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ABSTRACT
While explanations may help people learn by providing infor-
mation about why an answer is correct, many problems on
online platforms lack high-quality explanations. This paper
presents AXIS (Adaptive eXplanation Improvement System),
a system for obtaining explanations. AXIS asks learners to
generate, revise, and evaluate explanations as they solve a
problem, and then uses machine learning to dynamically de-
termine which explanation to present to a future learner, based
on previous learners’ collective input. Results from a case
study deployment and a randomized experiment demonstrate
that AXIS elicits and identifies explanations that learners find
helpful. Providing explanations from AXIS also objectively
enhanced learning, when compared to the default practice
where learners solved problems and received answers without
explanations. The rated quality and learning benefit of AXIS
explanations did not differ from explanations generated by an
experienced instructor.

CCS Concepts
•Human-centered computing → Human computer in-
teraction (HCI); •Applied computing → Education;
Computer-assisted instruction; Interactive learning envi-
ronments; Collaborative learning; •Computing method-
ologies→ Sequential decision making;

Author Keywords
Explanation; learning at scale; crowdsourcing;
learnersourcing; machine learning; adaptive learning.

INTRODUCTION
Explanations go beyond facts to provide understanding and
help people identify principles that generalize to new prob-
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lems [18, 21]. For example, students learning math frequently
memorize how to apply rote procedures to solve problems [8].
With only superficial changes to how problems are described
(e.g., which side of the equation the variable x appears on)
students may misapply procedures and make mistakes. They
cannot draw on conceptual descriptions (explanations) of why
a procedure works in order to generalize to a broader suite
of problems. This problem is exacerbated in online learning
and MOOCs, where rapid feedback on answers allows people
to game the system [3] and to try many answers until they
get it right, without understanding why it is right. Some ex-
isting platforms such as intelligent tutoring systems present
explanations to learners, which has been shown to enhance
learning [1].

However, generating high quality explanations for why those
answers are correct is significantly more difficult than provid-
ing answers [10]. Instructors have limited time and resources
to generate quality explanations for all the problems they cre-
ate. This means that online learners typically attempt problems
and get answers without additional explanations. Even when
instructors handcraft explanations — like explanations of how
to solve math problems on Khan Academy [khanacademy.org]
or ASSISTments [assistments.org] — it is rare for these to be
revised over time. This is problematic if an initial explanation
suffers from an expert blind spot which limits recognition of
how students will misunderstand explanations [20]. Online
platforms run the risk of scaling the negative effect of poor
explanations to thousands of learners.

The challenge we address is how to develop a scalable mecha-
nism to generate and improve explanations for online learning
materials. To offload the explanation generation effort from
busy instructors or amateur content creators, we turn to learn-
ers. Learners are a viable crowd for generating explanations,
because they are experts in typical misconceptions, directly
experiencing the effect of gaps in their knowledge. However,
asking individual learners to generate explanations for oth-
ers is unlikely to be reliable unless one can determine which
explanations are most helpful, as many learner-generated ex-
planations may be superficial or even incorrect.

http://dx.doi.org/10.1145/2876034.2876042
khanacademy.org
assistments.org


In this paper, we present AXIS (Adaptive eXplanation Im-
provement System), a system that dynamically improves ex-
planations over time as a byproduct of learners’ collective
interactions with the content. AXIS does this by adding and
iteratively refining explanations via a combination of learner
prompts to crowdsource explanations and machine learning to
choose effective ones. Learners contribute by reporting their
level of knowledge, evaluating the quality of explanations gen-
erated by others, and adding or refining explanations. Upon
analyzing the learner-provided information, machine learning
algorithms sift through the changing pool of explanations to
identify those that are consistently judged to have highest qual-
ity, as rated by learners. The system seamlessly introduces
improved versions of explanations to future learners as more
learner contributions become available, without requiring man-
ual revision or republication cycles by the instructor. All of
these system components are not only designed to improve
explanations, but are designed to integrate into learners’ inter-
actions with the problems by prompting them to reflect on the
information being presented [8, 25].

To evaluate our approach, we recruited 150 participants online
from Mechanical Turk and asked them to solve math problems
using AXIS. We discuss the design of AXIS and how it was
deployed to collect and evaluate explanations. To evaluate the
quality of the explanations AXIS collects and the selection
policy it discovers, we also report results from a randomized
controlled experiment with an independent group of 524 par-
ticipants. The experiment is designed to measure how the
AXIS explanations and policy are judged by learners, and
whether they impact learning.

While there were poor explanations generated by learners, the
evaluation showed that AXIS was able to identify explana-
tions that many learners rated as helpful. These explanations
were also demonstrated to improve learning over the default
practice, in which learners simply solve problems and receive
unexplained answers. The explanations learnersourced by
AXIS even approached those by experienced instructors in
terms of perceived benefit and objective learning gains.

Our approach shifts the effort required to create useful learn-
ing materials from instructors to the community of learners.
It helps both expert instructors, whose time is scarce, and
non-expert instructors not trained in formulating effective ex-
planations. Both can use systems like AXIS to generate ex-
planations for instructional materials by leveraging crowds of
learners. Additionally, AXIS leverages learners’ collective in-
sight into the problem-solving process to help future learners,
even when instructor resources are not available, such as in
settings where explanations are generated on-the-fly by end
users in live sessions [15].

Specifically, this work contributes:

• AXIS, a prototype semi-automated system that instructional
designers can add to online problems for which no explana-
tion exists. AXIS engages learners to generate, revise, and
evaluate explanations, and provides quality explanations to
future learners.

• Results from a study showing that AXIS elicits quality
explanations and discovers effective policies for deciding
which explanations to provide to learners. We report ev-
idence that people who are solving problems learn more
when explanations from AXIS are provided, and that AXIS-
curated explanations are as effective for learning as expla-
nations written by an instructor.

• An approach that combines crowdsourcing and machine
learning to leverage learners’ organic interactions with con-
tent, which in turn enhance future learners’ experience.

RELATED WORK
AXIS uses crowdsourcing from learners (learnersourc-
ing, [11]) to elicit explanations, and machine learning to dif-
ferentiate among these explanations and determine which are
most helpful. We briefly overview other educational systems
that have used crowdsourcing and provide background for our
machine learning approach.

Crowdsourcing Systems for Education
Prior learnersourcing systems build on successes in designing
systems for human computation that satisfy the dual objec-
tives of helping users learn while simultaneously getting useful
work done. For example, to provide real-time captions for deaf
and hard of hearing users, Lasecki et al. ask learners in a class-
room to collaboratively caption what they hear using Scribe
[16]. Recent work in Massive Open Online Courses (MOOCs)
mines traces of MOOC learners’ interactions with video to
adaptively alter the video interface to highlight sections other
students have paid attention to [12]. More active learnersourc-
ing is observed in Crowdy, which embeds prompts for learners
to summarize subgoals in sections of an instructional video.
While giving learners a useful learning exercise, the system
converts the learnersourced summary labels into a browsable
text outline for the video [23]. AXIS contributes a novel ap-
plication to this growing body of research by focusing on
learnersourcing explanations that are applicable to a variety of
online learning contexts.

Machine Learning for Exploration & Exploitation
Reinforcement learning is a common machine learning tech-
nique for situations in which a system must determine which
of several actions is best and information about the actions’
effectiveness is gathered only by trying an action and observ-
ing the results. It has been used successfully in educational
applications, including modeling student knowledge [5] and
automatically generating hints [4]. Most relevant to AXIS is
a subset of reinforcement learning problems known as multi-
armed bandit problems, which have been examined in ed-
ucation for choosing sequences of teaching actions [9] and
automated experimentation in educational games [17]. Multi-
armed bandits are increasingly used in large-scale randomized
A/B experimentation by technology companies [13]. This
paper frames explanation generation as a multi-armed bandit
problem in a large-scale experimentation setting.

In multi-armed bandit problems, the system repeatedly faces a
choice of which action to take and seeks to maximize the total
cumulative reward over many repetitions of the choice. In



such a problem, there is generally a fixed set of actions (arms),
and typically, the system maintains an estimate of the expected
reward from taking each action. At each timestep, the system
chooses one action and observes the reward from taking that
action; over time, the system learns which actions are more
effective and thus can earn larger rewards. The key challenge
in this type of problem is to balance exploiting the information
that has already been gained about the effectiveness of each
action and exploring actions where the estimates about their
value are still relatively uncertain. For example, imagine a
bandit problem with three actions. If each action has only
been selected once, with observed rewards of 4, 5, and 6, it
probably does not make sense to then only choose the third
action at all remaining timesteps. The rewards for each action
may be variable, and it could be the case that exploring the
first or second actions by choosing them several more times
would reveal that they actually produce higher rewards than
the third action, on average.

A number of approaches have been proposed for how to select
an action at a given timestep based on the evidence observed
in the previous timesteps (e.g. [2], [7]). Most approaches com-
bine information about the current estimated expected value
of an action and the uncertainty of that estimate, as measured
by the variability in observed rewards and the number of times
that the action has been selected. Existing methods have been
evaluated both theoretically and empirically, with theoretical
results [2] making guarantees about asymptotic performance
and empirical results helping to illustrate performance given
real-world scenarios [7]. In AXIS, we formulate the selection
of an explanation as a multi-armed bandit problem where the
actions to choose from are explanations generated by learners,
and the reward for taking the action of presenting an explana-
tion is the learner’s rating of its helpfulness.

AXIS OVERVIEW
Design Goals. While sites like Khan Academy hire hundreds
of teachers to produce explanations for their problems, many
instructors create online learning materials with far fewer re-
sources. AXIS is aimed at helping these instructors, who often
lack the time or experience to create high quality explana-
tions for all of their content but do have access to a large pool
of learners. The goal of AXIS is to take a problem and its
answer, and then to construct explanations for how to solve
this problem, by leveraging the interactions of many learners
who solve this problem. AXIS crowdsources production and
evaluation of explanations to learners and uses machine learn-
ing to analyze this data to identify and deploy the effective
explanations.

Core System Components. The two key AXIS components
are (1) the learnersourcing interface and (2) the explanation se-
lection policy. The learnersourcing interface collects learning
data from learners and their evaluations of explanations, and
elicits the generation of new explanations from future learn-
ers. The explanation selection policy is used to decide which
candidate explanation to present to a new learner. This policy
is continually updated based on learners’ interactions with
the system. The system chooses explanations to present to
learners, while the learnersourcing interface prompts them to

Figure 1. Example of a math problem users might be solving.

Figure 2. Presentation of explanation to user for learning & rating.

rate the explanations. A multi-armed bandit algorithm is used
to statistically analyze these ratings and update the explanation
selection policy. This allows the system to perpetually add new
explanations, while dynamically learning which explanations
to present, without needing human intervention.

Learnersourcing Interface
A dual goal guides the design of the learnersourcing interface:
supporting learners through behavioral science and instruc-
tional wisdom, while simultaneously acquiring useful input
for computational processes that continually improve the sys-
tem. Figure 2 shows an example of how the Learnersourcing
Interface presents an explanation to a learner of how to solve
a problem, and prompts them to rate how helpful the expla-
nation is for learning. This data is provided to algorithms in
the AXIS backend and used to change which explanations
are delivered to future learners. The learnersourcing inter-
face also displays questions that prompt learners to write self-
explanations, which existing cognitive and learning sciences
research has shown is beneficial for constructing knowledge
[1, 8, 25]. At the same time, learners’ explanations can be
useful to other learners, if they are added to the system pool.

Explanation Selection Policy
AXIS provides learners with explanations of how to solve
problems. Soliciting explanations from learners addresses the
problem of scalable creation of explanations for a large and po-
tentially growing database of activities. But it introduces a new
challenge: how can we reliably determine which explanations
are effective for helping new users, without instructional de-
signers expending significant time vetting contributions? We
address this challenge by formulating the problem of selecting
explanations as a multi-armed bandit problem.



Figure 3. Self-explanation prompt for learner to write an explanation
for why the given answer to a math problem is correct.

Multi-armed bandit problems require a system to repeatedly
select an action, and to learn which action is most effective,
based on observing the non-deterministic results. This is
exactly the scenario that AXIS faces: each problem can be
viewed as a different multi-armed bandit. When a new user
is introduced to a problem, the system must choose which
explanation to show to the user. The explanations are thus
different action choices. After the explanation has been given
to the user, we must measure how effective it was; this is the
observed reward in the bandit formulation. In the case of an
educational system, this might correspond to having users pro-
vide feedback on how much the explanation helped them learn.
Other reward signals can be used, and in our future directions
we consider accuracy on subsequent problems. In the current
system deployment, the algorithm aimed to optimize for learn-
ers’ ratings of the helpfulness of an explanation because it
is a direct function of the actions AXIS is deciding between:
which learnersourced explanation to present. Although we
seek explanations that teach well enough that the learner gets
the next problem correct, this variable is noisy and influenced
by many variables outside system control.

By framing explanation selection as a multi-armed bandit prob-
lem, we can draw on the existing literature for an algorithm
that addresses the problem of exploitation (presenting explana-
tions that have been observed to be relatively effective) versus
exploration (experimenting with different explanations to gain
more evidence about their effectiveness). We use Thompson
sampling, a Bayesian algorithm that has been shown to have
near-optimal regret bounds and performs well on practical
problems [7]. Other bandit algorithms may also have been
effective, but Thompson sampling has advantages for future
work with instructors, because it facilitates interpretable repre-
sentations of the system’s beliefs at any point in time. We can
intuitively capture both estimates about explanations’ effec-
tiveness and the algorithm’s uncertainty about those estimates.

Like most bandit algorithms, Thompson sampling provides
a dynamic policy for choosing which explanation to give a
new user, and an algorithm for incorporating new information
to update this policy based on observing the reward after an
explanation has been selected. Thompson sampling stores an
estimated distribution for the reward for each explanation. This
distribution indicates both the expected reward from choosing
a particular explanation, and how variable the reward is. Both
of these aspects can impact what action we wish to select. The
parameters of each distribution are initially set based on a prior,
which intuitively indicates our beliefs about the effectiveness
of explanations that have not yet been presented to any users,
and then are updated based on the likelihood of the observed
evidence.

AXIS’s beliefs about the value of each explanation are repre-
sented using a Beta distribution. The prior for this distribution
is also a Beta distribution, and the likelihood is a Bernoulli
distribution. The posterior is then proportional to the product
of the prior and the likelihood, with the likelihood updated
after each reward observation; this update is easy to implement
because the Beta and Bernoulli distributions are conjugate. In
AXIS, explanations are added by learnersourcing. AXIS uses
a filtering mechanism, only adding explanations to the system
pool when: the explanation is above a minimum character
length, the explainer displays above average knowledge about
how to solve this type of problem, and the explainer rates her
explanation as likely to be helpful to other learners. Expla-
nations that meet these criteria are added as new arms to the
bandit for the problem. The prior distribution for their reward
or expected rating follows a Beta(19, 1) distribution, which
expresses beliefs analogous to having seen the explanation get
rated a 9 and a 10. Intuitively, this distribution reflects a great
deal of optimism about how helpful new explanations will be
– the expected rating is 9.5 out of 10. But at the same time
the prior will be rapidly updated, as these highly optimistic
beliefs are based on the equivalent of just two observations.
This prior encourages the algorithms to collect data about new
explanations, as discussed below.

After an explanation has been chosen and displayed to the
user, we use the user’s rating of its effectiveness (shown in
Figure 2 as the observed reward. In order to allow the same
infrastructure to be used for a binary reward signal as for
the rating reward signal, we treat each action as adding 10
total observations of a Bernoulli variable. The number of
successes is the user’s rating of the explanation’s effectiveness
(on a 10-point scale where 10 is maximally helpful), and
the number of failures is ten minus the number of successes.
The update to a posterior that is Beta(x,y) is simply Beta(x+
number of new successes,y+number of new failures).

As an example, consider a learnersourced explanation that
has been rated as five out of ten by each of the first two sub-
sequent learners who viewed the explanation. While the ini-
tial expected rating for this explanation was high, due to the
Beta(19,1) prior, this distribution also has significant uncer-
tainty. This means that ratings by even a few learners have a
large influence on this expected rating. To incorporate these
two ratings of five out of ten, the Beta distribution is updated
as described above, resulting in Beta(29,11) as the posterior
distribution. The expected rating indicated by this distribution
is only 7.25. Thus, the prior indicates a high expected rating
early on, encouraging the algorithm to use the explanation, but
the uncertainty in the prior means that collected explanations
quickly dominate the expected value of the posterior.

So far, we have described how Thompson sampling rep-
resents the observed data about each explanation and how
this representation is updated based on new observations.
The final component of Thompson sampling is its policy:
how to select an appropriate explanation for a new user.
Thompson sampling selects the explanation that satisfies
argmaxe∈explanations E[reward|θe]p(θe|D), where D is the set
of observed data and θe is the parameters of the Beta distribu-



tion for this explanation. That is, it chooses the explanation
that has highest expected value, taking into account the un-
certainty we have about the distribution of rewards from this
explanation. This corresponds to selecting each explanation
in proportion to the probability that it is the best explanation,
given the priors and observed data. Implemented via highly
efficient sampling, such a policy balances exploration and ex-
ploitation by incorporating uncertainty about the underlying
distribution.

The probabilistic policies for multi-armed bandits have several
advantages over more obvious methods, like presenting the
highest rated explanation. Apparently simpler methods raise
many questions. For example, if AXIS used ranking, how
many good ratings would a new learnersourced explanation
have to receive for AXIS to identify it as the current best? In-
stead of choosing an arbitrary heuristic (5? 10?), this question
can be answered in a principled way by capturing uncertainty
in the probability distributions used in Thompson Sampling.
These allow AXIS to encode beliefs about how noisy learner
ratings are, by defining the likelihood of broad versus narrow
ranges of ratings. Does the risk of showing students a poor
explanation outweigh the value of getting an explanation that
is 10% better than the best? Multi-armed bandits provide
an extensively studied formal model for answering questions
about balancing exploitation–giving explanations known to
help– against exploration– trying out new explanations that
may turn out to be bad or good.

Implementation
Our goal in designing AXIS was for intelligent web apps to
be easily duplicated and shared to enable end-user program-
ing [19] for online educational resources like websites, lessons,
problems, and quizzes. User groups like instructors rarely
manage servers and write code, value support in automating
some features of instruction, and wish to maintain discretion
and control over learning materials. Our mashup integration
for implementing systems like AXIS combines (more or less)
freely available web resources that bridge easy-to-use features
like WYSIWYG with underlying programming languages
and flexible APIs. The interface for presenting and collect-
ing information was created using Qualtrics, an advanced
survey software that most universities have an unlimited li-
cense to. The machine learning algorithm was written, hosted
and deployed using the Apps Script functionality in Google
Spreadsheets. Code using Javascript libraries received data
from the Qualtrics API every time a learner interacted with the
AXIS front-end, made this data available for display and ma-
nipulation in a Google Spreadsheet, implemented Thompson
Sampling to analyze the data and update the policy after each
user, and sent instructions via the Qualtrics API as to which
explanations to present. A key consideration in the choice
of these resources, despite their many technical limitations,
was availability to end-users. The combination of Qualtrics
and Google Spreadsheets/Apps Script allows those without
programming knowledge to obtain, host, modify, deploy, and
share customized intelligent educational agents that run ma-
chine learning algorithms on request. Access to the resources
we’ve created can be requested via http://tiny.cc/useaxis.

AXIS CASE STUDY: GENERATING EXPLANATIONS FOR
SOLVING MATH PROBLEMS
We deployed and tested AXIS in the context of providing ex-
planations to learners solving math problems. The target user
in our case study was an online instructional designer oversee-
ing online math problems for ASSISTments [assistments.org],
a math platform similar to Khan Academy. This platform has a
content library of over 500 math problems, hundreds of which
do not have explanations. The instructional designer wanted a
way to generate explanations to present to learners, but she had
not had much success in relying on work-study undergraduate
students to do so. We identified four math problems that she
had already written explanations for, as it would allow us all
to see how close the output of AXIS could get to explana-
tions she had already created. The problems covered algebra,
expressions, and probability, at a level appropriate to both
middle schoolers and adults. Before implementing AXIS with
students in classrooms, she wanted to see evidence that AXIS
could successfully cull explanations from untrained people.

The next section explains how we implemented and deployed
AXIS with 150 study participants solving the four math prob-
lems. Our evaluation was done in two stages: in the first stage,
we describe the explanations AXIS collects and how the pol-
icy changes over time; in the second stage, we report results
from a randomized experiment. This experiment investigates
recruits an independent group of participants to investigate
how their perceptions and success in learning are influenced
by different components of the AXIS explanation pool and
policy.

Methods: AXIS Implementation & Deployment
Participants
The deployment case study was conducted with 150 people
residing in the US who were recruited online to participate
in an education research study, via Amazon Mechanical Turk.
Each task paid $3.50 for the 40 minute study. 150 participants
roughly matches the number of students learning a math topic
at a typical middle school, and the size of a large introductory
university course.

Understanding these 150 participants’ baseline level of knowl-
edge is useful for interpreting results from AXIS. Participants
gave a subjective rating of their relevant school and work expe-
rience for solving each problem, as a percentile of the general
population. 25.0% of participants rated themselves as being
in the bottom quartile (0th to 25th percentile), 41.7% in the
second quartile, 28.6% in the third quartile, and only 4.7%
rated themselves in the top quartile (75th-100th percentile).

An objective measure of learning was also available from
whether their answers to the problems were correct or incorrect.
13.3% of participants had accuracy between 0 and 0.25, 20.0%
accuracy of 0.25–0.50, 19.1% accuracy of 0.50–0.75, and
47.5% accuracy of 0.75–1.00.

Additional demographic information was not collected, al-
though it should be in future research. We anticipate that the
trends will match typical distributions on Amazon Mechanical
Turk. For example, [6] found that the population of work-
ers on MTurk is similar to the general US population, albeit

http://tiny.cc/useaxis
assistments.org


Explanation Explanation Rating

Learner Explanation AXIS Discarded via Filtering Rule It is three over seven because after the chocolate cookie has been removed there
are 7 cookies in the jar, leaving 3 oatmeal cookies remaining. 5.2

Early Stage AXIS go based on the amount of cookies that are available and run a trial until the chocolate
cookie is picked out, then do the same for oatmeal 4.2

Later Stage AXIS
When you have 8 cookies in the jar and 5 are chocolate you have a 5/8 chance of the cookie you draw being chocolate.

When there are 7 cookies in the jar and 3 are oatmeal you have a 3/7 chance of drawing the oatmeal cookie.
To get the overall probability you need to multiply 5/8 by 3/7 which results in overall probability of 15/56

6.8

Written by Instructional Designer

The total number of cookies in the jar is 8.
Since there are 5 chocolate cookies the probability that Chris gets an chocolate cookie is 5/8

Since Chris removed 1 cookie from the jar and did not replace it or put it back there are now 7 cookies in the jar.
So, the probability that Chris gets an oatmeal cookie from the jar is 3/7 5/8 x 3/7 = 15/56

So, the probability of Chris getting a chocolate cookie on the first draw, and an oatmeal cookie on the second draw is 15/56
Type in 15/56

7.7

Figure 4. Examples of explanations for one of the problems that AXIS was deployed for. After deployment, we conducted an independent evaluation
study with new users to evaluate explanations from AXIS and other sources. The explanations were included in the evaluation study, and the mean
helpfulness ratings are shown in the second row.

slightly younger (M = 32.3), more educated (M = 14.9 years
of education), and more female (60.1%).

Procedure and System Configuration
All participants worked on the four math problems in a ran-
dom order. For each problem, after entering an answer, they
were told the correct answer. AXIS would then displayed
an explanation for why the answer was right (chosen by the
explanation selection policy) and/or a prompt for learners to
explain to themselves why the answer was right. Figure 3
shows this prompt, which emphasized the value of explaining
as a way to help the learner to understand more deeply. At
first the explanation pool was empty, so learners would instead
see only the self-explanation prompt. We defined an AXIS
Filtering Rule to automatically discard explanations that were
unlikely to be helpful to others. Specifically, AXIS added a
learner’s explanation to the explanation pool only if it was
longer than 60 characters, the learner rated herself as having
above average knowledge of how to solve problems like the
current one, and the learner rated the likelihood of the expla-
nation helping another learner as higher than 6, on a scale
from 1 (Zero Chance) to 10 (Absolutely Likely). Once added
to a problem’s explanation pool, the explanation would be
probabilistically selected for presentation to future learners
working on the problem, based on how highly it had been
rated whenever presented. A separate explanation pool and
policy was maintained for the explanations in each of the four
problems.

Results: Description of AXIS Explanation and Policy
Adding Learnersourced Explanations to the Pool
By interacting with AXIS, 150 learners generated between
60 and 72 explanations for each of the four problems. The
AXIS Filtering Rule added 12, 9, 12, and 12 of the learner-
sourced explanations to the pools for the 4 problems. Figure 4
illustrates the explanations that learners generated, and how
AXIS processed them. The Discarded using Filtering Rule
explanation generated by a learner was discarded because it
did not meet the AXIS Filtering Rule. The Early Stage AXIS
explanation was added to the pool via the filtering rule, but
analysis of its ratings by the selection policy resulted in its
probabilistic phasing out – continually decreasing probability
of being sampled for a new learner. In contrast, the selection
policy has identified the Later Stage AXIS explanation as one
of the highest rated, with a higher probability of being sampled
for users. For comparison is the explanation our ASSISTments

instructional designer wrote for this problem. The Explanation
Rating column provides mean helpfulness ratings that were
collected in the experiment we conducted to evaluate AXIS.

Dynamic Evolution of AXIS Policy
Once explanations are collected from the learnersourcing inter-
face, AXIS automatically analyzes each new learner’s ratings
of how helpful an explanation was for learning, and imme-
diately updates the probabilistic policy for which explana-
tions should be presented to the next learner. As an illustra-
tion, we examine the policy for one of the four problems, the
Compound-Probability problem. Figure 5 shows two snap-
shots of how this policy dynamically varied as more learners
used the system. The policy for this problem can be repre-
sented as a probability distribution over the ten explanations
AXIS selected for presentation. Figure 5 shows the AXIS
probabilistic policy for determining which explanation would
be seen by the 76th learner (after the first 75 learners) and the
policy for the 151st learner (after all 150 AXIS learners).

This illustrates a challenge with evaluating the explanations
while the AXIS system is changing dynamically. To evaluate
the AXIS explanations and policies we randomized their pre-
sentation to a new group of 524 people, collecting ratings of
explanations, along with subjective and objective measures of
whether these explanations influenced learning.

EVALUATION OF AXIS EXPLANATIONS AND POLICY
To evaluate whether the AXIS system was able to collect and
identify useful explanations from learners, it is necessary to
determine if AXIS successfully picks explanations that are
helpful to future learners and discards ones that are not. Our
experiment compared the quality of the explanations selected
by AXIS to explanations AXIS filtered out and discarded, and
to the original explanations that the ASSISTments instruc-
tional designer had written for the problems. An ambitious
secondary goal of the experiment was to investigate whether
these learnersourced explanations could impact learning.

Methods
Participants
The randomized experiment recruited 524 new people to par-
ticipate in a HIT posted on Amazon Mechanical Turk. Each
HIT paid $3.50 for the 40 minute study.

Procedure
The study consisted of a learning phase in which participants
solved the four problems and provided ratings for explanations,



Figure 5. AXIS Policy for the explanation pool for one of the four problems. The policy’s probability distribution over the ten explanations that were
added to the pool during deployment is shown after 75 learners (row 2) and after 150 learners (row 3).

followed by an assessment phase where they had to solve
twelve problems without being given any feedback.

Learning Phase. In this phase, participants were randomly
assigned to a number of different conditions, in order to evalu-
ate a wide range of explanations. One condition was solving
Problems with answers only, standard practice for many on-
line problems without explanations. The other conditions all
included explanations that were displayed after seeing the cor-
rect answer to a problem. For any one of the four problems,
participants were randomly assigned to one of many condi-
tions. They could see one of the explanations from the AXIS
pool for that problem, an explanation that was Filtered out by
AXIS and not presented, or an original explanation Written by
Instructional Designer at ASSISTments. This provided two
important comparisons to AXIS explanations and policy; a
lower bound in the form of explanations AXIS filtered out and
did not present, and an upper bound in the form of the high
quality explanations written by the original instructor.

Participants were prompted to rate how helpful these expla-
nations were for learning, on a scale from 1 (Not Helpful At
All) to 10 (Extremely Helpful). Moreover, participants were
asked to indicate how likely they were to solve future problems
like the one they were working with. They made this rating
on a scale from 1 (Zero Chance) to 10 (Absolutely Certain).
By comparing these ratings before and after learners received
different explanations, we had a more direct measure of the
impact of different explanations on people’s learning.

Assessment Phase. The ideal outcome for the learnersourced
explanations is impact on objective behavioral measures of
learning, especially transfer of knowledge to novel problems.
The learning phase was followed by problems designed to
assess whether participants learned from particular explana-
tions. For each of the four original problems, there was an
isomorphic problem where only the numbers and surface de-
tails (e.g., names in an expression) were changed. To measure
transfer of the knowledge gained from explanations, partici-
pants were provided with two problems that were novel but
tested the same topic as the original problem (e.g., compound
probability, using variables in algebraic expressions).

Results: Usefulness of Explanations for Learners
Figure 6 shows data about the effects of providing explanations
while people solved math problems. These diverse measures
ranged over rating explanations, subjective judgments about
solving future problems, and objective measures of accuracy

on novel problems. To investigate the benefits of explanations
from AXIS, we used randomized comparisons to explanations
(or lack thereof) from a range of sources. Participants were
randomly assigned to see: No explanation (original problems),
AXIS explanations, learner explanations discarded by AXIS
filtering rule, or explanations written by the instructional de-
signer. All our reported analyses used linear mixed–effect
models, including a fixed factor representing which explana-
tions were provided. This factor had a significant effect in all
analyses conducted, all ps < 0.05. Problem type (since four
different probability and algebra problems were used) was a
within-subjects variable that was incorporated as a random
effect. All statistics reported in this section concern pairwise
comparisons conducted within the mixed-effects model, unless
otherwise stated.

To evaluate the effectiveness of the AXIS policy at a particular
point in time, we must consider both how good each explana-
tion is, and how likely it the explanation is to be shown under
the current policy. The evaluation experiment randomized pre-
sentation of every explanation in the AXIS pool to learners, to
assess its impact on their behavior and their perceptions of its
helpfulness. For example, to quantify the overall helpfulness
of AXIS at timestep 150, we compute a weighted average
of the helpfulness of all the explanations in the pool at that
time, where the weights were determined by the probabilistic
policy. This builds on the approach in [7] for assessing the
quality of a bandit’s policy. We also computed measures of
the benefits of the AXIS explanation pool and policy after 75
learners (AXIS-75), a subset of the AXIS explanation pool and
policy after 150 learners (AXIS-150). This data is shown in
Figure 6 to provide a qualitative snapshot of how AXIS was
changing over time.

Rated Quality of AXIS Explanations
The learnersourced explanations AXIS presented were rated
as significantly more helpful for learning than the explanations
removed by the filtering rule (M = 6.83 vs. 6.03, SE = 0.28,
p < 0.01).This provides evidence for a reliable improvement
over learnersourced explanations that were not screened and
optimized by AXIS.

Increase in Perceived Skill at Solving Problems
For each problem in the learning phase, participants were
asked to rate how likely it was that they could solve problems
like it without any help. They responded on a scale from 1
(Zero Chance) to 10 (Absolutely Certain). After attempting
the problem, seeing the answer, and (depending on condition)



Figure 6. Data from evaluation experiment about effects of different (or no) explanations, reflected in means for: Subjective Rating of Explanation
helpfulness for learning; increase in Self-Reported Skill at solving problems; and increase in objective Accuracy in solving problems.

interacting with explanations, the next page showed them the
problem and asked them to make the judgment again about
their likelihood of solving it. We analyzed the increase from
before to after the problem as a measure of how much different
explanations resulted in learners perceiving that they would
be better able to solve future problems. Figure 6 shows these
values in the third row.

Learners who received the AXIS-150 explanations were more
likely to experience increases in their expectation that they
could solve future problems, when compared to those learners
simply practicing problems without explanations. (M = 0.71
vs. -0.01, SE = 0.13, p < 0.001). There was no significant
difference in learners’ beliefs about being better able to solve
problems, whether they received the AXIS explanations or
those written by the ASSISTments instructional designer (M
=0.71 vs 0.48, SE = 0.23, p = 0.14).

Learning Gains in Accurately Solving Problems
The most ambitious test of AXIS is whether it provides expla-
nations to learners that measurably increase their success in
solving problems. Participants might report that explanations
from other learners were helpful, and even feel a sense of
understanding and capacity for solving problems. But these
explanations could still fail to produce any actual learning
or lasting acquisition of knowledge. Participants’ accuracy
in solving the four problems in the learning phase was used
as a baseline of knowledge, and Figure 6 shows the overall
increase in accuracy from the learning to assessment phase,
as a result of receiving AXIS explanations, explanations from
other sources, or no explanations.

In fact, AXIS explanations did not merely have subjective ben-
efits. Participants were significantly more likely to solve future
problems after receiving AXIS explanations, when compared
to practicing of problems. A pairwise comparison within the
mixed-effect model revealed a significant increase in accuracy
from the initial problems to the assessment problems, M =
12% versus just 2.7%, SE = 0.027, p < 0.05.

Of course, it might seem obvious in hindsight that providing
any explanation will increase learning and success on future
problems. However, this was not the case. The learnersourced
explanations AXIS discarded did not provide any learning ben-
efits beyond normal practice of math problems (M = 2% vs 3%,
p = 0.86). Simply providing explanations was not sufficient

to support learning, and these explanations were significantly
less beneficial for learning than explanations delivered by the
AXIS policy (M = 12% vs. 2%, SE = 0.04, p < 0.029).

The AXIS explanations also increased success in solving novel
transfer problems that required going beyond the explicit in-
formation in the explanation (differences of 9-12%, SE = 0.03,
0.04, p < 0.01). Overall, it was encouraging that there were no
significant differences between learnersourced explanations
curated by AXIS, and the explanations written by the ASSIST-
ments instructional designer herself (all ps > 0.30).

QUALITATIVE RESULTS
Instructional Designer’s Perspective
Our hope is that AXIS makes it easy for instructors to add a
plugin to problems and educational content that will build a
pool of explanations, and automatically learn which ones to
present. We conducted a 30 minute semi-structured interview
with the instructional designer at ASSISTments to show her
several of the AXIS explanations. She said that the top-rated
AXIS learnersourced explanations were comparable to the
explanations she had written, and were of sufficient quality to
deploy to the middle school students currently using ASSIST-
ments. She admitted a natural preference for the explanations
she herself had written, but believed the quality was suffi-
ciently similar to the AXIS learnersourced explanations, that
the best test to discriminate them would be actually comparing
their effect on student learning. She was surprised but pleased
that the learning benefits were comparable in our evaluation
experiment. She also commented on how the AXIS plugin
could be used more generally than explanations for math prob-
lems, since textual explanations can fit on any webpage in a
course, or take the form of motivational messages and tips for
learning.

Currently we are building a Learning Technologies Interop-
erability (LTI)–compliant connector that would allow AXIS
to be embedded within ASSISTments and all LTI–compliant
MOOC platforms and on-campus Learning Management Sys-
tems. This currently includes Coursera, EdX, Moodle, and
Canvas.

Moreover, while AXIS does not require manual intervention
by instructors for the system to run, it is designed to enable an
instructor to interact with the explanation pool and algorithm at
any point, through examining data or looking at explanations



in the Google Spreadsheet. By typing into cells of the Google
Spreadsheet, instructors can freeze and override AXIS’s pol-
icy changes, or set the policy manually. For future research
we will explore using interactive machine learning to allow
instructors to work cooperatively with AXIS by adding their
own explanations, and adjusting weights for explanations ac-
cording to their opinion, by typing different prior probabilities.
AXIS could also be used in conjunction with systems for auto-
matic generation of educational content beyond explanations,
such as hints [4].

Learner’s Perspective
The reciprocity of help might encourage learners to participate
in learnersourcing explanations, even when individual benefits
are not apparent at the time of contribution. By providing
explanations that help future learners, learners know they will
sometimes benefit from explanations previous learners have
provided for them. In addition, we took a step further to quali-
tatively explore direct benefits to learners in our deployment.
After using the system they answered an online form with
open-ended questions about what they thought of the learning
activities, how they felt about writing explanations, and what
they found helpful for learning. Some learners candidly stated
that explaining wasn’t helpful, or that they did not bother to
explain: “I didn’t write explanations because I don’t think I
could get it down on paper.”

A substantial number acknowledged the challenge in writing
explanations (“While it can sometimes be a bit frustrating”)
but were pleasantly surprised by the value: “It lets you really
understand the logic behind it so you are more able to solve
similar problems,” and “Talking it out really helps. I will try
and use that strategy for other problems besides math.”

DISCUSSION AND LIMITATIONS
While AXIS and its evaluation showed some initial promise
in generating explanations, there are limitations to the cur-
rent system and the evaluation methods. AXIS focuses on
presenting a single best explanation to all learners, agnostic
to their level of knowledge and preference. Personalization
of different explanations to different profiles of learners was
not explored. Future versions of AXIS could use the learner-
sourcing interface to elicit information that could be used to
personalize delivery of explanations across learners– like study
preferences or current state of confusion. AXIS could then
implement Thompson Sampling for contextual multi-armed
bandits, in which the reward of an action depends on a context
vector of side information [14]. The reward of an explanation
would therefore depend on a set of variables about the user. A
second limitation was that our participants were paid crowd
workers on Mechanical Turk. While these workers share more
demographic features with online learners than convenience
samples in typical laboratory studies, future deployments will
embed AXIS within platforms like ASSISTments and edX to
help authentic students, who may be less (or more) motivated.

There are clear limitations to having AXIS optimize for a
reward signal like learners’ subjective ratings of explanation
quality. We chose to have AXIS select explanations based
on their ratings rather than accuracy on subsequent problems
because: it was continuous rather than binary, immediately

available, and arguably less influenced by factors extraneous
to the explanation. However, an extensive literature reveals
learners’ failures in metacognitive awareness of what they do
and do not know, such as the illusion of explanatory depth [22]
reveal people’s great surprise at their erroneous assumptions
about being able to provide detailed explanations. While this
version is limited to explanation rating, a general strength
of AXIS is that it allows instructors to set variables that the
multi-armed bandit takes actions to optimize. Future work can
explore reward variables like performance on quizzes, contin-
ued persistence, or even attitudes towards learning, by varying
which versions of explanations and other educational content
are presented. The underlying approach AXIS takes in using
machine learning to do automatic and real-time optimization
of educational content should also be generalized beyond its
current application to explanations for solving problems.

The current results do not shed light on many design choices,
like knowing when sufficiently many explanations have been
collected. Future research can investigate these and other
issues, like which filtering rules should be used to add ex-
planations to the pool. This paper had the narrower aim of
describing the first implementation of the AXIS system, and
evaluating whether it was even effective with the small sam-
ples of 75–150 that are typical in larger university courses, and
K12 classes.

We chose to separate the evaluation from the deployment phase
to provide a rigorous assessment of AXIS performance even
when limited to a crowd of 75–150 learners. This allowed for
greater statistical power, increasing from 150 participants in
deployment to 524 in evaluation. Even with 524 participants,
any individual explanation from AXIS was only seen by an
average of 30 people. The evaluation study also included
additional extensive measures of learning that would have been
onerous in the system deployment. However, when thousands
of participants are easily available, future system deployments
can build on the current work to integrate deployment for
practical use with in vivo evaluation.

CONCLUSION AND FUTURE WORK
Generating explanations for a large number of online learning
materials requires significant time and effort from instructors.
In this paper, we present an alternative model that engages
learners to help generate and refine explanations. AXIS com-
bines techniques from crowdsourcing and machine learning to
achieve this goal. In an experiment with math problems, AXIS
successfully led learners to produce quality explanations that
helped improve the learning of future users.

While we focused on explanations to math problems in this pa-
per, our approach can generalize to producing and improving
explanations for other types of online learning content: adding
why information to how-to instructions that teach procedural
skills, adding more illustrative examples in a learning material,
or clarifying task instructions on online workplaces (e.g., Me-
chanical Turk) to improve worker understanding and success.
Any instructor or researcher can register interest in collabo-
ration or access to AXIS via http://tiny.cc/useaxis, or build
adaptive online resources using the MOOClet formalism [24]
we used to implement AXIS.

http://tiny.cc/useaxis
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