Fiji:
A Macroprogramming Framework for Data-Intensive Sensor Network Applications

Matt Welsh
mdw@eecs.harvard.edu

Harvard
School of Engineering
and Applied Sciences
New class of computing platform:

- Low power devices with embedded CPU, radio, and sensors

Tmote Sky platform (Moteiv, Inc.)

- 8 MHz (TI MSP430) CPU, 10 KB RAM, 60 KB ROM
- 2.4 GHz IEEE 802.15.4 (“Zigbee”) radio (Chipcon CC2420)
- 1 MByte flash for data logging

Designed for low power operation

- 1.8 mA CPU active, 20 mA radio active
- 5 uA current draw in sleep state

Runs a lightweight embedded OS, called TinyOS (www.tinyos.net)

Cost: About $75 (with no sensors or packaging)
The Problem

Sensor networks increasingly used for data intensive applications:
- Structural monitoring: vibrations, seismic response
- Geophysical monitoring: earthquakes, fault zones, volcanoes
- Biomedical monitoring: EKG, EEG, movement, physical activity

Challenging data fidelity and processing requirements
- Not just a matter of “periodic aggregation up a spanning tree”
- Instead: sophisticated signal processing, reliable data delivery, and fine-grained time synchronization

Domain scientists want to develop sophisticated codes
- But programming sensor nodes is hard!
- End users should not have to deal with the low-level details of embedded processors, sensors, energy management, flash storage, and radio communication.
The Solution: Fiji

Fiji is a **distributed operating system and programming framework** for sensor networks that supports:

- High-fidelity applications with precise timing and high-resolution data
- A resource aware programming model that supports adaptation to changing resource availability
- High-level programming languages at multiple levels of abstraction

Fiji is designed to support **macroprogramming**

- Program the network as a whole, not individual nodes
- Automatically **compile** from global description to local node program

Primary goal:

- *Make it easy for domain scientists to develop complex, distributed applications for sensor networks that adapt to resource availability.*
Outline

Application vignettes and motivation.

Overview of the Fiji system.

Pixie: An OS for resource-aware programming.

Flask: A dataflow-oriented intermediate language.

Regiment: A macroprogramming language for spatial computations.

Wrap-up.
Application Vignette: Wireless Sensors for Volcanic Monitoring

Nodes monitor seismic and acoustic signals
- 100 Hz data rate, custom 24 bps ADC card
- 8.5 dBi antenna to extend range

Core research challenges:
- Reliable data collection over multihop routes
- Event detection to trigger data capture and download
- Time synchronization to permit signal correlation
- Remote monitoring and administration of network in hostile environment

Reventador deployment: 16 nodes deployed for three weeks
- Linear topology spanning ~3km radially from vent; base station located a further 4 km from deployment site.
- Captured data on hundreds of earthquakes and eruptions
- Extensive post-processing to correct timing errors and validate data
1) Earthquake or eruption occurs

2) Nodes detect seismic event

3) Each node sends event report to base station

GPS receiver for time sync

Base station at observatory
Reventador Volcano, Ecuador (July-August 2005)

- Solar panels for charging car battery (used by FreeWave and GPS only)
- Radio modem
- GPS receiver
- Konrad
- Four-channel sensor node
Earthquake location can be derived from P-wave arrival times at each station.
In-network Earthquake Localization

1) Pick first arrival of P-wave at each station

2) Use velocity model of volcano's interior to derive earthquake origin time and location
In-network Earthquake Localization

Distance from vent

2005-08-15 16.04.37
Parkinson's Disease and Stroke Rehab Monitoring
with P. Bonato, Spaulding Rehabilitation Hospital

High-fidelity monitoring of limb motion
- Triaxial accelerometer, triaxial gyroscope
- 6 channels per node, 100 Hz per channel
- Full resolution signal exceeds radio bandwidth
- Store raw data to flash (2 GB MicroSD)

Nodes perform local feature extraction
- RMS, jerk, dominant frequency, other features...
- Computationally intensive processing
- Requires communication (e.g., time sync, and signal correlation across nodes)

Offline classification to map features to clinical scores
- UPDRS scale

© 2007 Matt Welsh – Harvard University
Things to notice about these applications...

High data rates with fine-grained time synchronization requirements
- 100 Hz sampling rate, multiple channels per node
- Timing accuracy is paramount to support signal processing!

Fairly complex domain-specific processing:
- P-wave arrival computation, velocity model to extract earthquake locations
- Domain-specific feature extraction and classification of motion sensor data

Applications should adapt to changing resource availability
- e.g., Variations in sensor data, changing energy reserves, or fluctuations in radio bandwidth
- Adaptation is also highly application-specific
Fiji design overview

High-level languages

Network-wide programming model

Node-level programming model (Flask)

Node-level runtime services

Hardware
Node-level runtime

Not the focus of this project! Let's build on the best stuff out there:

- Pub/sub routing protocol: **Flows** (Harvard)
 - *Fairly general API, can be specialized for specific environments*
- Network reprogramming (e.g., Deluge)
- Time sync (e.g., FTSP)
- Sampling and flash storage layers (built at Harvard)

Need an appropriate runtime for each supported hardware platform

- TinyOS/NesC for motes and iMote nodes
- Linux for base station and more powerful gateways (requires subset of functionality, i.e., no sensors)
Arbitrates access to sensor node resources:

- Manages radio bandwidth in congested/bursty/shared environments
- Manages node energy reserves (battery, solar power, etc.)
- Synchronizes actions across sensor nodes as necessary (e.g., scheduled duty cycling)

Fundamental shift in the **node-level OS design**

- All low-level resources provide **feedback** on availability and congestion
- Applications must be designed to respond to feedback and issue resource requests

Current prototype: **Pixie**

- New node OS (implemented in NesC) based on staged concurrency model
- Allows fine-grained control over CPU, storage, memory, and bandwidth usage
Queues provide feedback on resource bottlenecks, and provide a locus of control.

Can migrate queue contents to/from flash to mitigate memory pressure.

Can perform congestion control within stage graph.

Adjust target rate
Resource management in Pixie

Radio bandwidth management
- Provide feedback to application stages on available bandwidth (varying due to routing path, node mobility, interference, etc.)
- Application-specific policy adjusts target Tx rate for each stage to avoid congestion

Memory management
- Large flash memories (2GB+) becoming commonplace; let's take advantage of this.
- Idea: Swap queue contents to/from flash when memory pressure is high
- Assumes some stages can tolerate (potentially high) delays in processing

CPU scheduling
- Stage queues provide direct feedback to application and runtime system on resource bottlenecks
- Borrow ideas from SEDA [1] for adjusting CPU priority and queue admission rate within stage graph

Flask: A dataflow programming toolkit

Unified programming abstraction for the sensor node level.
- More structured (and limited) than NesC/TinyOS
- Easier to synthesize from high-level descriptions; possible to weave multiple graphs (from different apps!) together on same node

Flask: A dataflow programming framework for sensor networks
- Flask defines a dataflow intermediate language
- Provides a compiler from dataflow to NesC and Pixie/TinyOS
- Higher-level language compilers can then be implemented using Flask
A Simple Earthquake Detector

10ms → sample adc

adc response → high gain filter

low gain filter → ratio

ratio > thresh? → base
Flask Code for Earthquake Detection App

```python
let quake_detector (high,low,thresh) =
    let c : unit stream = Flask.clock 10
        s : float stream = Flask.seismometer c
        h : float stream = ewma_filter high s
        l : float stream = ewma_filter low s
        r : float stream = ratio h l
        t : float stream = filter_thresh thresh r
    in
        Flask.send(t,Flask.base_id)

Compare with ~200 lines of NesC code.
```
Basic Dataflow Abstraction: Streams

Key Type: \(\alpha \text{stream} (\approx \text{time} \to \alpha) \)

clock : int \to \text{unit stream}
seismometer : \text{unit stream} \to \text{float stream}
zip : \alpha \text{stream} \to \beta \text{stream} \to (\alpha \ast \beta) \text{stream}

Similar to Yale work on \textit{functional reactive programming}.

- Closer to hardware specification languages (e.g., Arvind’s Bluespec), but embedded within a functional language.
Other stream combinators:

map : $(\alpha \to \beta) \to \alpha \text{ stream} \to \beta \text{ stream}$

filter : $(\alpha \to \text{bool}) \to \alpha \text{ stream} \to \alpha \text{ stream}$

integrate:

$(\alpha \times \beta \to \beta \times \gamma) \to \beta \to \alpha \text{ stream} \to \gamma \text{ stream}$
Examples: zip, map, filter

```
let ratio (s:float stream) (t:float stream) =
  let p : (float * float) stream = Flask.zip s t
  in
  Flask.map (λ (x,y) => x / y) p

let filter_thresh (thresh:float) (s:float stream) =
  Flask.filter (λ x => x > thresh) s
```
Flask Implementation

Flask is implemented as a *metaprogramming toolkit*

- Implementations in OCaml and Haskell
- Dataflow graphs described as a *wiring program* using the Flask toolkit
- Programmer can leverage all of the power of functional programming to compose dataflow graphs – contrast to NesC's limited “boxes and arrows” wiring language

Body of each dataflow operator implemented in one of two *object languages*:

- NesC (directly inlined into OCaml code)

  ```
  let ratio s = Flask.map (<:cfunc
  float ratio(x,y) { return x / y; } >>) s
  ```

- Hump (subset of Core ML, better integration with surrounding OCaml)

  ```
  let inc s = Flask.map (.< λx => x + 1 >.) s
  ```
Flask Overhead

CPU microbenchmarks compared to native NesC code:

<table>
<thead>
<tr>
<th></th>
<th>Flask</th>
<th>NesC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple filter</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Zip</td>
<td>71</td>
<td>41</td>
</tr>
<tr>
<td>EWMA filter</td>
<td>707 ± 132</td>
<td>441 ± 83</td>
</tr>
<tr>
<td>Windowed average</td>
<td>1700 ± 78</td>
<td>585 ± 59</td>
</tr>
<tr>
<td>Chained calls</td>
<td>42</td>
<td>49</td>
</tr>
<tr>
<td>Earthquake detection</td>
<td>2194 ± 127</td>
<td>1580 ± 63</td>
</tr>
</tbody>
</table>

Memory footprint for volcano monitoring application:

<table>
<thead>
<tr>
<th></th>
<th>Flask ROM</th>
<th>Flask RAM</th>
<th>NesC ROM</th>
<th>NesC RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base TinyOS</td>
<td>8308</td>
<td>926</td>
<td>8332</td>
<td>1070</td>
</tr>
<tr>
<td>Communications</td>
<td>7416</td>
<td>2657</td>
<td>2840</td>
<td>1638</td>
</tr>
<tr>
<td>Common</td>
<td>10734</td>
<td>916</td>
<td>10360</td>
<td>940</td>
</tr>
<tr>
<td>Application specific</td>
<td>12096</td>
<td>5138</td>
<td>16380</td>
<td>5540</td>
</tr>
<tr>
<td>Total</td>
<td>38554</td>
<td>9637</td>
<td>37912</td>
<td>9637</td>
</tr>
</tbody>
</table>
Network level programming model: distributed dataflow graphs

Describes dataflow graph distributed throughout network

- Computation is decomposed across different node types
- Replicated subgraphs across “regions” of nodes
 - e.g., All seismometer nodes form a region and run a subgraph
 - Regions may be determined statically or dynamically

Edges represent inter-node or intra-node communication

- Fat arrows represent scatter/gather to or from a group
- Can migrate operators in the network at runtime
A core goal of Fiji is to support multiple high-level languages for application development

- Choice of language is highly domain-dependent
- Some languages we can support already:
 - SQL query (e.g., TinyDB) for periodic data collection and processing
 - Regiment for more sophisticated distributed computing
 - Tenet for simple multi-tier applications

Compile each language down to uniform distributed data flow graph specification, using Flask

- Clean interface between language compiler and distributed runtime system
- Use Flask to generate optimized node-level code
FlaskDB: SQL-to-NesC compiler in Flask

SQL query compiled into lean NesC binary

- Eliminates need for general query interpreter
- FlaskDB translates SQL statement into DFG which is then compiled to NesC

SELECT AVERAGE(temp) WHERE temp > 50 PERIOD 10 s

Resulting dataflow graph:
Regiment: A Stream-Oriented Macroprogramming Language

Abstract the sensor network as a collection of time-varying streams
- Streams represent node state, sensor values, timers, etc.
- Can map a function on a stream or filter out values of a stream

Collections of streams represented as regions
- A region represents a group of nodes – e.g., “all temperature sensors”, “all nodes within 100 m of point (x,y)”
- Can filter out members of a region, apply function to each stream in a region, or fold a region, aggregating it into a single stream.
- Regions can also be nested – e.g., “all one-hop neighbors of nodes in region R”

A few simple primitives allow us to write very sophisticated distributed programs!
- Complex spatial programming represented in a few lines of code
Some Region Primitives

everywhere : α stream \rightarrow α region

gossip : int \rightarrow α stream \rightarrow α region

map : $(\alpha \rightarrow \beta)$ exp \rightarrow α region \rightarrow β region

filter : $(\alpha \rightarrow \text{bool})$ exp \rightarrow α region \rightarrow α region

fold : $(\alpha \times \beta \rightarrow \beta)$ exp \times β exp \rightarrow
 α region \rightarrow β stream

funnel : α region \rightarrow α stream
let hot_spot : concentration position =
 let cs = filter (λ c . c < THRESH) concentration
 vote = map (λ _ . 1) cs
 neighbor_votes = gossip 1 vote
 tally = fold (+) 0 neighbor_votes
 pt = zip position tally
 above = filter (λ (p,c) . c > COUNT) pt
 in
 map (λ (p,c) . p) above

let conc_stream = map (λ n . get_conc(n)) world in
let pos_stream = map (λ n . get_pos(n)) world in
 hot_spot (conc_stream pos_stream)
Regiment Simulation Environment

Chemical plume detected

Messages routed to base station
Plume detection latency

The graph illustrates the plume detection latency in seconds as a function of the local concentration threshold in parts per million (ppm). The latency is measured from the time the plume is detected locally to the response time of the system. The graph shows four different algorithms: LocalFilt, KhoadFilt, GossipFilt, and GossipFiltSuppress, each represented by a different line. Additionally, there is a lower bound indicated by a dashed line. As the local concentration threshold increases, the latency also increases for all algorithms, indicating a delay in detection and response time.
Communication overhead

Graph showing the number of messages transmitted per node per second as a function of the local concentration threshold (ppm). The graph compares different filtering methods: LocalFilt, KhoddFilt, GossipFilt, and GossipFiltSuppress. The zoomed-in view highlights the behavior at lower concentrations.
Open research problems

What language designs are appropriate for each app domain?

How to efficiently compile into distributed dataflow representation?

How does high-level language design impact low-level system interfaces?

How much detail do we provide the programmer about the network's operation?

When abstracting away details, how do we avoid imposing high overhead or losing opportunities for optimization?
Conclusions and Future Directions

Sensor networks have tremendous potential for data-intensive science, but need far better programming models to be effective.

Fiji is one step in this direction:

- Node-level OS for resource adaptation
- Network-wide dataflow graph programming model as intermediate abstraction
- Support for multiple high-level languages for application development
- Flask metaprogramming toolkit for composing and compiling dataflow graphs

Next steps...

- More work on OS and runtime to manage resources: current focus on bandwidth management for body sensor nets
- Linux-based runtime and Flask target compiler for non-mote platforms

Thank you!
Flask Implementation

Flask wiring program is first converted into an internal dataflow graph representation

- Inlined NesC operators preprocessed into AST (to support typechecking)
- Inlined Hump code statically monomorphized at each call site, then translated to NesC
- Inputs and outputs of all operators are typechecked
- Asynchronous operations (e.g., ADC sampling) split into two operators: one to initiate request, second for continuation

Dataflow graph then rendered as a single NesC component

- Operators mapped to individual NesC functions
- Operator composition implemented using direct function calls (which gcc will inline)
- All operators executed within TinyOS tasks to ensure atomicity
- Extremely low overhead compared to hand-coded NesC
MoteLab testbed experiments

MoteLab: 190 node sensor network testbed at Harvard

- Deployed over three floors of the EECS building
- Tmote Sky nodes attached to Ethernet bridge; backchannel used for programming and data collection

Can use backchannel to establish ground truth

- Complete sensor data logged to backend database, compare to data collected via wireless

Measure robustness and scalability of Fiji communication layer (Flows protocol)
SQL query of average building temperature
Network robustness experiment

115 nodes publishing data to 10 anycast sinks
 - Kill 5 sinks at $t = 5$ min
 - Takes ~ 2 minutes for network to recover