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ABSTRACT 
Crowd work provides solutions to complex problems 
effectively, efficiently, and at low cost. Previous research 
showed that feedback, particularly correctness feedback can 
help crowd workers improve their performance; yet such 
feedback, particularly when generated by experts, is costly 
and difficult to scale. In our research we investigate 
approaches to facilitating continuous observational learning 
in crowdsourcing communities. In a study conducted with 
workers on Amazon Mechanical Turk, we asked workers to 
complete a set of tasks identifying nutritional composition 
of different meals. We examined workers’ accuracy gains 
after being exposed to expert-generated feedback and to 
two types of peer-generated feedback: direct accuracy 
assessment with explanations of errors, and a comparison 
with solutions generated by other workers. The study 
further confirmed that expert-generated feedback is a 
powerful mechanism for facilitating learning and leads to 
significant gains in accuracy. However, the study also 
showed that comparing one’s own solutions with a variety 
of solutions suggested by others and their comparative 
frequencies leads to significant gains in accuracy. This 
solution is particularly attractive because of its low cost, 
minimal impact on time and cost of job completion, and 
high potential for adoption by a variety of crowdsourcing 
platforms.  
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INTRODUCTION 
In recent years, crowd computing emerged as a powerful 
alternative to strictly computational approaches to solving a 
variety of problems [2], [1], [7], [18]. The benefits of crowd 

computing are beyond doubt: it provides solutions to 
complex problems effectively, efficiently, and at low cost. 
Crowd computing is particularly effective for completing 
tasks that require human perception, judgment and common 
sense.  Such tasks are frequently beyond the reach of 
computers, yet they can be solved with little effort by 
people.  Crowd computing is less commonly used for tasks 
that require special knowledge and skills, such as visual 
design, coding and programming, and nutritional 
assessment of meals. Tasks like these typically require both 
domain and discipline-specific knowledge, as well as 
awareness of social norms, practices, and conventions 
related to these disciplines. One approach to enabling 
crowdsourcing for these tasks is through expert-based 
communities, such as 99design.com that focuses on graphic 
design. However, these specialized communities might 
present high entry barriers for crowd workers. An attractive 
alternative to searching for existing expertise is to develop 
mechanisms for training crowd workers on the job and 
helping them acquire the necessary knowledge and skills. 
This approach would benefit the requesters, who could 
receive higher quality solutions. In addition, it would 
benefit the workers and allow them to acquire and develop 
new skills, grow expertise and, potentially, advance their 
careers [14].  

For crowdsourcing tasks that rely on general human 
abilities and common sense (such as writing product 
reviews), recent research has demonstrated that self-
assessment, assessing the work of others, and expert 
feedback can all result in improved performance over time 
[11],[23]. Less is known, however, about how to improve 
crowd workers' performance on more specialized tasks 
discussed above. A common approach to promoting 
learning for such tasks in traditional learning environments 
is through explicit instruction coupled with individualized 
correctness feedback on practice problems, typically 
generated by experts and accompanied by explanations of 
errors [23],[11]. Yet in a crowdsourcing environment, 
neither of these may be readily available or feasible. 
Explicit instruction may require time investment from both 
job requesters and workers. Moreover, for the vast majority 
of crowdsourcing jobs, the correct or expert-generated 
solutions do not exist.  

As an alternative to relying on experts, we investigate the 
effectiveness of peers as a source of feedback for improving 
performance on knowledge-based crowd computing 
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[4]. Specifically, when adults exhibited gentle behaviors, 
children tended to play with the doll in a similarly gentle 
way, whereas children who observed adults being 
aggressive towards the doll, modeled these aggressive 
behaviors [4]. Other scholars argued that observational 
learning is largely responsible for diffusion of attitudes and 
opinions through a culture [21]. 

Bandura outlined four processes that are foundational to 
observational learning: attention, retention/memory, 
initiation/motor, and motivation. First, to be able to 
replicate behaviors of others, individuals need to attune to 
or recognize salient defining properties of these behaviors. 
In addition, once these important properties are recognized, 
individuals need to be able to retain them in their memory, 
particularly at the time of action. Moreover, individuals 
need to be able to enact the behaviors they wish to 
replicate. Finally, individuals need to have motivations or 
incentives to replicate modeled behaviors; these 
motivations are usually reinforced through observing others 
rewarded for the modeled behaviors, or when models 
represent authority [5]. 

In this work, we are interested in examining the application 
of observational learning in the context of crowdsourcing 
communities. In the vast majority of the contemporary 
crowdsourcing communities, workers remain isolated from 
each other, and are largely unaware of solutions provided 
by others. In this study we examined whether reviewing 
solutions generated by others can lead to accuracy gains in 
one’s own future work. The design approaches proposed 
here specifically targeted the four processes necessary to 
enable observational learning. They supported attention by 
explicitly highlighting discrepancies between workers own 
solutions and solutions provided by others; retention and 
action by allowing workers to immediately change their 
own solution to match solutions modeled by others; and 
motivation by showing how many others selected different 
solutions, thus using crowd as an authority.   

Facilitating Learning in Crowdsourcing Communities 
The notion of feedback has been previously explored in the 
context of crowdsourcing communities. For example, 
previous studies showed that exposing crowd workers to 
feedback on their performance has a positive impact on the 
level of their engagement and participation [15]. Other 
researchers specifically examined the impact of feedback 
on the quality of workers’ contributions. Dow et al provided 
crowd workers engaged in writing product reviews with 
two different feedback mechanisms: self-generated (in 
which workers could rate their own performance), and 
expert-generated [11]; in both conditions workers could 
revise their answers in light of the provided feedback. Both 
of these mechanisms were found effective and resulted in 
improved motivation and performance; in addition, self-
assessment resulted in significant learning gains, whereas 
for expert assessment these gains were marginally 
significant. In addition, Zhu et al showed that evaluating 

work by others helped Turkers improve their own 
performance [23]. Moreover, individuals who provided 
evaluations within interactive teams demonstrated the most 
substantial improvement.  

The approaches to learning examined in these previous 
studies, self-assessment, receiving evaluation from experts, 
and evaluating work of others are theoretically sound and 
appeared effective in the studies. However, they all have a 
number of limitations. For example, expert-generated 
feedback requires involvement of external expert who may 
not always be available in the context of crowd work. 
Moreover, critical feedback from experts can be 
demoralizing. On the other hand, both self-assessment and 
evaluating work of others create additional tasks for crowd 
workers, may negatively impact their efficiency, and have a 
direct impact on the costs of task completion.  
DESIGNING LEARNER-CENTERED CROWDSOURCING 
We relied on principles for generating feedback in learning 
environments to design the different feedback mechanisms 
discussed in this study. Below we describe the different 
design approaches and the principles used to guide the 
design. 

Expert-generated feedback 
Expert-generated feedback is, arguably, one of the most 
common mechanisms for providing learners with 
personalized feedback on their performance.  There exists 
substantial evidence in regards to its positive impact on 
learner’s performance and on learning gains [23],[11].  

Previous research on expert feedback suggested that it is 
most beneficial when it provides not only accuracy 
assessment, but also an explanation of the correct solutions, 
and analysis of gaps between the learner’s current state and 
the optimal performance [3],[8]. 

Expert-generated feedback has been previously shown as 
beneficial in facilitating learning within crowdsourcing 
communities. For example, Dow et al showed that receiving 
expert feedback helped crowd workers to generate higher 
quality product reviews [11].  

In this study, we used expert-generated feedback in the 
following way (Figure 2): After submitting their own 
solution, the participants received a comparison of this 
solution to the gold standard provided by the expert. The 
comparison was provided for each meal/ingredient 
combination (each check-box).  The workers could see both 
the expert-provided correct answer, and the indication of 
the correctness of their own answer through color-coding 
(green indicated correct answers, red indicated incorrect 
answers). The feedback was displayed next to the 
participant’s own solution with a possibility for them to 
make changes. In addition to this comparison, the expert 
provided comments explaining correct answers for each 
ingredient in the selected meal.  
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conditions. To counter-balance for any possible differences 
in task complexity between different meals, the order of 
tasks was randomized for all 20 tasks. 

Creating study dataset. For this study, we used images of 
meals from Wikimedia Commons available for free 
download under Creative Commons (CC) license. A 
professional dietitian analyzed the images, identified 
components of each of the meals, identified meal 
ingredients and mapped these ingredients to macronutrients; 
this mapping was used as gold standard for evaluating 
Turkers’ performance. We selected images that contained 
meals with 1-5 different ingredients avoiding packaged 
foods that could present challenge in regards to identifying 
their content. Importantly, to ensure that we provide 
workers with opportunities for learning, we selected meals 
with repeated ingredients. Specifically, we identified 5 “key 
ingredients”; these included beans, cheese, avocado, nuts, 
and corn. These ingredients were selected in collaboration 
with the dietitian on our research team because of common 
misconceptions regarding their micronutrient content. For 
example, it is common for individuals to classify beans as 
protein only and miss their carbohydrate content.  Then, for 
each key ingredient, we found three pictures of meals that 
included that ingredient (other ingredients varied between 
these meals). During the study, the participants were 
exposed to these key ingredients three times: first time 
during the baseline phase, second time during the training 
phase during which participants in experimental conditions 
received feedback on the accuracy of their solution, and 
finally during the post-training phase with no feedback.  

Measures. Our primary focus in this study was on the 
quality of workers’ performance, and gains in accuracy 
achieved during the study. Thus, our main measures were: 

Individual performance, calculated as the fraction of the 
individual answers each participant got correct (compared 
to gold standard established by the professional dietitian). 
Because each meal ingredient could belong to any 
combination of food groups (e.g., milk can be classified as 
protein, fat, and carbohydrate), we captured what fraction 
of individual macronutrients was correctly identified for 
each ingredient. For example, if for “beans” the correct 
answer included “carbohydrates”, “protein”, and “fiber”, 
and the worker only selected “carbohydrates”, their 
performance score would be 50% (two out of four 
macronutrients were assessed correctly).  

Accuracy gain, computed as the difference in accuracy 
between the last five tasks and the first five tasks. We 
computed accuracy gains separately for all ingredients in 
the meals included in these tasks, as well as for the 5 key 
ingredients because they were repeated across study phases 
and presented a greater opportunity for learning.  

We captured the following subjective measures (each on a 
5-point Likert scale):   

 Self-efficacy gain: difference between the post- and 
pre-study response to the question “How confident are 
you that you can correctly recognize what food groups 
different foods belong to?” 

 Subjective difficulty of the task (“For this HIT, how 
would you assess the level of difficulty, on average?”, 
from very difficult to very easy) 

 Confidence in response (“How confident are you that 
your answers were correct?” from very confident to not 
at all confident) 

 Perceived benefits of the condition-specific additional 
information related to learning (e.g., “Seeing answers 
submitted by other Turkers helped me get better at 
mapping different foods to their food groups”, from 
strongly agree to strongly disagree. For the participants 
in the control group C1, this question asked about the 
benefit of repeating the task multiple times) 

 Perceived impact on workers’ efficiency (“All the extra 
information/feedback I received while working on this 
HIT made it too time-consuming”, from strongly agree 
to strongly disagree) 

 Interest in receiving similar feedback in the future (“I 
would like to receive this additional 
information/feedback in my future HITs” from strongly 
agree to strongly disagree) 

 Perceived nutritional learning gains in regards to food 
and nutrition (“After working on this HIT I feel I 
learned new things about food and nutrition”) 

Prior to the first task, we recorded Turkers’ perceived 
nutritional literacy (“How knowledgeable are you about 
food and nutrition?”) and an assessment of their self-
efficacy.  

Conducting research with MTurk. The increasing 
popularity of MTurk as a platform for conducting 
psychological and sociological research has began to place 
an undue burden on workers. Many such studies submit 
HITs where compensation rate does not match time 
commitment required to complete the tasks. To ensure fair 
treatment of MTurk workers and following the guidelines 
for academic requesters, we recorded average time per task 
for different experimental conditions in a pilot study [24]. 
We then adopted a compensation rate of close to $10 per 
hour and used that to estimate the pay-rate for individual 
HITs.  
ANALYSIS 
We used descriptive statistics to explore the dataset and to 
assess Turkers’ baseline accuracy across conditions and for 
different conditions. We used one-way ANOVA to assess 
difference in baseline accuracy between different 
conditions. For the accuracy gains, we used one-sample 
two-sided t-test comparing mean accuracy gain to zero. To 
examine difference between participants in regards to 
subjective assessment measures, including self-efficacy, we 
used one-way ANOVA, with post-hoc comparisons using 
Bonferroni correction.  



RESULTS 
Baseline Accuracy Across Workers 
We used all solutions submitted for the baseline questions 
(first 5 questions without feedback across conditions) to 
calculate the baseline accuracy of Turkers’ solutions as the 
proportion of correct answers to all answers provided. 
When we looked at per-ingredient accuracy across the 
different macronutrient/meal/ingredient combinations (how 
many check-boxes they checked correctly), the participants’ 
baseline accuracy was at 76% (76% of all checkboxes 
received correct answers across meals and ingredients). The 
one-way ANOVA test showed that there were no 
significant differences in accuracy between subjects in 
different conditions at baseline (F=0.992, p=0.42).  

Feedback Accuracy 
We used solutions collected during the Seeding Phase and 
the Evaluation Phase as the basis for the explicit and 
implicit feedback in this study.  

Implicit feedback 
We used solutions submitted during the Seeding Phase as 
the foundation of the implicit feedback in the study. We 
examined two different ways of providing peer-generated 
feedback. The first of these conditions, C5 (Peer-
Feedback/Implicit/Simple), included only the most popular 
solution generated by Turkers for each ingredient/meal 
combination. We found that this solution was consistent 
with gold standard for only 45% of all meal/ingredient 
combinations (27 out of 60). Across meals, Turkers were 
consistent in accurately recognizing grain-based foods 
(such as breads and pastas) as carbohydrates, oils and 
butters as fat, and cheeses as fat and protein, among others. 
However, they also exhibited a number of common 
misconceptions, for example assessing fruits and vegetables 
as fiber only, rather than as carbohydrate and fiber.  

The most popular solutions for the key ingredients, which 
were repeated across meals, are presented in Table 1.  

Ingredient Gold 
Standard 

1st 
popular 

2nd 
popular 

3rd 
popular 

Beans CrFbPr 
(21%) 

Gold 
standard  

Pr (14%) Fb (9%) 

Avocado FbFt (8%) Fb (22%) Pr (16%) Ft (13%) 
Nuts CrFtPrFb 

(4%) 
FtPr 
(37%) 

Pr (17%) CrFtPr 
(16%) 

Corn CrFb 
(40%) 

Gold 
standard 

Fb (22%) Cr (11%), 
Pr (11%) 

Cheese FtPr (46%) Gold 
standard 

CrFtPr 
(19%) 

Ft (14%) 

Table 2: Gold standard and the most popular solutions for 
meals in testing set (Cr=Carbohydrates, Fb=Fiber, 

Pr=Protein, Ft=Fat). When the most popular solution 
corresponded to gold standard, we include “Gold Standard” 

in the table. 

As one can see from this table, these ingredients presented 
several different scenarios. For two of these ingredients, 
corn and cheese, the most popular solution generated by 
Turkers overlapped with gold standard; it was selected by 

40% of workers for corn and 46% of workers for cheese. 
For avocado and nuts, however, the gold standard was not 
among the three most popular solutions; it was selected 
only by 8% of workers for avocado, and by 4% for nuts. 
Both of these ingredients include a complex combination of 
macronutrients, and most solutions generated by workers 
missed either one or several of the macronutrients in their 
solutions. For beans, the opinions of workers were evenly 
split between the gold standard, which was selected by 21% 
of workers and another solution, selected by another 21% of 
workers, who correctly identified Fat and Protein, but 
missed Carbohydrate.  

In the second of the implicit peer-feedback conditions, the 
workers were provided with a distribution of frequencies 
for all solutions generated by peers in a graphical form. In 
this case, we attempted to estimate the accuracy of the 
aggregated solutions across multiple workers and assess 
whether this aggregated solution approximated the gold 
standard. In such an aggregated solution, if 5 workers 
classified beans as only “Protein”, another 5 as only “Fiber” 
and another five as only “Carbohydrate”, their aggregated 
solution would include all three of these macronutrients, a 
correct solution, with a popularity count of 5 (100%). 
However, because for most meal/ingredient combination, 
each macronutrient received at least one and often more 
votes, it became necessary to establish threshold of 
popularity at which a macronutrient would become 
considered included in the aggregated solution. For 
example, in the scenario above with “beans” as an 
ingredient, the question would be whether “fiber” should 
still be included in the aggregated solution if it received 
only 3 votes, as opposed to 5. After some experimentation, 
the final popularity threshold was set to 30% (at least 30% 
included that macronutrient in their answer). 

Explicit feedback 
We used workers’ assessments of the top 5 solutions 
generated during the Seeding Phase as the foundation of the 
explicit peer feedback.  

First, we examined the accuracy of individual assessments 
submitted during the evaluation phase across meals and 
ingredients. Across out dataset, the accuracy of an 
individual assessment was 70% (somewhat lower, but 
comparable with Turkers’ accuracy when simply providing 
their own answers, which was 76%). 

Next we examined the accuracy of these assessments 
aggregated across 5 Turkers that were used to generate 
peer-feedback for conditions C3 (Peer-
Feedback/Explicit/Simple) and C4 (Peer-
Feedback/Explicit/Detailed). Across all meals and 
ingredients these assessments were accurate 81% of the 
time. This was significantly higher than their accuracy 
when they simply provided their own answers (t=12.29, 
p<0.001). For the five key ingredients, the accuracy of 
Turkers’ assessments was somewhat lower, and averaged at 
78%. The accuracy of the assessments for each of the key 



ingredients was the highest for corn (94%) and cheese 
(92%), lower for beans (85%) and avocado (74%), and the 
lowest for nuts (63%). 

Accuracy gains 
The main question in this study was whether providing 
accuracy feedback can help crowd workers improve their 
performance, and what type of feedback leads to the most 
optimal results. Here we define accuracy gain as the 
difference in the individual accuracy (number of correct 
checkboxes) between the first five tasks (baseline) and the 
last five tasks. 

We used a set of one-sample t-tests with Bonferroni 
correction to assess performance gains for each of the 
condition, comparing mean accuracy gain to zero. We 
examined these gains separately across meals and 
ingredients, and specifically for the key ingredients. The 
results of this analysis are presented in Table 1.  

Condition Mean gain 
across 
ingredients (t, p-
value 

Mean gain for 
key ingredients 
(t, p-value) 

C1 (control) -0.59 (-0.52, 0.6) 0.17 (0.1, 0.92) 
C2 (expert) 7.48 (5.69, <0.01) 11.1 (6.27, <0.01) 
C3 
(peer/explicit/simple) 

-0.18 (-0.16, 0.87) 1.19 (0.77, 0.44) 

C4 
(peer/explicit/detailed) 

-0.4 (-0.34, 0/73) -0.49 (-0.28, 0.78) 

C5 
(peer/implicit/simple) 

1.56 (1.25, 0.21) 1.59 (0.7, 0.48) 

C6 
(peer/implicit/detailed) 

2.98 (2.48, 0.02) 3.0 (1.9, 0.06) 

Table 3: Accuracy gains for different conditions. Conditions 
with significant gains are marked in bold. 

The performance gains were significant for expert-feedback 
condition (C2) across meals and ingredients and for key 
ingredients. The second condition that showed significant 
performance gains was Peer-Feedback/Implicit/Detailed 
(C6), however the gains were somewhat smaller for the key 
ingredients.    

Subjective impressions 
In regards to subjective impressions, the study showed 
significant differences among participants in different 
conditions for all measures. The participants in conditions 
C2 (expert-feedback) and C1 (control group) rated the tasks 
as significantly more difficult than participants in other 
conditions (F=10.035, p<0.001). The participants in these 
conditions (C1 and C2) were also significantly more 
confident in the accuracy of their solutions than participants 
in all other conditions (F=8.6, p>0.001). In regards to their 
perceived ability to accurately perform similar tasks in the 
future, the participants in conditions C1 (control), C2 
(expert) and C6 (Peer-Feedback/Implicit/Aggregated) were 
significantly more confident than others (F=3.09, p=0.01). 
Interestingly, the participants in the control groups 
perceived the tasks as significantly more time consuming 

than all other participants, even though these participants 
spent less time across the task due to the lack of feedback 
(F=5.52, p<0.001). The participants in all feedback 
conditions reported higher perceived benefit of their 
condition-specific feedback, as compared to the perceived 
benefit of repeating the task multiple times for the control 
group (F=3.35, p=0.006) and reported higher perceived 
learning gain as compared to participants in the control 
group (F=2.85, p=0.02). 

In regards to change in self-efficacy, participants in expert-
feedback condition C2 reported the highest gain (mean gain 
0.56); the participants in condition C3 (Peer-
Feedback/Explicit/Simple) reported loss in self-efficacy 
(mean gain=-0.05), and the only significant difference was 
between these two conditions (F=2.83, p=0.17)  

DISCUSSION 
In this research, we set to examine the impact of peer 
feedback on performance accuracy and learning gains of 
workers in a crowdsourcing community as compared to no 
feedback on one hand, and to expert-generated feedback as 
gold standard. We considered peer feedback in two 
different forms: explicit, in which individuals received 
direct evaluations (correct/incorrect) from other workers, 
and implicit, in which individuals simply compared their 
own answers to answers provided by others. Many previous 
studies suggested that peer feedback is a valuable resource 
and can lead to improvements in motivation and 
performance. It presents an attractive alternative to the 
more expensive feedback generated by experts, and to the 
more time-consuming self-assessment.  

The study generated several findings worthy of further 
explorations.  

First, it confirmed that expert-generated correctness 
feedback with explanations of correct answers is a powerful 
mechanism for helping crowd workers improve their 
accuracy on knowledge-based tasks. When such feedback is 
available, it can help workers to improve their 
understanding of the tasks, gain necessary knowledge, 
increase their confidence and self-efficacy, and improve the 
accuracy of their solutions overtime.  

However, it also showed that using solutions generated by 
other workers as a point of comparison can have a 
significant positive impact on workers’ accuracy and lead to 
performance gains. This occurred despite the fact that the 
average accuracy of Turkers’ solutions was only at 76% per 
check-box. We hypothesize that exposing workers to the 
variety of solutions provided by others and to the relative 
frequencies of these solutions helped them to consider new 
possibilities and refine their knowledge. This finding is 
significant because this form of feedback is readily 
available, does not depend on availability of experts, does 
not require introducing additional tasks, and does not lead 
to increases in workers’ workload, time required to compete 
the crowdsourcing job, and its cost. With simple 



modifications to their interfaces, many crowdsourcing 
communities can incorporate this form of feedback into 
their repertoire.  

The findings also suggested that for such tasks as 
nutritional assessment of meals, aggregating solutions 
across individual workers may be a better strategy for 
arriving at the final solution than identifying the most 
popular solution. Both of these approaches have been 
explored in previous research. For example, while 
PlateMate relies on voting to select between alternative 
solutions in regards to nutritional assessment of meals [17], 
Soylent uses both voting and aggregation for such tasks as 
shortening of text and proof-reading [7].   

These findings highlight several important properties of the 
nutritional assessment task used in our study that we 
believe contributed to the positive impact of peer feedback.  
They also suggest a possibility to generalize to a broader 
class of tasks that might benefit from similar solutions. 
Specifically, we argue that the task in this study had two 
essential properties: 1) it relied on a combination of 
domain-specific knowledge and awareness of existing 
social norms and conventions; and 2) knowledge in this 
task was distributed across many individuals who all 
possess different parts of it. First, mapping ingredients to 
different macronutrients requires both knowledge of 
different macronutrients, and also understanding of social 
conventions in regards to what amount of each 
macronutrient is relevant for diet management (because 
strictly speaking, most common foods include all 
macronutrients, but some in negligible amounts). Second, in 
mapping ingredients to nutrients, the most common mistake 
was not to include wrong macronutrients, but to miss some 
macronutrients for complex ingredients. As a result, putting 
many partially correct solutions together led to a more 
complete and accurate aggregated solution. We suggest that 
other domains that exhibit these properties include 
coding/programming (e.g. [12]), design critiques 
(particularly identifying design limitations, e.g.  [16]), and 
copy editing of texts (e.g. [7]). Tasks in each of these 
domains require a combination of specialized knowledge 
(e.g. a syntax of a particular programming language) and 
socially-constructed norms (programing conventions and 
good practices). We propose that in each of these 
tasks/domains, exposing workers to solutions generated by 
others as a form of feedback may enable observational 
learning and not only contribute to higher quality solutions, 
but also help workers acquire new knowledge. 

On the other hand, the study showed that explicit feedback 
generated by peers led to decrease in their accuracy. A 
possible reason for this finding is limitation in the accuracy 
of the peer-generated assessments. We saw that for three 
out of five key ingredients, beans, avocado, and nuts, the 
workers received consistently incorrect feedback, which 
likely made them question their own knowledge.  

The study also suggested many new questions we hope to 
address with future research. Most importantly, in this study 
our main focus was on the type of user feedback (explicitly 
generated by other workers or generated as part of their 
completion of their own tasks) and on the form in which it 
was presented (most popular only or with distributions of 
opinions among peers). To accomplish this, all the feedback 
in the study was generated in advance as part of the seeding 
phase and the evaluation phase. In the real world situations, 
however, this approach is not feasible, and may not be 
beneficial. Instead, we imagine that the feedback will be 
generated on the fly and updated with each new submitted 
solution. This, however, leaves the question of how to 
scaffold initial solutions, for which no peer feedback is yet 
available. This also leaves a question of whether incorrect 
peer feedback early on can have a disproportionate negative 
impact on the crows-generated solutions. For example, if 
the first few workers who completed the task provided 
incorrect answers, would it lead to an information cascade 
and increase the chance of an incorrect ultimate answer? In 
addition, all the exploration discussed here focused on 
nutritional assessment of meals, and specifically on 
identifying macronutrient composition of different 
ingredients. Further research is needed to assess whether 
solutions found beneficial in this study can be generalized 
to other tasks and domains.    

CONCLUSIONS 
In this paper we assessed the impact of peer feedback on 
crowd workers’ performance and learning gains in the 
context of nutritional assessment tasks. Workers recruited 
from Amazon Mechanical Turk were asked to match 
ingredients of meals with corresponding food groups. Some 
workers were asked to complete 20 tasks in a row with no 
feedback, others were exposed to different mechanism for 
facilitating learning, including expert-generated feedback, 
and two types of peer-generated feedback, explicit and 
implicit. The study showed that in addition to expert-
generated feedback, a comparison of one’s own solutions to 
the distributions of solutions generated by other workers 
and their comparative frequencies leads to significant 
improvements in workers’ accuracy. We conclude that peer 
feedback is a powerful mechanism for facilitating learning 
in crowd computing. 
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