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ABSTRACT
Typical synthesizers only provide controls to the low-level
parameters of sound-synthesis, such as wave-shapes or filter
envelopes. In contrast, composers often want to adjust and
express higher-level qualities, such as how ‘scary’ or ‘steady’
sounds are perceived to be.

We develop a system which allows users to directly control
abstract, high-level qualities of sounds. To do this, our system
learns functions that map from synthesizer control settings
to perceived levels of high-level qualities. Given these func-
tions, our system can generate high-level knobs that directly
adjust sounds to have more or less of those qualities. We
model the functions mapping from control-parameters to the
degree of each high-level quality using Gaussian processes,
a nonparametric Bayesian model. These models can adjust
to the complexity of the function being learned, account for
nonlinear interaction between control-parameters, and allow
us to characterize the uncertainty about the functions being
learned.

By tracking uncertainty about the functions being learned,
we can use active learning to quickly calibrate the tool, by
querying the user about the sounds the system expects to most
improve its performance. We show through simulations that
this model-based active learning approach learns high-level
knobs on certain classes of target concepts faster than several
baselines, and give examples of the resulting automatically-
constructed knobs which adjust levels of non-linear, high-
level concepts.
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INTRODUCTION
Composers and sound designers use synthesizers to create
sounds with spectral and temporal dynamics beyond what
is possible through acoustic instruments or recorded sounds.
These users generally seek not just to create a certain sound,
but rather a collection of related sounds, by transforming a
set of sounds in semantically meaningful directions. The
ability to intuitively adjust only the relevant qualities of a
set of sounds is paramount to the artist’s workflow. How-
ever, synthesizers are particularly difficult for artists to inter-
act with, since their many parameters must often be adjusted
in complex ways in order to change just a single semantically-
meaningful aspect of a sound. This often forces a shift in the
user’s attention from expressing their high-level goals to the
low-level trial-and-error tweaking of control parameters.

Several strategies have been developed to address this prob-
lem: First, providing the user with pre-set sounds having var-
ious qualities, such as “bright acoustic piano” or “dark acous-
tic piano”. Second, interpolating between existing sounds, by
averaging the low-level control settings which generate those
sounds. Third, expert-engineered high-level knobs for di-
rectly controlling relatively intuitive aspects of sounds, such
as Waves’ OneKnobs, mostly used in the context of produc-
tion to “brighten” or “phatten” tracks and mixes, and which
under the hood controls sound-treatment modules such as
equalizers, compressors, and resonators.

However, synthesizers can support more complex concepts,
such as those that are multi-modal. For example there are
different kinds of “scary” sounds, such as low rumbling, cold
chilly wind-like sounds. And we might want different ways
to adjust the “scariness” of a sound depending on what kind
it is. For example, if a sound is directional, we might make
it more “scary” by making it more aggressive. If a sound is
more of an ambient pulsating sound, we can make it warble
in more irregular ways or more high pitched, or perhaps add
some eerie metallic “clicks” to its foreground.

In this paper, we explicitly model high-level sound quali-
ties in order to allow users to automatically adjust arbitrary



sounds to have desired levels of those qualities. We define
a high-level concept as a function that maps from a high-
dimensional control space to the perceived level of that qual-
ity. With such mappings, we can generate a high-level knob
which directly adjusts sounds to have more or less of a given
quality. These knobs are generated for each sound by con-
structing a path through control space which increases (or
decreases) the level of the learned function. Such paths al-
low composers to move towards and away from sounds along
perceptually meaningful dimensions. To learn such functions
for a high-level concept, we learn from user ratings of sounds
generated by the synthesizer.

In order to learn from a small number of user interactions, we
take an active learning approach to assisting a user in finding
points in the control-parameter space to demonstrate a high-
level concept. The user first informs the system which sorts of
sounds she wants to be able to modify and to which ranges. At
any point in teaching the system a high-level concept, the user
can ask the system where it wants to learn about the high-level
concept the most. The system queries the user on the sound
that it believes can most improve its ability to adjust the high-
level quality for the given set of sounds. The user can lis-
ten to the sound and respond by rating how much they think
the sound has the high-level quality. We have prototyped a
user interface to allow users to express this rating by allow-
ing them to organize sounds on a continuous one-dimensional
space to indicate how much they think the sounds carry a par-
ticular high-level quality.

Our formulation can be applied to other domains where a user
wants to build a layer of richer, personalized controls on top
of the parameters provided by the original system.

RELATED WORK
We describe related work in computer-assisted sound design
and music composition that uses the metaphor of knobs (one-
dimensional, continuous controls), and also other kinds of in-
terfaces and interactions that assist users in working with syn-
thesizers. Our active-learning approach is informed by work
in active learning in general, and active data selection, and
Bayesian optimization.

High-level knobs
There have been a number of works on learning high-level
“knobs” for audio editing tools such as equalizers and rever-
berators. [21,24,25] treat a knob as a fixed linear mapping be-
tween a low-level control and a high-level quality. They adopt
a weighting-function procedure widely used in psychoacous-
tics to tune hearing aids, which operates by correlating gain
in each frequency bin to a user’s perceptual ratings.

Instead of mapping directly between parameters of a specific
reverberator and user ratings, [22] derived nonlinear map-
pings from low-level controls to reverberation measures such
as “echoness”, which can be generalized onto different rever-
berators with similar parameterizations. Their system then
learns linear mappings from reverberation measures to per-
ceptual qualities such as “boomy”. As sound modification
on synthesizers is more complex and their parameterizations

vary drastically across different synthesizers, it is more dif-
ficult to engineer a set of high-level functions a priori. In-
stead, we use the expressiveness of nonparametric methods
to model the covariance structure between controls and to ad-
just to the complexity of functions being learned.

As user ratings for different high-level qualities may be cor-
related, [22] uses transfer learning to incorporate concepts
taught by prior users. In this setting, each user rates only
a subset of example sounds to train a user-concept, and the
system fills in the rest of the ratings by weighting ratings
of other user-concepts by their distances to the current user-
concept. To choose the subset of sounds to query a user, the
work uses active learning by selecting sounds that most differ-
entiate between previously learned user-concepts. [3] crowd-
sources many more user-concepts to study which equalizer
descriptors are widely-agreed-upon and which are true audio
synonyms. Our method takes an active-learning approach to
help a user more quickly teach a concept from scratch, with
the objective of maximizing test-time performance, defined
as the ability to construct high-level knobs that can adjust de-
sired qualities in sounds with high certainty.

In additional to the “knobs” metaphor for interaction, [17]
uses a 2D self-organizing map to place concepts with similar
ratings close to each other, so that users can directly explore
the semantic space instead of control space. [8] allows users
to interact with different supervised learning algorithms to de-
fine mappings from arbitrary controllers to synthesis parame-
ters. [7] describes a play-along mode where the user first com-
poses a sequence of synthesis parameters and then gestures
along as it is being played back. The parameter-gesture pairs
become training data for learning a mapping that supports the
reversed interaction. Instead of relying on user data, [14] ap-
plies data mining to existing presets to provide autocomple-
tion. For example, as a user adjusts the controls, other statis-
tically related controls adjusts itself accordingly.

A complementary interaction is when the user is not search-
ing for a desired sound, but already has an audio recording
of a target sound at hand, and wants the machine to automat-
ically generate a synthesizer setting that approximates that
sound. With such a setting, the sound is no longer canned,
but can be manipulated in real-time using the synthesizer con-
trollers. This is often achieved by minimizing the difference
between the timbral trajectories of the synthesized and the
target sound. As synthesizer controls are high dimensional
and highly nonlinear, optimization techniques such as genetic
algorithms or particle swarm optimization are often used to
search through different synthesis structures and to perform
parameter estimation, as in [10, 11, 16, 28]. These techniques
also allow users to control a synthesizer by directly specifying
values for acoustic features [12].

The “knobs” metaphor is also used in computer-assisted com-
position for helping users adjust high-level qualities of sym-
bolic representations of music. For example, [18] exposes the
log weighting between transition matrices in hidden Markov
models trained on major (“happy”) and minor (“sad”) songs,
as an intuitive knob for adjusting how “happy” an accompani-
ment sounds. [20] adjusts melodies to be more or less ‘tonal’,



‘serial’, or ’brown’ by moving closer or further away from
that concept’s decision boundary.

Active learning
A number of systems have explored using active learning for
assisting users in defining personalized concepts [1,9,21]. For
example, [9] supports users in interactively defining concepts
for re-ranking web images search results, and presents users
the option of classifying images that are closest to the deci-
sion boundary between positive and negative classes, using a
nearest-neighbor approach. They also use a heuristic to ac-
tively select images that explore new weightings in their dis-
tance metrics on low-level features used in computer vision.

More generally, one of the goals of active data selection is
to select data that reduces the uncertainty the most on some
parameters of interest, given past observations. For exam-
ple, we can aim to maximize the expected information gain
on model parameters by selecting data where the the poste-
rior predictive variance is the highest [15]. Alternatively, the
goal could be to minimize generalization error by choosing
data that minimizes the overall variance of the predictor [4].
Both of these criteria have been employed in active Gaussian
process GP regression, by leveraging the variance on the pos-
terior predictive marginal distribution of GPs [26]. [13] adapts
this approach into a classification setting of visual object cat-
egory recognition, defines a covariance function that reflects
local features for object and image representations, and then
actively selects data closest to the decision boundary.

However, for settings where we are not given a set of exam-
ples a priori to select from, we need to first propose a set of
queries from a continuous space, which is the case for our
work. Furthermore, the objective may be more specific than
reducing uncertainty on parameters. More generally, active
learning is the setting where a model and an associated good-
ness (or loss) is first defined and then the goal is to query a
next point that is predicted to result in a future model that
produces the highest goodness (or equivalently lowest loss).

In our work, we define a new utility function for our domain
by formalizing what the user would desire during test time.
Our utility function captures how confident a model is in pro-
ducing the desired knob paths for adjusting a given set of
starting sounds. As in [19] and [2], our system learns in an
iterative manner, and at each iteration we query the user with
the point that maximizes the tool’s expected utility. While [2]
uses Bayesian optimization to search globally to help users in
procedural animation to find the best parameter setting, our
goal is to focus learning in regions that are expected to later
allow us to best fulfill user requests. As in [27], we compute
the expected utility of a point by sampling its values from the
current distribution, and evaluate the model’s expected confi-
dence in adjusting sounds, conditioned on fantasized ratings.

OVERVIEW OF METHOD
We treat a high-level concept as a function that maps from
synthesizer control parameter space x ∈ RD to perceived
y ∈ R levels of that quality. If we knew this function f(x),
we could automatically adjust that concept on a preset xs to

a desired level yd of that quality by moving xs to a nearby lo-
cation that has the desired quality level. A knob would move
x along a continuous path through control-parameter space
corresponding to increasing and decreasing levels of f(x).

Since we do not know f(x), we start with a probabilistic
model of f(x) and refine it with user feedback. Because the
domain of f will be high-dimensional, learning the function
over its whole domain would require an impractical amount
of user feedback. Instead, we focus our learning in high-level
knob space by asking for user feedback only in the parts of
the control parameter space that is relevant to improving the
paths for the high-level knobs.

To guide the acquisition of user feedback, we first specify
how we expect the system will be used (which sorts of sounds
will be modified, and the expected range of modifications).
We can then estimate how well the tool can be expected to
fulfill the user’s request, given the different queries made to
the user during training time. We can then ask the user for
the feedback which is most expected to improve the test-time
performance of the system. In short, we will use active learn-
ing to select the queries made to the user in order to determine
f in places which will be expected to improve the utility of
the tool the most.

Determining good user queries requires two steps: first,
proposing a set of possible user queries, then ranking those
queries by how much they are expected to improve the util-
ity of the tool. For the former, we develop a heuristic which
proposes points nearby points visited during path optimiza-
tions. Second, to estimate a candidate’s expected impact of
the utility of the system, we sample from the current poste-
rior marginal distribution of f and, for each sample, evaluate
the utility of the system as if we had actually made that ob-
servation. The candidate point that maximizes for expected
utility of the system is chosen for user feedback.

MODELING HIGH-LEVEL KNOBS
We model the function f mapping from control parameters to
high-level concepts probabilistically with Gaussian process
(GP) priors [23]. In contrast to previous approaches which
learned linear mappings [21], the non-parametric nature of
GPs allows us to learn a function whose complexity can grow
to match that of the function being learned. We use a zero-
mean prior and the standard squared-exponential kernel:

f ∼ GP (0, k)

k(x,x′) = σ2
y exp(−

(x− x′)2

2`2
) + σ2

nδii′

The kernel is parameterized by lengthscales `, which specify
the typical distances along which each dimension of f varies,
and by the amplitude and noise variances σ2

y andσ2
n, respec-

tively. We denote these parameters collectively as θ.

GP regression is an appropriate tool for this problem for two
reasons: First, it provides everywhere a closed-form estimate
of the remaining uncertainty about the function being learned,
which is necessary for estimating the expected performance
of the model. Second, the marginal likelihood gives us a prin-
cipled way to choose the parameters of the kernel.



Integrating over hyperparameters
Typically, the parameters of the kernel are estimated by max-
imum likelihood. However, when there are very few data-
points, these point estimates are known to drastically over-
estimate lengthscales, leading to an under-estimate of uncer-
tainty about the function itself. As we need a useful estimate
of uncertainty even conditioned on only a few data points,
we must also characterize our uncertainty about the length-
scales of the GP. Therefore we take a fully-Bayesian approach
by approximately integrating over hyperparameters using a
Sobol sequence.

Our approximate integration over kernel parameters means
that our predictive marginal posterior of f at a given point x?
is a weighted sum of GP posteriors:

P (y∗|x∗,X,y) =
∫
P (y∗|x∗,X,y, θ)P (θ|X,y)dθ

P (θ|X,y) = P (y|X, θ)P (θ)∫
P (y|X, θ′)P (θ′)dθ′

The mean and variance of the posterior marginal at x∗ is
given below. µi(x∗) and σ2

i (x
∗) are the posterior mean and

variance of the GP with a single set of hyperparameters θi.

µi(x
∗) = kθi(X,x)

TK−1θi (X,X)y

σ2
i (x
∗) = kθi(x,x)− kθi(X,x)

TK−1θi kθi(X,x)

µ(x∗) =

M∑
i=1

P (θi|X,y)µi(x∗)

σ2(x∗) =

M∑
i=1

P (θi|X,y)
(
[µi(x

∗)− µ(x∗)]2 + σ2
i (x
∗)
)

To sample a y∗ given x∗, we first sample which set of hy-
perparameters to use, and then sample from the predictive
marginal posterior given just that set of hyperparameters.

Knob paths
Once we have an estimate of the function defining a high-
level quality, we can generate a knob which varies that quality
for a preset sound by finding a path from the preset through
control-parameter space corresponding to increasing and de-
creasing levels of the learned function. We generate such
paths by first locally optimizing for each of a set of equally-
spaced desired quality levels yd spanning from the lowest
user rating to the highest, then linearly interpolate between
these points. In our experiments, we used 8 equally spaced
levels. The objective of this optimization is to minimize
the squared difference between the posterior predictive mean
and a desired knob level yd when starting from a control-
parameter setting xs. We denote the control-parameter set-
ting returned by the optimizer as xsd.

xsd =argmin
x∗

(yd − µ(y∗|x∗,X,y))2 (1)

In future work, we plan to take uncertainty into account while
optimizing for desired knob levels, and explicitly optimizing
for desirable properties for knobs such as smoothness.

ACTIVE LEARNING
Our system learns in an iterative manner: At each iteration,
we choose a point at which to query the user, based on the
current model of f . We then update the model of f , and re-
query the user. To determine which point to query the user
at, we first propose a set of candidate points, whose expected
impact on the utility of the system we will estimate. After
estimating these utilities, we then query the user at the best
candidate point.

Evaluating the expected utility of a point
Given a set of candidate points, we need to decide which one
can most help us improve the utility of our model. Formally,
we define utility U as the total mass within ε-wide bins cen-
tered at the desired knob levels yd for all presets Xs.

U(X,y) =
S∑
s=1

L∑
d=1

[P (ysd > (yd + ε)|xsd,X,y)

− P (ysd > (yd − ε)|xsd,X,y)] (2)

This expression can be intuitively thought of as the proba-
bility that we will be able to give the user a sound with the
desired high-level quality by moving along the learned paths.

Reoptimizing hyperparameters under fantasies
To evaluate the expected impact of a candidate xc on our sys-
tem, we sample the current posterior predictive marginal dis-
tribution P (yc|xc,X,y) for what the possible perceived yc
could be. In order to more accurately evaluate expected util-
ities, we retrain our model for each sample by re-optimizing
the hyperparameters on the GP prior as if we had seen this
additional observation, resulting in a fantasized posterior
predictive marginal distribution of P (y∗|x∗,xc, yc,X,y) on
which the desired knob levels are optimized. Intuitively, the
hyperparameter re-optimization is helpful because it accounts
for the fact that new queries can potentially change our esti-
mates of the lengthscales, which can drastically change our
model’s predictions. This is essential early on when we have
not yet seen much data, and are very uncertain about the
lengthscales.

E(U|xc,X,y) =
∫
U(xc, yc,X,y)P (yc|xc,X,y)dyc (3)

Proposing candidate points
Intuitively, we want to learn more about points that can po-
tentially improve the knob paths. We use a heuristic for gen-
erating candidate points which are likely to be useful: We
sample points nearby those visited by the truncated-Newton
optimizer while determining the knob paths.

Because we expect f to vary slowly in directions which have
long lengthscales, we heuristically add gaussian noise to can-
didates Xc with variances proportional to the length scales of
that dimension. Hence, to determine the noise for a particular
candidate xc, we first sample a set of length scales accord-
ing to their marginal likelihood. Then, for each dimension d,
we sample from a gaussian with variance proportional to the
lengthscale ld of that dimension. We reject any points that



fall outside the domain of the synthesizer.

εdc ∼ N (0,
ld

2
)

xdc ← xdc + εdc

To further increase the potential information gain, we also
heuristically include as candidate points the peaks on the pos-
terior variance of f that are reachable through the truncated
optimizer from the given set of presets Xs.

The active-learning algorithm and its variations
Algorithm 1 outlines our procedure for how to decide where
the query the user next for feedback. Both for loops can be
parallelized. Figure 1 shows a synthetic 1D visualization of
some the steps involved.

Algorithm 1 Choosing the next point xr for user to rate
Input: D = {X,y}, Xs, yd, nc: num of candidates, nm:
num of monte carlo samples
Train full-bayes GP with D
Optimize (1) for Xpath

sd on GP given yd and Xs

Randomly choose nc candidates Xc from points
visited during the previous optimization step

for i = 1 to nc do
for j = 1 to nm do

Sample ycij ∼ GP(y|Xci ,D)
Fantasize GPci by training it with ycij , Xci , D
Optimize (1) for Xpath

sdij
on GPci given yd and Xs

Compute Uij by (2)
end for
E(Ui) = 1

nm

∑nm

j=1 Uij
end for
minIndex = argminE(Ui)
xr = XcminIndex

We later refer to our full-fledged path-informed model-based
active-learning procedure as “active learning (re-opt)”. We
also experimented with a number of simplifications, both as
baselines to compare against, and also because they can have
shorter run times and so can be more naturally integrated into
interactive systems. “Active learning” takes out the step of
reoptimizing hyperparameters after each fantasized outcome.
“Path entropy” skips the fantasizing step all together, and
chooses the point that has the highest variance from the set
of proposed candidate points, while “Path random” simply
chooses a point at random from the proposed points.

USER INTERFACE AND INTERACTION
In order to support users in defining their own high-level con-
cepts, we have prototyped a user interface that allows users to
demonstrate high-level concepts with examples. The user can
communicate how much a sound carries a high-level concept
by placing it accordingly into a box, as shown in Figure 2,
where the horizontal axis indicates an increasing level of a
high-level concept from left to right. This allows users to rate
sounds in reference to each other, to correct previous ratings,
and also to re-adjust their overall scales.

If the user has some prior knowledge of which control param-
eters might give rise to a high-level concept, she can help the
machine reduce the dimensionality of the problem by select-
ing a subset of parameters, as illustrated by labels 1 and 2 in
Figure 2. The user can also make such decisions later on in
the process as she gains more experience with the synthesizer.

As the user has accumulated a number of points in the box,
the user can ask the machine to learn the concept and apply
it to a starting sound in order to check how well the machine
is understanding the concept. This can be performed at the
interface by first hitting the “play” button, at which point the
system trains the model and then optimizes for a path through
the sound to increasing and decreasing levels of the learned
concept. The system has been set to optimize for three dis-
crete levels on the learned function. Both these four points
and the original sound are added to the box and placed hor-
izontally at where the model believes it should be. These
points are the “darker” row of dots labeled as 7 in Figure 2,
where the second dot from the left is the original sound. The
user then has the option of correcting these points by moving
them left or right, and the moved points become a new data
point for training the high-level concept. The user can now
move the slider above the box to adjust her sound according
to the learned concept, and see how it controls the synth con-
trol parameters.

Assisting the user with active learning
The user can specify how she expects to use the system by
first choosing a set of presets she wishes to modify. This can
be indicated in the interface by suppressing those presets, la-
beled as 3 in Figure 2. Then at each iteration, the user can
ask for different kinds of assistance by clicking on the cor-
responding helper buttons. For example, the “next filler ran-
dom” button labeled as 5 calls for the “path random” variation
of our active-learning algorithm to propose the next point to
evaluate. A new control parameter setting is then added as
a dot to the box, placed at a horizontal position where the
model currently believes how much of the high-level concept
it carries. The user can help refine the model by correcting
these points.

EXPERIMENTS AND EVALUATIONS
We ran a preliminary pilot study with two composers to col-
lect high-level concepts. We evaluate our method in two
parts: how well our model captures these high-level concepts,
and how quickly our active-learning approach is able to learn
these high-level knobs compared to other baselines. For each
concept, we show a few examples of knob paths.

Pilot study with two composers
The task was for users to build a knob for a high-level qual-
ity such as “scariness” that she wishes to more directly con-
trol during sound synthesis. First, the user was prompted to
choose a set of preset sounds on which she would test the
high-level knob. The user was then asked to identify a set
of examples on the synthesizer that carries varying degrees
of that high-level quality. Users interacted with our interface
shown in Figure 2, with the option of asking for suggested
examples from the lightweight variation “path random” of
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Figure 1. Synthetic 1D example of an 1-sample evaluation of the expected utility of a proposed candidate, where the model’s utility increased from (B)
to (E). Plots A, C, D refer to mappings from control-parameter (x-axis) to a high-level quality (y-axis). Plots B, E refer to the model’s confidence in
attaining desired levels of a high-level quality (y-axis) measured by the±ε probability mass (x-axis) from the mean of the predictive marginal for the
corresponding control-parameter on the knob path (green line in preceding plot). (A) Current mapping from synth controller to high-level quality,
given three ratings of perceived levels of high-level quality. The green diamond is a sound in the synth control space that is to be adjusted. (C) Proposed
candidates shown as magenta triangles on x-axis. The Gaussian predictive marginal of one of the candidates is shown and the red-triangle shows a
sample from that distribution. (D) The mapping after fitting the model with the addition fantasized observation (red-triangle).

our active-learning. The interface allows users to specify the
amount of a perceived quality in a sound by moving the dot
that represents it on a one-dimensional axis. The synthesizer
used for the user studies is a representative software synth
named FreeAlpha, from Linplug.

Modeling high-level concepts
From these two pilot studies, we collected three examples
of nonlinear concepts on synthesizers, “pulsation”, “guitar-
like” and “scary”. The first and third are multimodal, while
the second is unimodal. They range from concrete to ab-
stract. The “pulsation” concept was obtained by querying a
single user uniformly on a 8x8 grid in the control-parameter
space of 2 synth controls. As we wanted to use this concept
for our later simulations, we did not want to bias the input
distribution with any of the methods that were being com-
pared in the simulations. For the “guitar-like” and “scary”,
the user was free to interact with our interface and ask for
suggested queries from the “path-random” variation of our
active-learning method.

We first illustrate these concepts and then show cross-
validation results on how our model performs when trying
to predict how users would rate a sound.

Example concept 1: “pulsation”
We want to learn about how two control parameters, the rate
of low frequency modulation FM and amplitude modulation
AM, interact to produce different degrees of perceived “pul-
sation”. Turning either of these controls up increases pulsa-
tion up to a point where modulation becomes so fast that we
can not perceive distinctive vibratos anymore, but instead we
hear a timbral color change. Moreover, they interact in how
they give rise to perceived “pulsation”. When FM is low, it
dominates our perception, and turning up AM does not give
any effect. However when FM is so high that we cannot hear
the pulsation anymore, for example the diamond in the lower
right corner of Figure 7, turning AM up in the lower ranges
allows us to add more “pulsation” to our colored sound. We
can observe this effect on the response surface of the mean of

the GP conditioned on a grid of 8x8 user ratings on these two
control dimensions, shown in Figure 7.

Example concept 2: “guitar-like”
Figure 3, left, shows the learned model of the “guitar-like”
quality, over 2 of the the 4 control dimensions. The GP char-
acterizes this quality as peaking when the attack time on the
amplitude envelope is short, the “cut-off” on the bandpass fil-
ter is low, the frequency of a low-frequency oscillator ( LFO)
is medium, and the detune on the chorus is high. Colloqui-
ally, a guitar-like has a “sharp attack”, with some warble in
the release, and is coloured with some “detuned harmony”.
In the space of these four control-parameters, this function
is unimodal, which means all paths will be maximized at the
same point, as shown in figure 3, left.
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Figure 3. Visualizations of high-level concepts. Contours represent the
full-Bayes GP posterior mean of the degree of the high-level quality as
a function of synthesizer controls. Red, blue and green lines represent
paths through control-space which vary the high-level quality, starting
from sounds denoted by black diamonds. Left: 2D slice of posterior
mean of “guitar-like” function, and knob paths. Right: 2D slice of pos-
terior of “scary” function.

Example concept 3: “scary”
We model this quality as a function of four different control-
parameters: the depth of a filter envelope, the waveshape and
the frequency of the LFO, and the main pitch of the synth. In
figure 3, right, we show a slice of the mean of a GP condi-
tioned on user ratings. In this slice, both the LFO frequency
and the depth of the filter envelope are fixed at 0.7 which



Figure 2. User interface for learning and applying high-level knobs to sounds. (1) Sliders for adjusting the low-level control-parameters on the synthe-
sizer directly. There are a total of 64, many are cropped in this screenshot for space. Users can choose a subset of low-level controls to optimize over by
checking the checkboxes, and these controls will pop up in region (2). (3) Preset buttons for users to choose as starting sounds. Users can also instantiate
new sounds as buttons. (4) Box for users to give ratings to sounds. The horizontal axis of the box reflects how much a sound carries a high-level concept,
increasing from left to right. Each training example is represented as a dot and corresponds to a particular synthesizer control-parameter setting. Users
can click on buttons in region (5) to ask the tool to suggest sounds to add as training examples. (6) Sliders for adjusting high-level qualities in sounds
directly once the model is trained. They are like macro knobs that control the low-level synthesizer parameters in region (2). Each slider corresponds
to a knob path that is specific to a starting preset in region (3). (7) The row of darker dots correspond to optimized points on the high-level knob path.

corresponds to a steady pulsating rumbling base sound. As
the LFO parameter increases, the waveshape becomes more
complex, for example going from sine waves, to sawtooth,
and finally to a much noisier wave, introducing hisses into
the foreground making the sound more scary. As the main
pitch of the synth increases, the volume of the “scary” sound
body also increases. However, if the pitch is increased too
much, the sound becomes much thinner and loses its force.
In between the two modes, the foreground hissing and the
background rumbling merge, and the sound becomes slightly
less scary.

Predicting user ratings
We compare predictive performance of our GP-based model
to other models on held-out user ratings. The results are
shown in Table 1, where we see that for multimodal quali-
ties “pulsating” and “scary”, our model predicts user ratings
better than support vector regression (SVR) with a radial basis
kernel, decision tree regression (DTR), and linear regression.
Although the predictive performance of the GP is not uni-
formly better than other regression techniques, the probabilis-
tic nature of the GP enables active learning, and the smooth
function estimates it provides enable us to compute continu-
ous adjustment paths. Future work will revisit the covariance
function used in our model, in order to allow it to capture
more structure.

Evaluating active learning
To evaluate our path-informed model-based active-learning
algorithm, we run simulations on two functions to compare

quality \model GP SVR DTR LINEAR

pulsating (n=64, d=2) 0.036 0.051 0.051 0.073
guitar-like (n=31, d=4) 0.042 0.029 0.026 0.040

scary (n=64, d=4) 0.065 0.068 0.116 0.071
Table 1. Comparing the 10-fold cross-validation mean-squared error of
different models on user ratings of different high-level qualities. n is
the number of ratings, and d is the number of control parameters being
varied. Each quality’s ratings were gathered from a single user. Users
rate sounds by placing sounds on a one-dimensional interface.

their performances to several baselines. We used IPython’s
parallel framework to evaluate the expected utility of each
candidate in parallel, corresponding to the outer for loop in
Algorithm 1. We first started with a simple synthetic func-
tion, and then ran another set of simulations on a function
learned from user ratings. We show that our method in the
former case is able to learn target concepts faster according
the metric we define below in Eqn. (4) by focusing on re-
gions most relevant to the knob paths. For the latter func-
tion, even though our method did not learn faster than some
baselines according to our current metric, it performed qual-
itatively better by being able to identify multiple modes, and
to route different starting points to their nearby peaks. In fu-
ture work, we need to define an error metric that captures the
multimodal nature of synthesizer concepts. We also wish to
devise a metric that depends on relative perceptions. For ex-
ample, a user may be less concerned about a knob giving a
sound that is exactly 0.5 “scary”, if there even exists such a
notion, but instead she might be more concerned if moving



a knob in one part of its range changes the sound a lot more
than some other parts.

As a start, we define error as the sum of absolute differences
between the desired levels yd and the actual levels of the
points returned when optimizing for the desired levels, sum-
ming over the knob paths for all starting points Xs. Xi and
yi denotes the accumulated points the models have evaluated
up to iteration i plus all the starting pointsXs. f here is the
function that simulates the human rating. In the first experi-
ment, this function is a synthetic function, while in the second
experiment, this function is the mean of aGP conditioned on
the 8x8 grid of user-ratings of the “pulsation” concept.

err(Xi,yi,Xs,yd) =

S∑
s=1

L∑
d=1

|f(xsd)−µ(ysd|xsd,Xi,yi)|

(4)

We compare our method to several baselines, including
proposing points according to the latin hypercubes, and an
“entropy” baseline that proposes as the next point the mode
on the variance of the posterior predictive marginal of the
GP, by running local optimizers from the initial presets.
We also compare between several variations of our path-
informed active-learning method. “Active learning (re-opt)”
re-optimizes the hyperparameters after each fantasized out-
come, while “active learning” does not. The “path random”
variation skips the fantasizing step, and choose at random a
point from the set of proposed candidate points, which were
originally randomly sampled from points nearby those vis-
ited by the truncated-Newton optimizer while determining the
knobs paths. The “path entropy” variation also skips the fan-
tasizing step, and chooses the point that has the highest vari-
ance among the proposed candidate points.

In both of the experiments, the number of candidates pro-
posed was 15 and the number of Monte Carlo samples taken
for each candidate was 30. The simulations were initialized
with simulated ratings of 2 to 3 preset control-parameter set-
tings, which corresponds to the sounds to be adjusted by the
knob paths. The experiments were terminated when the per-
formance started to plateau Figure 4 or when the model began
to pick up the multimodality of the rating function Figure 4.
For all our active-learning variations, the means and standard
errors are averaged across five runs.

Experiment 1: Synthetic function
The synthetic function simulates a concept where most of
the space does not give rise to its quality. The function was
originally two-dimensional. In order to experiment with how
the algorithm would perform in higher dimensions, we artifi-
cially added two more dummy dimensions, whose values do
not affect the function. Figure 4 shows the performance of
our method and other baselines as the models iteratively adds
more data observations.

Figure 4 shows that our active-learning methods are able to
learn high-level knobs faster under our error metric Eqn. (4).
Furthermore, the downward curves of the active-learning
methods show that they are able to iteratively improve and
refine the model, while for other techniques the lines rise and

fall with much higher error. Figure 5 shows the different re-
sponse surfaces at the ninth iteration. We can see that our
active learning approach was able to focus the evaluations in
the region that is most relevant to the knob paths.
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Figure 5. In the synthetic experiment, the full-Bayes GP posterior mean
for different methods after 9 more observations beyond initialization.
`s on the X and Y axes give the lengthscales of the corresponding low-
level controllers under MLE. Dotted contour lines represent the target
function. Dots indicate observations, and stars correspond to proposed
candidates, which only applies to the active-learning methods.

The objective of our active-learning approach is to reduce
the uncertainty on the knob paths, as opposed to learning the
function everywhere. Figure 6 shows how well our ”active-
learning (re-opt)” method and the ”entropy” baseline predicts
the true function over the entire space. We evaluate the two
corresponding GPs at 1000 locations given by the Sobol se-
quence, and plot these predicted values against those of the



true function. This true function has a lot of low regions
around zero, corresponding to the whitespace in Figure 5
without dotted contours. Only about a quarter of the space is
occupied by a Gaussian bump. This shape is typical of map-
pings on synthesizers where most of the sounds in a space
have none of a certain quality, and only a small part of the
space gives rise to that quality. However, a model would have
a low mean-squared error if it simply predicted low values
everywhere. This is undesirable for constructing knobs, be-
cause the knob would be very flat and would not be able to
make much adjustments to sounds. We see that in this case,
our active-learning method is still able to predict well over a
wider range of levels. Hence, if a user is able to find a sound
that begins to have some of her desired qualities, then our
tool will be able to give her knobs that can help her increase
or decrease that degree, and this adjustment is often challeng-
ing for users to perform manually because low-level controls
interact.
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Figure 6. In the synthetic experiment, a comparison of how active learn-
ing and the “entropy” baseline predict the target function over the entire
space. MSE corresponds to the mean-squared error.

Experiment 2: “Pulsation” function
The function learned from perceptual data is based on user
ratings of sounds in terms of their “pulsation” - a high-level
concept where amplitude and frequency modulation interact
to give a non-trivial response surface. The user was queried
at an 8x8 grid on two synth control parameters, and the mean
of a GP conditioned on these ratings was used during compar-
ison of learning procedures. We also artificially added two
more dummy dimensions to this function, whose values do
not affect the function.

Figure 4 shows the performance of our method and other
baselines as the models iteratively adds more observations.
According to our current error metric, the “entropy” baseline
reaches the lowest error the quickest, at iteration 16. How-
ever, it was not able to discover that the concept is actu-
ally multimodal, as shown in Figure 7. In contrast, the best
iteration from our active learning (with hyperparameter re-
optimization) was able to learn that there was more than one
mode in the concept, and routed the starting points to their
nearest peak, as shown in Figure 7. Figure 7 shows the func-
tions learned by the different techniques when we terminated
the experiments at iteration 27.

DISCUSSION
We now discuss a few observations and lessons learned from
our experiments. Currently, we assume users are able to iden-
tify a small subset of relevant low-level controls, and our
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Figure 7. In the “pulsation” experiment, the full-Bayes GP posterior
means for different methods after 26 more observations beyond initial-
ization. Note the upper-left subplot shows the target function.

method focuses on learning the nonlinear interaction between
these controls. To scale to higher-dimensional settings, we
will have to encode domain knowledge into the covariance
structure of our priors. For example on equalizers, adjust-
ing gains for neighboring frequency bins vary perceptually in
similar ways, we can parameterize the distance metric in our
kernel by the Malahanobis distance to explicitly model co-
variance between dimensions. Alternatively, if we know the
kinds of interaction between controls vary in different parts
of the control space, we can call for a non-stationary kernel.
See [6] for insights on how to choose the structural form of
the kernel.

Moreover, our method for constructing knob paths is still
naive, as it only optimizes separately for different knob values
and there is no guarantee that the resultant path is coherent.
For example, a path could jump around in the control space
due to the many-to-one mapping from control space to mu-
sical concept. In the future, we plan to regularize our paths
and optimize for a path as a whole so that we can control its
perceived smoothness.

Furthermore, our user studies are still preliminary. More
human-in-the-loop experiments are needed to better under-
stand how users use our procedure to help them build personal
control knobs. Casual observations show that users construct
preferences on-the-fly, and they alternate between phases of
exploration and refinement, analogous to phases of divergent
and convergent thinking [5]. For example, one composer re-
quested sounds from our lightweight “path random” active-
learning procedure to refine his “guitar-like” knob, after a
dozen of sounds he felt the need to explore whether differ-
ent kinds of “guitar-like” qualities existed. So he switched to
using our entropy-based procedure to try to touch the bound-
aries of the space, and was pleased that it gave him sounds
that he had never heard before. Second, the listening mode of



the user often evolves. Initially, users tend to react intuitively
to sounds, but later on, they begin to listen more analytically,
and explicitly reason and weigh sonic attributes when rating
sounds. For example, a sound may have a “sharp attack” like
a guitar but may “warble” too quickly to be one, and a com-
poser may still rate it above average because it possess at least
one of the main characters of a guitar sound. Third, as user
preferences may change and in light of new possibilities, the
re-rating of existing sounds becomes necessary, and one com-
poser requested for a feature to “shave off” similar sounds, so
that the new ratings and new sounds can have more influence.

CONCLUSION
Composers seek to explore sounds along intuitive and per-
sonal sonic dimensions, but synthesizers can often only be
controlled through low-level controls that interact in complex
ways. Inspired by this mismatch, we proposed a novel for-
mulation of high-level knobs that treats a knob as a dynamic
mapping that allows us to adjust different sounds along differ-
ent paths in the control space. In this paper, we presented two
building blocks towards realizing such knobs. We adopted
the expressiveness of a fully-Bayesian nonparametric model,
Gaussian processes, to model the rich perceptual world of
synthesizers, where there are many ways to achieve a certain
musical quality.

Second, to assist users in finding the set of examples to
demonstrate a high-level concept, we derived a model-based
active learning algorithm that queries the user in order to
improve knob paths, and we showed in simulation that it is
more effective for learning high-level knobs. Our procedure
is modular, allowing us in the future to swap in different
knob path formulations. As there are often multiple ways
of achieving a certain desired effect, as shown by the multi-
modality of our example concepts, we are considering a vari-
ation that we call “branching” knobs, which would provide
the user with multiple paths for adjusting a sound, some with
endpoints at modes further away or higher than others. This
allows composers to explore a wider palette of related sounds,
and to trade off between achieving a desired adjustment and
preserving different aspects of the original sound. Last by
not least, our formulation is general, and can be applied to
any other domain for users to construct and calibrate a layer
of richer, personalized controls on top of the parameters pro-
vided by the original system.
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