CS263
Wireless Sensor Networks

Lecture 1: Introduction

Prof. Matt Welsh
Harvard University

January 29, 2009
Introduction: Wireless Sensor Networks

- Tiny, low-power, wireless sensors
- Minimal CPU, memory, and radio
 - Typically 8 Mhz CPU, 10 KB RAM
 - 100 m radio range, IEEE 802.15.4
- Extremely low power
 - A pair of AA batteries can power a mote for months or years!
Key WSN Hardware Characteristics

- Limited CPU
 - Slow (8 MHz) -- No floating point computation.
 - 512-point FFT takes 450 ms, IFFT takes 144 ms.

- Limited memory
 - 10 KB of RAM and 60 KB of program ROM.
 - Much of this taken up by system software.

- Potentially lots of storage
 - Some designs support up to 2 GB of MicroSD flash
 - But, expensive to access: 13 ms to read/write a 512-byte block; ~ 25 mA.

- Low-power radio
 - 802.15.4 best case performance: 100 Kbps or so (single node transmitting, no interference, short range)
 - Approx 50 m range, and very unreliable!!
Wireless Technologies Comparison

Complexity/power/cost

- **CC1000**
 - 38.4 kbps

- **Bluetooth**
 - 720 kbps

- **802.15.4 Zigbee**
 - 250 kbps

- **802.11b**
 - 11 Mbps

- **802.11a**
 - 54 Mbps

- **802.11g**
 - 54 Mbps

Data rate
Wireless Technologies Comparison

<table>
<thead>
<tr>
<th>Type</th>
<th>Data rate</th>
<th>Transmit pwr</th>
<th>Range (approx)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b</td>
<td>11 Mbps</td>
<td>100 mW</td>
<td>100' – 300'</td>
<td>~$100</td>
</tr>
<tr>
<td>802.11g</td>
<td>54 Mbps</td>
<td>100 mW</td>
<td>< 802.11b</td>
<td>~$100</td>
</tr>
<tr>
<td>802.11a</td>
<td>54 Mbps</td>
<td>100 mW</td>
<td>80'</td>
<td>~$100</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>720 kbps</td>
<td>1 mW / 30 mW</td>
<td>30' / 300'</td>
<td>~$5</td>
</tr>
<tr>
<td>802.15.4</td>
<td>250 kbps</td>
<td>1 mW</td>
<td>30 – 225'</td>
<td>~$5</td>
</tr>
</tbody>
</table>
Power Consumption

<table>
<thead>
<tr>
<th>Type</th>
<th>Current (receive)</th>
<th>Current (transmit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b</td>
<td>170-350 mA</td>
<td>285-490 mA</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>35 – 300mA active</td>
<td>35 – 300 mA active</td>
</tr>
<tr>
<td>802.15.4</td>
<td>19.7 mA</td>
<td>17.4 mA</td>
</tr>
</tbody>
</table>
WSN Research Phenomenon...
Environmental Monitoring
UCLA, UC Berkeley, many others
Gunshot Detection

PinPtr, Vanderbilt
Monitoring Volcanic Eruptions
Volcan Reventador, Ecuador, July/Aug 2005

Radio modem
GPS receiver
Konrad
Four-channel sensor node

Solar panels for charging car battery (used by FreeWave and GPS only)
Glacier Monitoring
Glacsweb, Univ. Southampton
Forest Fire Detection

FireWxNet, Univ. Colorado
Emergency Medical Care and Disaster Response

CodeBlue, Harvard
Neuromotor disease assessment

Mercury, Harvard

Data acquisition controlled by laptop

Raw data

Feature extraction

Classification (e.g., UPDRS scores)

SHIMMERs

Master node

SHIMMER in armband

© 2009 Matt Welsh – Harvard University
Urban-Scale Monitoring
CitySense, Harvard
The Macroscope

- *For the first time*, sensor networks allow us to:

 1) Observe the world (environment, buildings, people, etc.) at very high spatial resolutions;

 2) Make these observations continuously; and

 3) Collect the observations in digital form.

 - Some have referred to this concept as a “macroscope” -- a scientific instrument that observes entire systems.
Intelligent Instrumentation

- Sensor networks are not just passive instruments!

- We can push processing and “intelligence” into the network.

- Processing can happen at many levels:
 - On individual sensor nodes.
 - At aggregation points within the network.
 - At the base station or gateway.

- Sensor networks fundamentally change the notion of “scientific observation” from a *passive* process to an *active* one.
 - This has a deep impact on many aspects of science.
Fundamental Research Questions

• Low-power wireless networking
 • Dealing with complexities of RF propagation – not a “disc model”
 • Limited bandwidth, very expensive to transmit, receive, and even listen!
 • Every node is a router – addressing, route selection, reliable transfers

• Operating system design
 • Motes have ~10 KB of RAM. Can't run Linux.
 • What are the right abstractions for concurrency, power management, communication?

• Distributed network services
 • Nodes in a WSN don't exist in isolation. They must coordinate their behavior.
 • Localization – how do you know where nodes are? Use RF signals? Ultrasound?
 • Time synchronization – how do nodes agree on a global clock?
Fundamental Research Questions (2)

- In-network sensor data processing
 - Communication is expensive: Sending one packet costs same energy as thousands of CPU cycles.
 - Always better to process the data closer to its source
 - Example: aggregation – nodes can collect data locally, compute aggregates (mean, max, min, etc.) rather than sending raw data
 - Tracking: Sensors can collaborate to detect, localize, and track a target (tank or animal)

- Mobile, acoustic, and camera-based sensing
 - Very different sensing modalities and challenges
 - Acoustic and vision sensors require substantial computational horsepower
 - Mobile sensing involves (possibly unpredictable) variations in radio connectivity
 - How do we deal with noisy and intermittent measurements of the world?
What will this class be like?

This is a graduate research seminar.
- We will mostly be reading and discussing research papers
- Roughly 4 papers a week

Prerequisites:
- Must either be a CS grad student or have taken either CS161 or CS143.
- Must feel comfortable programming in C.

One programming assignment
- Introduce you to programming sensor networks using the Pixie OS and NesC language
- Run on the Harvard MoteLab sensor network testbed

Research project
- You pick the topic, write a proposal, do the project, give presentation, write final report
Readings and Reviews

- You are responsible for completing assigned readings *before* lecture
 - Usually 2 papers for each class

- Email a short review of the reading to cs263-staff@eecs
 - Review is due before beginning of lecture
 - A couple of paragraphs about the reading
 - Highlight the main “take away” point of the reading
 - Provide a short critique of the work as well
 - *Be concise, critical, and thoughtful*

- Reviews constitute 25% of your course grade
 - You are allowed to miss two classes of paper reviews over the term
Course Blog

- **http://harvard-cs263.blogspot.com**

- Blogging class discussions
 - Each class, one person will blog the discussion and post it later that day
 - You are welcome to post comments, thoughts, musings, etc. as comments
 - Or, you can blog anything else you want (related to the course material).
 - This blog is public so be technically accurate and respectful!
Programming Assignment

• There is one programming assignment for the course
 • Main goal: Get experience programming a real sensor network
 • You will use this experience for your course project

• Project will involve designing a multihop routing protocol, running on the Pixie OS, on the Harvard MoteLab sensor testbed

• You should be comfortable programming in C
Research Project

- Main goal of this course: Do some research
 - Work individually or in pairs (pairs preferred)
 - Select a juicy research problem that fits the theme of this course

- Use the project to further your own research goals
 - Ideal project is one that fits in with your own thesis topic in some way
 - Focus of project need not be on “systems” and “networks”
 - e.g., theory, AI, languages, hardware design, etc. are all valid
 - As long as it ties into the course topic in some way
Project Requirements

• Project Proposal
 • Short (4 pages max) on what you propose to do, why the project is interesting, and how you plan to get started
 • Should include rough schedule of project milestones
 • Short project update due midway through semester – short email on where you are and how you plan to finish up your project

• Research presentations (last two days of class)
 • Give a short, fun talk telling us what you did
 • Learn from each other's experiences

• Research papers
 • Conference-style research paper (12 pages max) detailing your project
 • Goal is to get used to writing these things – it's important
 • I can work with you afterwards to turn it into a conference/journal submission
Project Ideas

- Develop an adaptive time-sync protocol that tunes packet transmission rates based on energy availability

- Develop a sensor duty-cycling algorithm that accounts for energy drain and energy collect (e.g., using solar panels)

- Develop a tool to characterize and visualize energy and bandwidth consumption across a sensor network, use to identify hotspots and load imbalance

- Design a new sensor scripting language that includes resource constraints as a primitive

- Develop a technique to automatically detect and diagnose software and communication failures in a sensor network
Course staff and administrivia

- Instructor: Matt Welsh (mdw@eecs)
 - Office: Maxwell Dworkin 233
 - Office hours: Thursdays, 10am – 12pm

- TF: Bor-rong Chen (brchen@eecs)
 - Office: Maxwell Dworkin 238
 - Office hours: TBD
 - General course consulting and help with programming assignment

- All papers, due dates, etc. on course web page:
 - http://www.eecs.harvard.edu/~mdw/course/cs263/
Syllabus

- http://www.eecs.harvard.edu/~mdw/course/cs263

- Primarily research papers from the last few years of key conferences in the area: SenSys and IPSN in particular.

- Most papers about 14 pages in length.
Other Policies

• Enrollment will be limited to 15 students
 • Preference given to grad students in CS, then grad students in other disciplines, then undergrads in CS, then undergrads in other disciplines.

• No laptops!
 • Unless you are blogging that week.

• No pass/fail grading option for this course.
Grading

- 25% - Class participation and discussion
 - Come to class, participate in the discussion, ask questions, speak up!

- 25% - Paper summaries
 - Allowed to miss two days' worth of summaries during the term

- 10% - Programming assignment

- 40% - Final project
 - Graded on original proposal, final report, and in-class presentation
Next lecture

• Two papers to read for next lecture:
 • System architecture directions for networked sensors
 • Jason Hill et al., ASPLOS 2000
 • Analysis of a Large Scale Habitat Monitoring Application
 • Robert Szewczyk, SenSys 2004

• Send reviews to cs263-staff@eecs before class!

• Come prepared to talk!!!