to suit their

5Influential early systems in this category include those of Rhodes
(2000) and Budzik, Hammond, and Birnbaum (2001).

Figure 20.14: Part of a screen showing a movie recommen-
dation generated on request by netflix.com.
(Screen shot made from http://netflix.com/ in March 2010.)

individual taste.

Recommending Products

One of the most practically important categories of user-
adaptive systems today comprises the product recommenders
that are found in many commercial web sites. The primary
benefit of these systems is that they assist users in navigating
large collections of products by surfacing items that are both
novel and relevant.

An example that will be familiar to most readers is shown in
Figure 20.14. A visitor toNETFLIX.com has just explicitly
requested recommendations, without having specified a par-
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Figure 20.15: Overview of adaptation in NETFLIX.

ticular type of a movie. During the user’s past visits, NET-
FLIX has learned about his interests, on the basis of movies
he has watched and ratings he has made. Therefore, the sys-
tem can make recommendations that are especially likely to
appeal to this particular user.

The recommendations of NETFLIX embody many design de-
cisions that contribute to the success of this type of adapta-
tion:

First, as can be inferred from the brief explanations that ac-
company the recommendation in Figure 20.14, the system
takes as a starting point the information it has about the
user’s prior viewing history and ratings. It then compares
these with the ratings of other users to generate predictions
for the current user. That is, the recommendations are based
on a statistical analysis of ratings made by many users, an
approach known ascollaborative filtering(see, for example,
Schafer, Frankowski, Herlocker, & Sen, 2007, for a general
overview).6 The products recommended in this way may
also happen to be similar in the sense of belonging to the
same genre or having the same director, but similarities of
this sort can also be conspicuously absent: In the example
in Figure 20.14, a nature documentary is recommended to a
customer based on his past enjoyment of Kurosawa’s light-
hearted samurai story “Yojimbo.” The power of collabora-
tive filtering comes from the observation that many features
relevant to our choices are hard to capture. In the movie do-
main, for example, the mood, the particular style of humor,
or the details of the camera work, may be as relevant as the
more easily describable properties such as genre, director, or
the cast.

Second, the explanations accompanying the recommenda-
tion are another important design feature: For example, Tak-
ing into account the fact that what is “good” often depends
on context (for example, a user may enjoy a complex drama
one day, while preferring a less demanding action movie af-
ter a long work day), the explanations help users better pre-
dict if a particular film is what they are looking for at a given

6Interested readers will also find many documents available on the web
about the highly publicized efforts of NETFLIX to encourage improvement
of its algorithms by sponsoring the NETFLIX Prize.

moment. As in the example in Figure 20.14, many sites use
other items the user has rated in the past as a basis for gener-
ating an explanation. But very different types of information
can also be used for explanations, such as user-generated
tags (Vig, Sen, & Riedl, 2009). A recent discussion of the
many forms that explanations can take and the functions that
they can serve has been provided by Tintarev and Masthoff
(2010).

Finally, movie recommendations in NETFLIX complement
rather than replace the normal searching and browsing capa-
bilities. This property allows users to decide which mode of
interaction is most appropriate in their situation.

Many products, such as movies, vacations, or restaurant
meals, are often enjoyed by groups rather than individu-
als, a number of systems have been developed that explic-
itly address groups (see Jameson & Smyth, 2007), for an
overview). The need to address a group rather than an indi-
vidual has an impact on several aspects of the recommenda-
tion process: Users may want to specify their preferences in
a collaborative way; there must be some appropriate and fair
way of combining the information about the various users’
preferences; the explanations of the recommendations may
have to refer to the preferences of the individual group mem-
bers; and it may be worthwhile for the system to help the
users negotiate to arrive at a final decision on the basis of the
recommendations.

Another design challenge for recommender systems has to
do with the availability of information about the users’ pref-
erences. Collaborative filtering is less effective for sup-
porting infrequent decisions such as a digital camera pur-
chase, which can involve one-time considerations that are not
closely related to previous choices by the same user. Since
the 1980s, researchers have worked on systems that explic-
itly elicit information about the user’s needs (and the trade-
offs among them) and help the user identify products that
best meet their needs. One particularly effective interaction
paradigm for such systems isexample critiquing(see, e.g.,
Burke, Hammond, & Young, 1997, for an early exposition
and Pu & Chen, 2008, for a discussion of some recent ad-
vances). The distinguishing feature is an iterative cycle in
which the system proposes a product (e.g., a restaurant in a
given city), the user criticizes the proposal (e.g., askingfor
a “more casual” restaurant), and the system proceeds to pro-
pose a similar product that takes the critique into account.

Finally, a highly pervasive and economically vital form
of product recommendation is advertising. Over the
last decade, on-line advertising has shifted largely from
attention-grabbing banners and pop-ups to subtlerpersonal-
izedads. Rather than relying on users’ explicit feedback in
the form of purchases and product ratings (as is the case with
recommender systems), on-line personalized advertising re-
lies on implicit input such as the search terms, contents of
an email message (in the case of GMAIL ads), the topics of
the pages visited, and the browsing history. There are many
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good reasons to prefer such personalized advertising: it tends
to be presented in a less intrusive way (e.g., the text-only ads
used by GOOGLE) and it has the promise of being more rele-
vant to the users. Indeed, a recent study found that of people
who clicked on personalized ads, twice as many were likely
to actually make a purchase than people who clicked on non-
personalized ads (Beales, 2010).

However, because on-line behavioral data (such as searches
the people perform and sites that they visit) are consid-
ered sensitive personal information, and because the users
do not have clear and effective means of controlling what
information they divulge to advertisers and when, pri-
vacy concerns about personalized advertising are common
(Federal Trade Commission, 2009). The Canadian Market-
ing Association (2009) has found that only about 30% of
North Americans are comfortable with advertisers tracking
their browsing behavior for the purpose of providing more
targeted advertising, even though nearly half like seeing ads
for coupons and promotions from online stores and brands
that they have purchased from before. Improving the com-
prehensibility of and user control over data collection are
therefore important challenges for the long-term success of
personalized advertising (cf. the discussion of usabilitychal-
lenges later in this chapter).

Tailoring Information Presentation

The previous two sections discussed systems that help users
decidewhat information (such as news items or product de-
scriptions) to consider. We now turn to systems that adapt
how information is presented.

A striking and practically important example is found in the
work of Jefferson and Harvey (2006, 2007), which uses per-
sonalized models of color perception abilities of color-blind
users to adapt the presentation of graphical information in
a way that preserves the saliency and readability of color-
encoded information. A major challenge in adapting content
to the individual color perception abilities is that complex
color-encoded information needs to be conveyed through a
reduced color palette. One possible approach is to gener-
ate a fixed mapping that tries to “squeeze” the full spec-
trum of visible colors into a range that is distinguishable
by a particular individual. This approach inevitably reduces
perceptual differences among the colors in the transformed
palette. Instead,Jefferson and Harvey (2006) compute these
mappings for each image individually. Their approach takes
advantage of the fact that most images use only a limited
number of colors for salient information. Their algorithm
automatically identifies these salient colors and computesa
mapping from the original palette to one that is appropriate
for the user. The mapping is computed in a way that pre-
serves the perceptual differences among the important col-
ors.

Unfortunately, because the process of computing an optimal
color mapping is computationally expensive—up to several
minutes may be required—it is not feasible for interactive
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Figure 20.16: Overview of Jefferson and Harvey’s method
of adaptation to color-blindness.

use. Jefferson and Harvey (2007) have developed an alterna-
tive approach where the computer quickly generates a small
set of possible mappings that may be appropriate for a par-
ticular individual and the user can quickly select the appro-
priate one with a slider, while getting an immediate preview
of the effect. By splitting the adaptation burden between the
computer and the user, this particular system provides users
with a solution that is effective and fast, and requires onlya
minimal amount of manual effort to use.

The remaining challenge is that of quickly creating accurate
models of individual color perception abilities. Fortunately,
most users can be helped adequately by being stereotyped
into one of a small number of discrete color blindness cate-
gories. However, some types of color blindness (the anoma-
lous trichromacies) form a spectrum from almost normal
color perception to almost complete inability to distinguish
certain pairs of colors. While there exist some methods for
building models of individual color perception abilities (e.g.,
Brettel, Viénot, & Mollon, 1997, Gutkauf, Thies, & Domik,
1997), they require that users engage in an explicit diagnos-
tic task, and one that may need to be repeated for different
display devices. A faster, unobtrusive method is still needed.

Tailoring often concerns information in textual form. An im-
portant application area here comprises systems that present
medical information to patients, who may differ greatly in
terms of their interest in and their ability to understand par-
ticular types of information (see, e.g., Cawsey, Grasso, &
Paris, 2007, for an overview).

Properties of users that may be taken into account in the tai-
loring of documents include: the user’s degree of interest in
particular topics; the user’s knowledge about particular con-
cepts or topics; the user’s preference or need for particular
forms of information presentation; and the display capabil-
ities of the user’s computing device (e.g., web browser vs.
cell phone).

Even in cases where it is straightforward to determine the
relevant properties of the user, the automatic creation of
adapted presentations can require sophisticated techniques of
natural language generation (see, e.g., Bontcheva & Wilks,
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2005) and/or multimedia presentation generation. Various
less complex ways of adapting hypermedia documents to in-
dividual users have also been developed (see Bunt, Carenini,
& Conati, 2007 for a broad overview).

Bringing People Together

One of the most striking changes in computer use over the
past several years has been the growth of social networks.
Whereas people used to complain about being overwhelmed
by the number of emails and other documents that they were
expected to read, they can now also be overwhelmed by the
number of comments posted on their social network home-
page, the number of people who would like to link up with
them—and even the suggestions that they get from sites like
FACEBOOK and LINKED IN concerning possible social links.
Accordingly, personalized support for decisions about whom
to link up with has become a practically significant applica-
tion area for user-adaptive systems.

Figure 20.17 shows how an internal social networking site
used at IBM called SOCIALBLUE (formerly BEEHIVE) rec-
ommends a colleague who might be added to the user’s net-
work.

As the example illustrates, SOCIALBLUE makes extensive
use of information about social relationships to arrive at rec-
ommendations: not just information about who is already
explicitly linked with whom in the system (which is used,
for example, on FACEBOOK) but also types of implicit in-
formation that are commonly available within organizations,
such as organizational charts and patent databases.

As described by J. Chen, Geyer, Dugan, Muller, and Guy
(2009), SOCIALBLUE also uses information about the simi-
larity between two employees (e.g., the overlap in the words
used in available textual descriptions of them).

These authors found that these two types of information tend
to lead to different recommendations, which in turn are ac-
cepted or rejected to differing extents and for different rea-
sons. For example, information about social relationships
works better for finding colleagues that the current user al-
ready knows (but has not yet established a link to in the sys-
tem), while information about similarity is better for finding
promising unknown contacts.

Taking the analysis of the same data a step further, Daly,
Geyer, and Millen (2010) showed that different algorithms
can also have different consequences for the structure of the
social network in which they are being used. For example, a
system that recommends only “friends of friends” will tend
to make the currently well-connected members even better
connected. This result illustrates why it is often worthwhile
to consider not only how well an adaptive algorithm supports
a user in a typical individual case but also what its broader,
longer-term consequences may be.

Given that the various contact recommendation algorithms
can be used in combination in various ways, a natural con-
clusion is that designers of systems of this sort should con-

Figure 20.17: Screenshot of from SOCIALBLUE showing
how it recommends a potentially interesting colleague.
(Image retrieved from http://www-users.cs.umn.edu/ jilin/projects.html in
March 2011, reproduced with permission of Jilin Chen and Werner Geyer.)
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Figure 20.18: Overview of adaptation in SOCIALBLUE.

sider what mix of the algorithm types makes most sense for
their particular system and application scenario.

Other contexts in which some sort of social matching has
proved useful include:

Expert finding, which involves identifying a person who
has the knowledge, time, and social and spatial proximity
that is necessary for helping the user to solve a particu-
lar problem (see, e.g., Shami, Yuan, Cosley, Xia, & Gay,
2007; Ehrlich, Lin, & Griffiths-Fisher, 2007; Terveen &
McDonald, 2005).
Recommendation of user communities that a user might
like to join—or at least use as an information resource (see,
e.g., W.-Y. Chen, Zhang, & Chang, 2008, Carmagnola,
Vernero, & Grillo, 2009, and Vasuki, Natarajan, Lu, &
Dhillon, 2010) for early contributions to this relatively
novel problem.
Collaborative learning, which has become a popular ap-
proach in computer-supported learning environments (see,
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Figure 20.20: Overview of adaptation in the STOICHIOME-
TRY TUTOR.

e.g., Soller, 2007).

Supporting Learning

Some of the most sophisticated forms of adaptation to users
have been found in tutoring systems and learning environ-
ments: systems designed to supplement human teaching by
enabling students to learn and practice without such teaching
while still enjoying some of its benefits.7

An illustrative recent example is the web-based STOI-
CHIOMETRY TUTOR (Figure 20.19; McLaren, DeLeeuw,
& Mayer, 2011a, McLaren et al.), which helps students to
practice solving elementary chemistry problems using basic
mathematics. In the example shown, the student must per-
form a unit conversion and take into account the molecular
weight of alcohol. The interface helps to structure the stu-
dent’s thinking, but it is still possible to make a mistake, as
the student in the example has done by selecting “H20” in-
stead of “COH4” in the lower part of the middle column.
Part of the system’s adaptation consists in hints that it gives
when the student makes a mistake (or clicks on the “Hint”
link in the upper right). The key knowledge that underlies
the adaptation is abehavior graphfor each problem: a rep-
resentation of acceptable paths to a solution of the problem,
along with possible incorrect steps. Essentially, the tutor is
like a navigation system that knows one or more ways of
getting from a specified starting point to a destination; but
instead of showing the student a “route” to follow, it lets the
user try to find one, offering hints when the student makes
a wrong turn or asks for advice. This approach enables the
system to adapt with some flexibility: It can deal with multi-
ple strategies for solving the problem and entertain multiple
interpretations about the student’s behavior.

This relatively recent approach to tutoring is calledexam-
ple tracing(Aleven, McLaren, Sewall, & Koedinger, 2009),
because it involves tracing the student’s progress through

7General sources of literature on this type of system includetheInterna-
tional Journal of Artificial Intelligence in Educationand the proceedings of
the alternating biennial conferences onArtificial Intelligence in Education
and onIntelligent Tutoring Systems. The integrative overview by VanLehn
(2006) can also serve as an introduction.

the behavior graph, which in turn represents, in generalized
form, a set of examples of how a problem can be solved. For
authors of tutoring systems, providing such examples is a rel-
atively easy, practical way to give the system the knowledge
that it needs to interpret the student’s behavior. In the long
history of systems that adaptively support learning, most sys-
tems have employed more complex representations of the to-
be-acquired knowledge and of the student’s knowledge cur-
rent state of knowledge (for example, in terms of sets of rules
or constraints). Example tracing is an instance of a general
trend to look for simpler but effective ways of achieving use-
ful adaptation, relative to the often complex ground-breaking
systems that are developed in research laboratories.

Giving feedback and hints about steps in solving a problem
is an example ofwithin-problem guidance, sometimes called
the inner loopof a tutoring system (VanLehn, 2006). Adap-
tation can also occur in theouter loop, where the system
makes or recommends decisions about what problems the
student should work on next. Outer-loop adaptation can use
coarse- or fine-grained models of the student’s knowledge,
which are typically constructed on the basis of observation
of the student’s behavior.

Usability Challenges

One of the reasons why the systems discussed in the first
part of this chapter have been successful is that they have
managed to avoid some typical usability side effects that
can be caused by adaptation. These side effects were quite
pronounced in some of the early user-adaptive systems that
came out of research laboratories in the 1980s and 1990s,
and they led to some heated discussion about the general
desirability of adaptation to users (see the references given
later in this section). By now, designers of user-adaptive sys-
tems have learned a good deal about how to avoid these side
effects, but it is still worthwhile to bear them in mind, es-
pecially when we design new forms of adaptation that go
beyond mere imitation of successful existing examples.

Figure 20.21 gives a high-level summary of many of the
relevant ideas that have emerged in discussions of usabil-
ity issues raised by user-adaptive systems and interactivein-
telligent systems more generally (see, e.g., Norman, 1994;
Wexelblat & Maes, 1997; Höök, 2000; Tsandilas & schrae-
fel, 2004; Jameson, 2009). The figure uses the metaphor of
signs that give warnings and advice to persons who enter a
potentially dangerous terrain.

TheUsability Threats shown in the third column characterize
the five most important potential side effects. A first step to-
ward avoiding them is to understand why they can arise; the
columnTypical Properties lists some frequently encountered
(though not always necessary) properties of user-adaptive
systems, each of which has the potential of creating particu-
lar usability threats.

Each of the remaining two columns shows a different strat-
egy for avoiding or mitigating one or more usability threats:
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Figure 20.19: Example of error feecback provided by the STOICHIOMETRY TUTOR.
(The message below the main panel is the feedback on the student’s incorrect selection of “H2O” as the “Substance” in the middle column, shown in red in the
interface. Captured in February, 2011, from the tutor on http://learnlab.web.cmu.edu/ pact/chemstudy/learn/tutor2.html; reproduced with permission of Bruce
McLaren.)

Each of thePreventive Measures aims to ensure that one of
the Typical Properties is not present in such a way that it
would cause problems. Each of theRemedial Measures aims
to ward off one or more threats once it has arisen. The classes
of preventive and remedial measures are open-ended, and in
fact advances in design and research often take the form of
new measures in these classes. Therefore, Figure 20.21 can
be used not only as a summary of some general lessons but
also as a way of structuring thinking about a specific user-
adaptive system; in the latter case, some of the boxes and
arrows will be replaced with content that is specific to the
system under consideration.

A discussion of all of the relationships indicated in Fig-
ure 20.21 would exceed the scope of this chapter, but some
remarks will help to clarify the main ideas.

Threats to Predictability and Comprehensibility

The concept ofpredictabilityrefers to the extent to which a
user can predict the effects of her actions.Comprehensibil-
ity is the extent to which she can understand system actions
and/or has a clear picture of how the system works.8 These
goals are grouped together here because they are associated
with largely the same set of other variables.

Users can try to predict and understand a system on two dif-
ferent levels of detail.

8The termtransparencyis sometimes used for this concept, but it can be
confusing, because it also has a different, incompatible meaning.

1. Exact layout and responses.Especially detailed pre-
dictability is important when interface elements are involved
that are accessed frequently by skilled users—for example,
icons in control panels or options in menus (cf. the discus-
sion of interface adaptation above). In particular, the extreme
case of predictability—remaining identical over time—has
the advantage that after gaining experience users may be
able to engage inautomatic processing(see, e.g., Hammond,
1987; or, for a less academic discussion, Krug, 2006): They
can use the parts of the interface quickly, accurately, and with
little or no attention. In this situation, even minor deviations
from constancy on a fine-grained level can have the serious
consequence of making automatic processing impossible or
error-prone. But even a lower degree of predictability on
this detailed level can be useful for the user’s planning of ac-
tions. Suppose that a person who regularly visits the website
for this year’s CHI conference knows that, if she types “chi”
into the search field of her browser, the conference’s home-
page will appear among the first few search results (possibly
because the search is personalized and she has visited the
conference page in the past): This knowledge will enable her
to access the page more quickly than if the search engine’s
results were less predictable.

2. Success of adaptation.Often, all the user really needs to
be able to predict and understand is the general level of suc-
cess of the system’s adaptation. For example, before spend-
ing time following up on a system’s recommendations, the
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Figure 20.21: Overview of usability challenges for user-adaptive systems and of ways of dealing with them.
(Dashed arrows denote threats and solid arrows mitigation of threats, respectively; further explanation is given in the text.)

user may want to know how likely they are to be accurate.
And if they turn out to be inaccurate, the user may want to
understand why they weren’t satisfactory in this particular
case, so as to be able to judge whether it will be worthwhile
to consult the recommendations in the future.

Threats to Controllability

Controllability refers to the extent to which the user can
bring about or prevent particular actions or states of the sys-
tem if she has the goal of doing so. It is an especially impor-
tant issue if the system’s adaptation consists of actions that
have significant consequences, such as changing the user in-
terface or sending messages to other people. A widely used
way of avoiding controllability problems is simply to have
the system make recommendations, leaving it up to the user
to take the actions in question. Or the system can take an
action after the user has been asked to approve it. Both of
these tactics can raise a threat ofobtrusiveness(see below);
so it is important to find a way of making recommendations

or asking for approval in an unobtrusive fashion but still no-
ticeable fashion (see, e.g., the discussion of AMBIENT HELP

earlier in this chapter).

Like predictability and comprehensibility, controllability can
be achieved on various levels of granularity. Especially since
the enhancement of controllability can come at a price, it is
important to consider what kinds of control will really be de-
sired. For example, there may be little point in submitting
individual actions to the user for approval if the user lacks
the knowledge or interest required to make the decisions.
Jameson & Schwarzkopf, 2002 found that users sometimes
differ strikingly in their desire for control over a given aspect
of adaptation, because they attach different weight to the ad-
vantages and disadvantages of controllability, some of which
are situation-specific. This observation corroborates therec-
ommendation of Wexelblat and Maes (1997) to make avail-
able several alternative types of control for users to choose
from.
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Obtrusiveness

We will use the termobtrusivenessto refer to the extent
to which the system places demands on the user’s attention
which reduce the user’s ability to concentrate on her primary
tasks. This term—and the related wordsdistractingand ir-
ritating—were often heard in connection with early user-
adaptive systems that were designed with inadequate atten-
tion to this possible side effect. Figure 20.21 shows that (a)
there are several different reasons why user-adaptive systems
may be obtrusive and (b) there are equally many strategies
for minimizing obtrusiveness.

Threats to Privacy

Until a few years ago, threats to privacy were associated with
user-adaptive systems more than with other types of system,
because adaptation implied a greater need to collect and store
data about individual users (see, e.g., Cranor, 2004). Nowa-
days, where so much of everyday life has moved to the web,
people have many reasons for storing personally sensitive
information (including, for example, their email, personal
photos, and work documents) on computers over which they
have no direct control. So the threat of privacy and secu-
rity violations due to unauthorized access to or inappropriate
use of personal data is now less strongly associated with the
modeling of individual users. A comprehensive general dis-
cussion of privacy issues in human-computer interaction has
been provided by Iachello and Hong (2007).

A privacy threat that is still specifically associated with user-
adaptive systems concerns the visibility of adaptation. For
example, consider a reader of GOOGLE NEWS who suffers
from a particular disease and has been reading news stories
related to it. If the user is not eager for everyone to know
about her disease, she may take care not to be seen read-
ing such news stories when other people are present. But
if she visits the personalized section of the news site when
someone else is looking and a story about the disease appears
there unexpectedly, the observer may be able to infer that the
user is interested in the topic: The stories that are displayed
implicitly reflect the content of the user model that the sys-
tem has acquired. As Figure 20.21 indicates, a preventive
measure is to give the user ways of limiting the visibility of
potentially sensitive adaptation.

Diminished Breadth of Experience

When a user-adaptive system helps the user with some form
of information acquisition (cf. the second major section of
this chapter), much of the work of examining the individ-
ual documents, products, and/or people involved is typically
taken over by the system. A consequence can be that the
user ends up learning less about the domain in question than
she would with a nonadaptive system (cf. Lanier, 1995 for
an early discussion of this issue).

Findlater and McGrenere (2010) investigated this type of
tradeoff in depth in connection with personalized user inter-
faces that limit the number of features that a user is exposed

to. Their results confirmed that this type of personalization
can both increase users’ performance on their main tasks and
reduce their awareness of features that might be useful with
other tasks. The authors discuss a number of considerations
that need to be taken into account when this type of tradeoff
is encountered.

As Figure 20.21 indicates, a general preventive measure is
to ensure that users are free to explore the domain in ques-
tion freely despite the adaptive support that the system of-
fers. For example, recommender systems in e-commerce do
not in general prevent the user from browsing or searching
in product catalogs.

If a user does choose to rely heavily on the system’s adapta-
tions or recommendations, reduction of the breadth of expe-
rience is especially likely if the system relies on an incom-
plete user model (e.g., knowing about only a couple of the
tasks that the user regularly performs or a couple of topics
that she is interested in). Some systems mitigate this problem
by systematically proposing solutions that arenotdictated by
the current user model (see, e.g., Ziegler, McNee, Konstan,
& Lausen, 2005, for a method that is directly applicable to
recommendation lists such as those of NETFLIX; and Linden,
Hanks, & Lesh, 1997, and Shearin & Lieberman, 2001, for
methods realized in different types of recommenders).

The Temporal Dimension of Usability Side Effects

The ways in which a user experiences a particular usability
side effect with a given adaptive system can evolve as the
user gains experience with the system. For example, adapta-
tions that initially seem unpredictable and incomprehensible
may become less so once the user has experienced them for
a while. And a user may be able to learn over time how
to control adaptations. In some cases, therefore, usability
side effects represent an initial obstacle rather than a perma-
nent drawback. On the other hand, since an initial obstacle
may prompt the user to reject the adaptive functionality, it
is worthwhile even in these cases to consider what can be
done to improve the user’s early experience. The remedial
measure shown in Figure 20.21 of enabling the user to con-
trol the system closely at first and shift control to the system
gradually is an example of such a strategy.

In general, though, the temporal evolution of the usability
of an adaptive system is more complex than with nonadap-
tive systems, because the system tends to evolve even as the
user is learning about it. A systematic way of thinking about
the complex patterns that can result is offered by Jameson
(2009).

Obtaining Information About Users

Any form of adaptation to an individual user presupposes
that the system can acquire information about that user. In-
deed, one reason for the recent increase in the prevalence of
user-adaptive systems is the growth in possibilities for ac-
quiring and exploiting such data.
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Behold! Waldo senses one of these homes resembles your 
abode. Of course, Waldo could tell you which one is like 

show Waldo in which type of home you live.
yours, but Waldo doesn’t like to give the store away. So kindly

Figure 20.22: Example of a screen with which the
L IFESTYLE FINDER elicits demographic information.
(Figure 3 of “Lifestyle Finder: Intelligent user profiling using large-scale
demographic data,” by B. Krulwich, 1997,AI Magazine, 18(2), pp. 37–45.
Research conducted at the Center for Strategic Technology Research of An-
dersen Consulting (now Accenture Technology Labs). Copyright 1997 by
the American Association for Artificial Intelligence. Adapted with permis-
sion.)

The next two subsections will look, respectively, at (a) infor-
mation that the user supplies to the system explicitly for the
purpose of allowing the system to adapt; and (b) information
that the system obtains in some other way.

Explicit Self-Reports and -Assessments

Self-Reports About Objective Personal Characteristics

Information about objective properties of the user (such as
age, profession, and place of residence) sometimes has im-
plications that are relevant for system adaptation—for exam-
ple, concerning the topics that the user is likely to be knowl-
edgeable about or interested in. This type of information
has the advantage of changing relatively infrequently. Some
user-adaptive systems request information of this type from
users, but the following caveats apply:

1. Specifying information such as profession and place of
residence may require a fair amount of tedious menu selec-
tion and/or typing.

2. Since information of this sort can often be used to deter-
mine the user’s identity, a user may justifiably be concerned
about privacy. Even in cases where such concerns are un-
founded, they may discourage the user from entering the re-
quested information.

A general approach is to (a) restrict requests for personal
data to the few pieces of information (if any) that the sys-
tem really requires; and (b) explain the uses to which the
data will be put. A number of suggestions about how the use
of personally identifying data can be minimized are given
by Cranor (2004). An especially creative early approach
appeared in the web-based LIFESTYLE FINDER prototype
(Figure 20.22; Krulwich, 1997), which was characterized
by a playful style and an absence of requests for personally
identifying information. Of the users surveyed, 93% agreed
that the LIFESTYLE FINDER’s questions did not invade their

Figure 20.23: A form in which a reader of GOOGLE NEWS

can characterize her interests in particular types of news.

privacy.

Self-Assessments of Interests and Knowledge

It is sometimes helpful for a user-adaptive system to have an
assessment of a property of the user that can be expressed
naturally as a position on a particular general dimension: the
level of the user’s interest in a particular topic, the levelof her
knowledge about it, or the importance that the user attaches
to a particular evaluation criterion. Often an assessment is
arrived at through inference on the basis of indirect evidence,
as with the assessments of the user’s interest in news items
in the personalized section of GOOGLE NEWS. But it may
be necessary or more efficient to ask the user for an explicit
assessment. For example, shortly before this chapter went to
press and after its discussion of GOOGLE NEWS had been
completed, GOOGLE NEWS began providing a form (shown
in Figure 20.23) on which users could specify their interests
explicitly.

Because of the effort involved in this type of self-assessment
and the fact that the assessments may quickly become obso-
lete, it is in general worthwhile to consider ways of minimiz-
ing such requests, making responses optional, ensuring that
the purpose is clear, and integrating the self-assessment pro-
cess into the user’s main task (see, e.g., Tsandilas & schrae-
fel, 2004, for some innovative ideas about how to achieve
these goals).

Self-Reports on Specific Evaluations

Instead of asking a user to describe her interests explicitly,
some systems try to infer the user’s position on the basis of
her explicitly evaluative responses to specific items. Famil-
iar examples include rating scales on which a user can award
1 to 5 stars and the now-ubiquitous thumbs-up “like” icon
of FACEBOOK. The items that the user evaluates can be (a)
items that the user is currently experiencing directly (e.g., the
current web page); (b) actions that the system has just per-
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formed, which the user may want to encourage or discour-
age (see, e.g., Wolfman, Lau, Domingos, & Weld, 2001); (c)
items that the user must judge on the basis of a description
(e.g., the abstract of a talk; a table listing the attributesof
a physical product); or (d) the mere name of an item (e.g.,
a movie) that the user may have had some experience with
in the past. The cognitive effort required depends in part on
how directly available the item is: In the third and fourth
cases just listed, the user may need to perform memory re-
trieval and/or inference in order to arrive at an evaluation.

Responses to Test Items

In systems that support learning, it is often natural to ad-
minister tests of knowledge or skill. In addition to serving
their normal educational functions, these tests can yield valu-
able information for the system’s adaptation to the user. An
advantage of tests is that they can be constructed, adminis-
tered, and interpreted with the help of a large body of theory,
methodology, and practical experience (see, e.g., Wainer,
2000).

Outside of a learning context, users are likely to hesitate to
invest time in tests of knowledge or skill unless these can
be presented in an enjoyable form (see, e.g., the color dis-
crimination test used by Gutkauf et al., 1997, to identify per-
ceptual limitations relevant to the automatic generation of
graphs). Trewin (2004, p. 76) reports on experience with a
brief typing test that was designed to identify helpful key-
board adaptations: Some users who turned out to require
no adaptations were disappointed that their investment in the
test had yielded no benefit. As a result, Trewin decided that
adaptations should be based on the users’ naturally occurring
typing behavior.

Nonexplicit Input

The previous subsection has given some examples of why
designers often look for ways of obtaining information about
the user that does not require any explicit input by the user.

Naturally Occurring Actions

The broadest and most important category of information of
this type includes all of the actions that the user performs
with the system that do not have the purpose of revealing
information about the user to the system. These may range
from major actions like purchasing an expensive product to
minor ones like scrolling down a web page. The more sig-
nificant actions tend to be specific to the particular type of
system that is involved (e.g., e-commerce sites vs. learning
environments).

In their pure form, naturally occurring actions require no ad-
ditional investment by the user. The main limitation is that
they are hard to interpret; for example, the fact that a given
web page has been displayed in the user’s browser for 4 min-
utes does not reveal with certainty which (if any) of the text
displayed on that page the user has actually read. Some de-
signers have tried to deal with this tradeoff by designing the
user interface in such a way that the naturally occurring ac-

tions are especially easy to interpret. For example, a web-
based system might display just one news story on each page,
even if displaying several stories on each page would nor-
mally be more desirable.

Information From Social Networks

One type of information about users that has grown ex-
plosively during the last several years is information that
can be found in the increasingly ubiquitous social networks
(e.g., FACEBOOK, L INKED IN, and ORKUT, but also media-
sharing sites such as FLICKR). Much of this information
is similar in nature to information that can in principle be
found elsewhere—for example, on a user’s personal home-
page or in their email messages—but social networking sites
encourage people to create and expose more of this infor-
mation than they otherwise would. One type of information
is specific to social networks: explicit links connecting peo-
ple (for example, as “friends”, professional collaborators, or
members of the same on-line community). The most obvi-
ous way of exploiting link information was illustrated by the
SOCIALBLUE system: helping people to create additional
links of the same types. But the fact that a given user is a
friend of another person or a member of a given commu-
nity can enable the system to make many other types of in-
ference about that user by examining the persons to whom
he or she is linked (see, e.g., Brzozowski, Hogg, & Szabo,
2008; Mislove, Viswanath, Gummadi, & Druschel, 2010;
Schifanella, Barrat, Cattuto, Markines, & Menczer, 2010;
Zheleva & Getoor, 2009). In effect, much of the information
that can be acquired in other ways summarized in this section
can be propagated to other users via such links—although the
nature of the inferences that can be made depends on the na-
ture of the links and the type of information that is involved.

Other Types of Previously Stored Information

Even before the advent of social networking platforms, there
were ways in which some user-adaptive systems could ac-
cess relevant information about a user which was acquired
and stored independently of the system’s interaction with the
user:

1. If the user has some relationship (e.g., patient, customer)
with the organization that operates the system, this organiza-
tion may have information about the user that it has stored
for reasons unrelated to any adaptation, such as the user’s
medical record (see Cawsey et al., 2007, for examples) or
address.

2. If there is some other system that has already built up a
model of the user, the system may be able to access the re-
sults of that modeling effort and try to apply them to its own
modeling task. There is a line of research that deals withuser
modeling servers(see, e.g., Kobsa, 2007): systems that store
information about users centrally and supply such informa-
tion to a number of different applications. Related concepts
are ubiquitous user modeling(see, e.g., Heckmann, 2005)
andcross-system personalization(Mehta, 2009).

18



Low-Level Indices of Psychological States

The next two categories of information about the user started
to become practically feasible in the late 1990s with ad-
vances in the miniaturization of sensing devices.

The first category of sensor-based information (discussed at
length in the classic book of Picard, 1997) comprises data
that reflect aspects of a user’s psychological state.

Two categories of sensing devices have been employed:
(a) devices attached to the user’s body (or to the comput-
ing device itself) that transmit physiological data, such as
electromyogram signals, the galvanic skin response, blood
volume pressure, and the pattern of respiration (see Lisetti &
Nasoz, 2004, for an overview); and (b) video cameras and
microphones that transmit psychologically relevant informa-
tion about the user, such as features of her facial expressions
(see, e.g., Bartlett, Littlewort, Fasel, & Movellan, 2003),
her speech (see, e.g., Liscombe, Riccardi, & Hakkani-Tür,
2005), or her eye movements (see, e.g., Conati & Merten,
2007).

With both categories of sensors, the extraction of meaningful
features from the low-level data stream requires the applica-
tion of pattern recognition techniques. These typically make
use of the results of machine learning studies in which re-
lationships between low-level data and meaningful features
have been learned.

One advantage of sensors is that they supply a continuous
stream of data, the cost to the user being limited to the phys-
ical and social discomfort that may be associated with the
carrying or wearing of the devices. These factors have been
diminishing steadily in importance over the years with ad-
vances in miniaturization.

Signals Concerning the Current Surroundings

As computing devices become more portable, it is becoming
increasingly important for a user-adaptive system to have in-
formation about the user’s current surroundings. Here again,
two broad categories of input devices can be distinguished
(see Krüger, Baus, Heckmann, Kruppa, & Wasinger, 2007,
for a discussion of a number of specific types of devices).

1. Devices that receive explicit signals about the user’s sur-
roundings from specialized transmitters. The use of GPS
(Global Positioning System) technology, often in conjunc-
tion with other signals, to determine a user’s current location
is familiar to most users of modern smartphones, and one of
the purposes is to personalize the provision of information
(e.g., about local attractions). More specialized transmitters
and receivers are required, for example, if a portable mu-
seum guide is to be able to determine which exhibit the user
is looking at.

2. More general sensing or input devices. For example,
Schiele, Starner, Rhodes, Clarkson, and Pentland (2001) de-
scribe the use of a miniature video camera and microphone
(each roughly the size of a coin) that enable a wearable com-
puter to discriminate among different types of surroundings

(e.g., a supermarket vs. a street). The use of general-purpose
sensors eliminates the dependence on specialized transmit-
ters. On the other hand, the interpretation of the signals re-
quires the use of sophisticated machine learning and pattern
recognition techniques.

Concluding Reflections

During the past few years, an increasing range of systems
have been put into widespread use that exhibit some form of
adaptation to users; the first two major sections of this chap-
ter have presented a representative sample. This increasing
pervasiveness can be explained in part in terms of advances
that have increased the feasibility of successful adaptation
to users: better ways of acquiring and processing relevant
information about users and increases in computational ca-
pacity for realizing the adaptation. But there has also been
a growth in understanding of the forms of adaptation that fit
with the ways in which people like to use computing tech-
nology, providing added value while avoiding the potential
usability side effects discussed earlier in this chapter.

One general design pattern has emerged which has been ap-
plied successfully in various forms and which might be con-
sidered the default design pattern to consider for any new
form of adaptation: The nonadaptive interaction with an
application is supplemented with recommendations that the
user can optionally consider and follow up on.

The earliest widely used examples of this general pattern
included product recommenders for e-commerce, such as
Amazon.com’s recommendations. As was illustrated by the
examples in the first part of this chapter, the pattern has also
been appearing with other functions of adaptation, such as
personalized news, recommendation of people to link up
with, and support for the discovery and learning of useful
commands in a complex application. In tutoring systems that
include an “outer loop”, recommendations can concern the
suggestions of learning material and exercises. Even some
forms of adaptation that would not normally be called “rec-
ommendation”, such as split interfaces and TASKTRACER’s
support for the performance of routine tasks shown in Fig-
ure 20.4, fit the same basic pattern.

The general appeal of this design pattern is understandable
in that it involves making available to users some potentially
helpful options which they would have had some difficulty
in identifying themselves or which at least would have taken
some time for them to access. This benefit is provided with
little or no cost in terms of usability side effects: Provided
that the available display space is adequate, the additional
options can be offered in an unobtrusive way. The fact that
the user is free to choose what to do with the recommended
options—or to ignore them—means that any difficulty in
predicting or understanding them need not cause significant
problems; that the system does not take any significant action
that is beyond the user’s control; and that the user’s experi-
ence does not have to be restricted.
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This relatively straightforward and generally successful
paradigm cannot be applied to all forms of adaptation to
users. Adaptation to abilities and impairments often requires
the provision of an alternative interface. And some types
of system—such as small mobile devices, smart objects em-
bedded in the environment, and telephone-based spoken di-
alog systems—may lack sufficient display space to offer ad-
ditional options unobtrusively or a convenient way for users
to sele ct such options. Achieving effective and widely used
adaptation where the general recommendation-based design
pattern cannot be applied remains a challenge for researchers
and designers.
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