Storage 4: Consistency and Copies

• Learning Objectives
 • Define cache consistency
 • Determine which caches are consistent and which are not
 • Evaluate the efficacy of a cache: Average access time
Where do we find caches?

User programs

A process

Kernel
Writing to the cache: HIT

Application

Cache

Data Source
Write cache policy: **Write Back**

1. Please write foo
2. Do I have that item?
3. Yes, I do. I will update the cache
Write cache policy: **Write Through**

1. Please write foo
2. Do I have that item?
3. Yes, I do. I will update the cache
4. And I will write back to the data source as well.
Inconsistency in Action

User programs

Kernel

Process 1

stdio cache

File descriptor table
Cache Consistency

User programs

Kernel

File system buffer cache

Your file object

File descriptor table

stdio cache

Process 1

Process 2

stdio cache

File descriptor table
Screen Capture

• Both stdio and syscall allow processes to write to files; you can run multiple copies, all of which will write to the same file (each of stdio and syscall write to different files).
• What happens to the output?
• Why?
Evaluating a Cache:

• We showed that we can use hit rate to compare cache replacement algorithms.
• But how do we compare fundamentally different caches?
• Assume it takes 1 time unit to access your cache.
• Which is better:
 • A data source that takes 100 time units, which will produce a 95% hit rate
 • A data source that takes 50 time units, but will produce an 85% hit rate?
Evaluating a Cache: Average Access Time

• Assume it takes 1 time unit to access your cache.
• Which is better:
 • A data source that takes 100 time units, which will produce a 95% hit rate
 • A data source that takes 50 time units, but will produce an 85% hit rate?

\[
\begin{align*}
95 \times 1 &+ 5 \times 100 = 595 \\
85 \times 1 &+ 15 \times 50 = 85 + 750
\end{align*}
\]
Evaluating a Cache: Average Access Time

- Assume it takes 1 time unit to access your cache.
- How good would the 50 time unit cache need to be to produce the same performance as the 100 unit cache?
 - A data source that takes 100 time units, which will produce a 95% hit rate \((\text{avg access time} = 5.95 \text{ units})\)
 - A data source that takes 50 time units, but will produce an 85% hit rate? \((\text{avg access time} = 8.35 \text{ units})\)