PETALS: Improving Learning of Expert Skill in Humanitarian Demining

Lahiru Jayatilaka (Red Lotus Technologies)
David M. Sengeh (IBM Research - Africa)
Charles Herrmann (Cornell University)
Luca Bertuccelli (Sensitech)
Dimitrios Antos (Verily Life Sciences)
Barbara J. Grosz (Harvard School of Engineering and Applied Sciences)
Krzysztof Z. Gajos (Harvard School of Engineering and Applied Sciences)
war between Tamil Tigers and Sri Lankan army

1983–2009
war between Tamil Tigers and Sri Lankan army 1983–2009

Photo: Devaka Seneviratne
6,461 casualties in 2015 in 61 countries
78% were civilians
38% were children

Source: Landmine Monitor 2016
DANGER MINES!

Photo: Adam Jones
Lahiru’s Mission:
Use the power of Computer Science to improve the safety and efficiency of humanitarian landmine clearance
Landmine Clearance Basics

- Landmine detection still performed primarily with handheld metal detectors
Landmine Clearance Basics

- Landmine detection still performed primarily with handheld metal detectors
- For every landmine, 100 pieces of metallic debris are found
Landmine Clearance Basics

• Landmine detection still performed primarily with handheld metal detectors

• For every landmine, 100 pieces of metallic debris are found

• When mines are placed in a cluster configuration, it is hard to tell how many mines there are and where they are located
Landmine Clearance Basics

- Landmine detection still performed primarily with handheld metal detectors
- For every landmine, 100 pieces of metallic debris are found
- When mines are placed in a cluster configuration, it is hard to tell how many mines there are and where they are located
Expert Approach: Metallic Signature Method

- Landmine detection still performed primarily with handheld metal detectors
- For every landmine, 100 pieces of metallic debris are found
- When mines are placed in a cluster configuration, it is hard to tell how many mines there are and where they are located
- Experts have a way of dealing with clutter and cluster configurations, but their method is hard to teach
Expert Approach: Metallic Signature Method

• Landmine detection still performed primarily with handheld metal detectors

• For every landmine, 100 pieces of metallic debris are found

• When mines are placed in a cluster configuration, it is hard to tell how many mines there are and where they are located

• Experts have a way of dealing with clutter and cluster configurations, but their method is hard to teach
Key Idea: Visualize Metallic Signatures
Key Idea: Visualize Metallic Signatures
Approach 0: Support Deminer in the Field
Approach 0: Support Deminer in the Field

- Camera
- Display
- Trigger
- Color patch
Approach 0: It Works! But...

Approach 1: Scaffold Trainees’ Learning
Approach 1: Scaffold Trainees’ Learning
Approach 1: Scaffold Trainees' Learning
Approach 1: Scaffold Trainees' Learning
Approach 1: Scaffold Trainees' Learning
Approach 1: Scaffold Trainees’ Learning
Approach 1: Scaffold Trainees' Learning
Approach 1: Scaffold Trainees' Learning
Approach 1: Lessons Learned

- Real-time visualizations were not effective

- PETALS allowed instructors to monitor performance of multiple trainees simultaneously

- PETALS allowed instructors to communicate personalized process feedback after completion of each practice lane
Approach 2: Support Instructors

Instructor console
Overhead camera
Tracking computer
Training lane
Instructor console
“I can walk up here [to the instructor console] and within 2 seconds I can say, ‘he doesn’t need anymore help’, ‘he doesn’t need anymore help’ ... or ‘this guy might need help’.”

—an HDTC instructor
Approach 2: Support Instructors
Summative Evaluation
Summative Evaluation
Summative Evaluation

1. Initial lecture
Summative Evaluation

2. Training
Summative Evaluation

3. Exam
1. Initial lecture
2. Training
2. Training
3. Exam
Take Aways

• Metal detectors are still the primary tool in humanitarian landmine clearance
Take Aways

• Metal detectors are still the primary tool in humanitarian landmine clearance.

• The Metallic Signature technique is used by experts to reason about type of buried objects and cluster configurations. But this technique is hard to learn.
Take Aways

• Metal detectors are still the primary tool in humanitarian landmine clearance

• The Metallic Signature technique is used by experts to reason about type of buried objects and cluster configurations. But this technique is hard to learn.

• Real time visualization of metallic signatures increased cognitive burden on trainees instead of reducing it.
Take Aways

• Metal detectors are still the primary tool in humanitarian landmine clearance.

• The Metallic Signature technique is used by experts to reason about type of buried objects and cluster configurations. But this technique is hard to learn.

• Real time visualization of metallic signatures increased cognitive burden on trainees instead of reducing it.

• Visualization helped trainers provide trainees with immediate and personalized process feedback.
Take Aways

- Metal detectors are still the primary tool in humanitarian landmine clearance.
- The Metallic Signature technique is used by experts to reason about type of buried objects and cluster configurations. But this technique is hard to learn.
- Real time visualization of metallic signatures increased cognitive burden on trainees instead of reducing it.
- Visualization helped trainers provide trainees with immediate and personalized process feedback.
Innovation = Invention + Implementation