
Veri�cation Codes

Michael Luby� Michael Mitzenmachery

Abstract

Most work in low-density parity-check codes focuses on bit-level errors. In this paper,
we introduce and analyze veri�cation codes, which are simple low-density parity-check codes
speci�cally designed to manipulate data in packet-sized units. Veri�cation codes require only
linear time for both encoding and decoding and succeed with high probability under random
errors. We describe how to utilize code scrambling to extend our results to channels with errors
controlled by an oblivious adversary. Although veri�cation codes over n packets require 
(log n)
bits per packet, in practice they function well for packet sizes as small as thirty-two bits.

1 Introduction
Work on low-density parity-check codes has focused on the scenario where a bitstream is transmitted
over a channel that introduces bit-level errors, such as the binary symmetric error channel with a
�xed error probability or under Gaussian white noise. (See, e.g., [3, 11, 12, 13, 15, 16]). For
this scenario, encoding and decoding schemes normally perform computational operations on and
maintain data structures for individual bits. For example, techniques based on belief propagation
[10, 16] use a probability for each bit to represent the current belief that the transmitted bit was a
zero or one, and perform computations to update these probabilities. In many practical situations,
however, the basic unit of transmission might not be single bits, but blocks of bits organized as
packets. Here we use the term packets to broadly refer to a collection of bits. For example, packets
could be thousands of bits, as is the case with Internet packets, or a packet could simply represent
a thirty-two bit integer. To achieve high speeds on many current systems, it is natural to consider
coding schemes that perform computational operations at the packet level instead of the bit level.
Indeed, the recent burst of work in low-density parity-check codes arose from analysis designed for
handling packet-level erasures on the Internet; the resulting codes have found many applications,
particularly in reliable multicast [1, 2, 10].

A further motivation for studying packet-level schemes is that they can be used in concatenated
codes [5]. An inner code that works at the bit level can be used on individual packets. An outer
code designed to deal with errors at the packet level could then be used to correct failures from the
inner code.

In this paper, we introduce and analyze veri�cation codes, which are simple low-density parity-
check codes designed especially for large alphabets. Veri�cation codes are designed to deal with data
in packet-sized units of thirty-two bits or more. More speci�cally, if the code is over n packets, then
the packets should have 
(log n) bits, so that the total alphabet size is suitably large compared to
the number of packets. We use the term veri�cation codes because an important aspect of our codes
is that packet values are veri�ed as well as corrected through a simple message passing algorithm.

We �rst describe veri�cation codes for the case of the symmetric q-ary channel, for large values
of q. In the symmetric q-ary channel, the symbols are numbers in the range [0; q� 1], and when an
error occurs the resulting symbol is assumed to take on a value uniformly at random from the set
of q � 1 possible incorrect values. We then describe how veri�cation codes for the symmetric q-ary
channel can be applied in more general settings in practice by using code scrambling techniques
[7, 8].

�Digital Fountain, Inc. luby@digitalfountain.com
yHarvard University, Division of Engineering and Applied Sciences, 33 Oxford St., Cambridge, MA 02138.

michaelm@eecs.harvard.edu Supported in part by an Alfred P. Sloan Research Fellowship and NSF grants CCR-
9983832, CCR-0118701, and CCR-0121154. Part of this work was done while visiting Digital Fountain, Inc.



1.1 Previous Work

Gallager considered the question of low-density parity-check codes over large alphabets in his seminal
work on the subject [6]; however, Gallager did not recognize the full potential of working over the
symmetric q-ary channel. By making better use of properties of the underlying channel, we achieve
signi�cantly better results. Davey and MacKay [4] develop low-density parity-check codes for small
�nite �elds, using belief propagation techniques. Belief propagation is not scalable to the very large
alphabets we consider here.

One common approach for handling packet errors is to use a checksum, such as a 16 or 32 bit
cyclic redundancy check (CRC). An erroneous packet is detected when the packet data fails to
match the packet checksum. If an error is found, the packet is discarded; an erasure code could
then be used to cope with lost packets. The probability of a false match decreases with the number
of bits in the checksum, but the per packet overhead increases with the number of bits. We suspect
our approach will prove superior for settings with small or intermediate packet lengths.

2 Framework for Low-Density Parity-Check Codes
We brie
y summarize the now standard framework for low-density parity-check (LDPC) codes,
following [11]. LDPC codes are easily represented by bipartite graphs. One set of nodes, the
variable nodes, correspond to symbols in the codeword. We assume henceforth that there are n
variable nodes. The other set of nodes, the check nodes correspond to constraints on the adjacent
variable nodes. We assume henceforth that there are m check nodes. The design rate R is given
by R = n�m

n
. 1 In the case of general alphabets with q symbols, the symbols are interpreted

as numbers modulo q and the constraints represent constraints on the sum of the variable nodes
modulo q. In the case where the alphabet consists of the q = 2b strings of b bits, the constraints
can be taken as parity check constraints, so the sum operation is a bitwise exclusive-or.

A family of codes can be determined by assigning degree distributions to the variable and check
nodes. In regular LDPC codes all variable nodes have the same degree, and all check nodes have the
same degree. More 
exibility can be gained by using irregular codes, where the degrees of each set
of nodes can vary. The idea of using irregular codes was introduced in [10, 11]. We associate with
each degree distribution a vector. Let (�2; : : : ; �dv ) be the vector such that the fraction of edges
connected to variable nodes of degree i is �i. (We assume a minimum degree of two throughout.)
Here dv is the maximum degree of a variable node. Similarly, let (�2; : : : ; �dc) be such that the
fraction of edges connected to check nodes of degree i is �i, and dc is the maximum degree of a
check node. Based on these degree sequences, we de�ne the polynomials �(x) :=

Pdv
i=2 �ix

i�1 and

�(x) :=
Pdc

i=2 �ix
i�1, which prove useful in subsequent analysis. The �i and �i variables must

satisfy a constraint so that the number of edges is the same on both sides of the bipartite graph.

This constraint is easily speci�ed in terms of the design rate by the equation R = 1�
R
1

0
�(x)dx

R
1

0
�(x)dx

.

Once degrees have been chosen for each node (so that the total degree of the check nodes and the
variable nodes are equal), a speci�c random code can be chosen by mapping the edge connections
of the variable nodes to the edge connections of the check nodes. That is, to select a code at
random, a random permutation � of f1; : : : ; Eg is chosen, where E is the number of edges. For all
i 2 f1; : : : ; Eg, the edge with index i out of the left side is identi�ed with the edge with index �i
out of the right side.

Without loss of generality we assume henceforth that the constraints are such that the sum of the
symbols associated with the variable nodes adjacent to each check node is 0. In some circumstances
it may be better to design a layered code, as described in [11]; this does not a�ect the analysis. For
the layered version, the encoding time is proportional to the number of edges in the graph. Linear
time encoding schemes also exist for the single layer scheme we analyze here [17].

1The actual rate R tends to be slightly higher than the design rate R in practice, because the check nodes are not
necessarily all linearly independent. This causes at most a vanishingly small di�erence as n gets large, so we ignore
this distinction henceforth.



We consider message passing algorithms described below. To determine the asymptotic perfor-
mance of such codes, it suÆces to consider the case where the neighborhood of each node is a tree
for some number of levels. That is, there are no cycles in the neighborhood around each node.
Analysis in this case is greatly simpli�ed since random variables that correspond to messages in our
message passing algorithms can be treated as independent. The martingale arguments relating the
idealized tree model and actual graphs was �rst applied to coding in [9] and is now standard; see
for example [9, 10, 11, 16].

3 Symmetric q-ary channels

3.1 A simple decoding algorithm

To begin our analysis, it is useful to consider the idealized case of a symmetric q-ary channel. Recall
that in a symmetric q-ary channel the probability that a symbol is received in error is p, and when
an error occurs the received symbol is equally likely to be any of the remaining q� 1 symbols. Also
recall that in our LDPC framework the sum of the variable nodes in a codeword adjacent to a check
node must sum to 0.

We begin by describing a simple algorithm NodeVerify that we improve subsequently. With
each variable node v there corresponds a true value tv , a received value rv , and a current value cv.
Throughout the algorithm NodeVerify, each variable node is in one of two possible states: unveri�ed
and veri�ed. When a node is unveri�ed, the algorithm has not yet �xed the �nal value for that
node. Hence the decoding algorithm begins with all nodes being unveri�ed. When a node is veri�ed,
its current cv becomes �xed. Hence the algorithm NodeVerify should, with high proability, never
assign a veri�ed node a value cv such that cv 6= tv. In the algorithm that follows, the current value
cv is always equal to rv when the node is unveri�ed.

The decoding algorithm simply applies the following rules in any order as much as possible:

1. If the sum of the current values of all the neighbors of a check node equals 0, all currently
unveri�ed neighbors become veri�ed and the �nal values are �xed to the current values.

2. If all but one of the neighbors of a check node is veri�ed, the remaining neighbor becomes
veri�ed, with its �nal value being set so that the sum of all neighbors of the check node equals
0.

In order to understand and analyze this algorithm, we re�ne our description of the node state.
An unveri�ed node is correct if its value was received correctly, and incorrect if it was received in
error. This re�nement is used only in the analysis, and not in the decoding algorithm, which does
not know if an unveri�ed node is correct or incorrect. Also, recall that we assume that an incorrect
packet takes on a random incorrect value.

In this decoding process the check nodes play two roles. First, they may verify that all of their
neighbors are correct, according to Rule 1. This veri�cation rule applies because of the following
fact: if the sum of the current values of all neighbors of a check node is 0, then with high probability
all the neighboring variable nodes must be correct.

Lemma 1 At any step where a check node attempts to verify all of its neighbors, the probability

of an error is at most 1=(q � 1). Over the entire decoding algorithm, if C veri�cation steps are

attempted, the probability of an error is at most C=(q � 1).

Proof: Under the assumption that errors are random and check nodes are correct, for an erroneous
veri�cation to occur, two or more neighbors of a check node c must be in error. Consider an arbitrary
neighbor in error, v. Given the values of the other neighbors of c, there is at most one possible
erroneous value for v that would lead to a false veri�cation. Under the assumption that errors take
on an incorrect value that is uniform over all q� 1 possibilities, the probability that v takes on this
precise value is at most 1=(q � 1). Hence at each step where a check node attempts to verify all of
its neighbors, the probability of an error is at most 1=(q � 1). The second statement of the lemma
then follows by a simple union bound. 2



.

c

v

check node

variable node

check nodes

variable nodes

Figure 1: The neighborhood around (v; c).

To see the value of the above lemma, consider the case where symbols consist of b bits, so q = 2b.
The probability of a failure from a false veri�cation is exponentially small in b at each step. It is
straightforward to design a decoding process so that the number of veri�cation steps attempted is
linear in the size of the graph. Initially, all check nodes may gather the received values of their
neighboring variable nodes, and see if a veri�cation is possible. A check node can also take action
whenever the state of one of its neighboring nodes changes. The total work done is then proportional
to the number of edges in the graph. For bounded degree graphs, the number of edges will be O(n).
Hence, the packet size b needs to be only 
(logn) bits in order that the probability of failure due
to a false veri�cation be polynomially small in n.

The other role of a check node is to correct a neighboring variable node that was received
incorrectly, according to Rule 2. A check node can correct a neighbor after all other neighbors have
been veri�ed and therefore are known (with high probability) to have the correct value. In this case,
the value of the unveri�ed neighbor is obtained by determining the value that results in a 0 sum at
the check node.

3.2 A message-passing decoding algorithm

We now develop a message-passing version of this decoding process to aid our analysis. The goal is to
determine the asymptotic error threshold p�, which is the limiting fraction of errors tolerable under
our decoding process as n grows large. To picture the decoding process, we focus on an individual
edge (v; c) between a variable node v and a check node c, and an associated tree describing the
neighborhood of v. Recall that we assume that the neighborhood of v is accurately described by a
tree for some �xed number of rounds. The tree is rooted at v, and the tree branches out from the
check nodes of v excluding c, as shown in Figure 1.

Given that our graph is chosen at random, we can specify how this tree branches in a natural
way. This speci�cation is the approximation obtained by thinking of the tree growing from v as
a branching process, which is correct in the limit as the number of nodes grows to in�nity. As
the probability that edge (v; c) has degree j is �j , with probability �j there are j � 1 other check
node neighbors of v. Similarly, every such neighbor c0 has j � 1 other variable node neighbors with
probability �j , and so on down the tree.

We think of the decoding process as happening in rounds, with each round having two stages.
In the �rst stage, each variable node passes to each neighboring check node in parallel its current
value and state. In the second stage, each check node c0 sends to v a 
ag denoting whether it
should change its state to veri�ed; if c0 veri�es v, it also sends the appropriate value. Based on this
information, v changes its value and state appropriately. For convenience in the analysis, we think
of each variable node as passing on to the check node c the current value excluding any information

obtained directly from c. (This avoids the problem of a circular 
ow of information.) That is, when
the variable node v passes information to c regarding its value and state, it only considers changes
in its state caused by other nodes.

We provide an analysis based on the tree model. Consider an edge (v; c) in the graph. Let aj be



the probability that in round j the message from v to c contains the true value tv but v is unveri�ed.
Similarly let bj be the probability that in round j the message from v to c contains an incorrect
value for v. We ignore the possibility in the analysis that a false veri�cation occurs, since as we
have already argued, for a suÆciently large alphabet this occurs with negligible probability. Hence
1�aj� bj is the probability that in round j, v can con�rm to c that it has been veri�ed via another
check node. Initially a0 is simply the initial probability a correct word is sent and b0 = 1� a0. If
aj + bj tends to 0, then our decoding algorithm will be successful, since then the probability that
an edge (and therefore its corresponding node) remains unveri�ed falls to 0.

The evolution of the process from round to round, assuming that the neighborhood of v is given
by a tree, is given by:

aj+1 = a0�(1� �(1� bj)); (1)

bj+1 = b0�(1� �(1� aj � bj)): (2)

We explain the derivation of equation (2) by considering the decoding from the point of view of the
edge (v; c). For an incorrect value to be passed in the (j + 1)st round, the node v must have been
received incorrectly; this corresponds to the factor b0. Also, it cannot be the case that there is some
check node c0 other than c neighboring v that has all of its children veri�ed after j rounds, or else v
could be corrected and veri�ed for the (j+1)st round. Now each c0 has k� 1 children below it with
probability �k, and each child is veri�ed after j rounds with probability 1�aj� bj . The probability
that v has not been corrected due to a speci�c check node c0 by round j is therefore

X

i

�i(1� aj � bj)
i�1 = �(1� aj � bj):

As v has k � 1 other neighboring check nodes besides c with probability �k, the probability that v
remains uncorrected when passing to node c in round j + 1 is

X

i

�i(1� �(1� aj � bj))
i�1 = �(1� �(1� aj � bj)):

This yields equation (2); equation (1) is derived by similar considerations.
We show how to use this analysis to �nd codes with good properties. We �rst modify the above

equations as follows:

aj+1 = a0�(1� �(1� bj)); (3)

bj+1 = b0�(1� �(1� aj+1 � bj)): (4)

Here equation (4) di�ers from equation (2) in that we have replaced aj with aj+1. This change does
not change the �nal performance of the decoding; intuitively, this change is equivalent to changing
our processing at each round by splitting it into two subrounds. In the �rst subround, variable
nodes that have the correct value have their state updated. In the second subround, variable nodes
with an incorrect value are corrected. The split clearly does not a�ect the �nal outcome; however,
it allows us to replace aj with aj+1 in the de�ning equation for bj .

With this change, we �nd

bj+1 = b0�(1� �(1� (1� b0)�(1� �(1� bj))� bj)): (5)

We have reduced the analysis to an equation in a single family of variables bj . It is clear that if
bj converges to 0, then so does aj , by the de�nition of the decoding process. Hence we need only
consider the bj . For bj ! 0 with inital error probability b0, we require that the sequence of bj
decrease to 0. It therefore suÆces to �nd �(x) and �(x) so that bj+1 < bj , or equivalently

b0�(1� �(1� (1� b0)�(1� �(1� x))� x)) < x

for 0 < x � b0. Based on our discussion, we have the following theorem.



Theorem 1 Given a design rate R and an error probability b0, then if there are � and � vectors

satisfying the rate constraint R = 1�
R
1

0
�(x)dx

R
1

0
�(x)dx

and the code constraint b0�(1� �(1� (1� b0)�(1�

�(1 � x)) � x)) < x for 0 < x � b0, then for any � > 0 there are veri�cation codes of rate R that

can correct errors on a symmetric q-ary channel with error probability b0 � � with high probability

using the decoding scheme described above.

We emphasize that similar theorems using various decoding schemes are implicit throughout the
rest of the paper. Equation (5) therefore provides us a tool for determining good sequences ~� and ~�.
This is a nonlinear equation in the coeÆcients �j and �j , yielding a nonlinear optimization problem
for which standard numerical techniques can be applied.

Unfortunately solving the nonlinear optimization problem directly for a speci�c code rate does
not shed a great deal of insight into what can be said for general code rates. We can, however,
demonstrate a provable bound for this family of codes based on the family of codes determined in
[11] for erasures.

Lemma 2 (from [11]) For any 0 < R < 1 and � > 0, there exist sequences ~� and ~� corresponding

to a family of erasure codes that correct a (1�R)(1� �) fraction of errors with high probability such

that

�(1� �(1� x)) <
x

(1�R)(1 + �)
; 0 < x � 1: (6)

This lemma allows the following theorem.

Theorem 2 For any 0 < R < 1 and � > 0, there exists a family of veri�cation codes of rate R that

correct a 1� R
2 �

p
4R�3R2

2 � � fraction of errors with high probability.

Proof: We use the � and � sequences de�ned by the erasure codes of Lemma 2, and apply the corre-
sponding inequality to �nd the asymptotic fraction of errors we can correct using the corresponding
veri�cation codes for these degree sequences. Let 
 = (1�R)(1 + �). We seek the maximum value
of b0 for which

b0�(1� �(1� (1� b0)�(1� �(1� x)) � x)) < x:

By repeatedly using Lemma 2, we �nd

b0�(1� �(1� (1� b0)�(1� �(1� x))� x)) <
b0((1� b0)�(1� �(1� x)) + x)




<

b0(1�b0)x



+ b0x




= x
b0(1� b0) + b0



2
:

Here the �rst inequality follows by applying Lemma 2 to the outer �(1� �(1� z)) expression, and
the second inequality similarly follows by then applying it to the inner expression. The �nal right

hand size is less than or equal to x whenever we choose b0(1�b0)+b0


2

� 1, and solving this quadratic
we �nd we may choose

b0 �
1 + 
 �

p
1 + 2
 � 3
2

2
: (7)

As 
 can be arbitrarily close to 1 � R, asymptotically there exist veri�cation codes that can

correct anything less than a fraction 1� R
2 �

p
4R�3R2

2 of errors. 2



4 Improvements

4.1 Additional veri�cation

We may improve our veri�cation-based decoding by allowing further means of veri�cation. We
describe the changes to the message-passing algorithm. In the �rst stage, each variable node passes
to each neighboring check node its current value and state. In the second stage, each neighboring
check node c0 sends to v a 
ag denoting whether c0 can verify v directly, using one of the two rules
given previously. If so, c0 again sends the veri�ed value as before. If not, c0 also sends to v a proposed
value, which is the value that v should take if all of the other neighbors of c0 have sent the correct
value. Now suppose v receives two proposed values that are the same. In this case, v should change
its value to the proposed value and label itself as veri�ed for the next round.

The reasoning behind this improvement is similar to the original argument for veri�cation. If
all neighbors besides v for a check node c0 are in fact correct, the proposed value will be the correct
value for v. If not, the proposed value will be random over all incorrect possibilities, and hence the
probability of a match is small. We must adopt the additional restriction that there are no cycles
of length four in the bipartite graph that represents the code, however. Otherwise, two check node
neighbors of v could be neighbors with the same variable node v2; if v2 is in error, the proposed
values of the check nodes would match, inducing a subsequent incorrect veri�cation at v.

This improvement does increase the probability of a false veri�cation, since there are now many
additional ways a false veri�cation could occur. Assuming a constant maximum degree, b = 
(logn)
bits per packet still ensures that no false veri�cation occurs with high probability.

The resulting equations describing the asymptotic behavior in this situation are somewhat more
diÆcult. Again we have

aj+1 = a0�(1� �(1� bj));

by the same reasoning as before. To determine an equation for bj+1, note that for v to continue to
hold an incorrect value to pass to c, one of the following events must occur:

� all neighbors of v other than c received an incorrect value from some other neighbor in the
previous round, or

� all but one neighbor of v other than c received an incorrect value from some other neighbor
in the previous round, and the one neighbor that received all correct values did not have all
of these values veri�ed.

The probability that the �rst case occurs is just �(1 � �(1 � bj)). For the second case, when v
has i�1 other neighbors, the probability that a speci�c set of i�2 neighbors other than c receive at
least one incorrect value during round j is (1� �(1� bj))

i�2: Ignoring (temporarily) the probability
that the last neighbor sends a correct value, since there are i � 1 possible ways of choosing the
correct neighbor, we have the term

X

i

�i(i� 1)(1� �(1� bj))
i�2 = �0(1� �(1� bj));

where �0 is the derivative of �. We multiply this term by the probability that the last check node
sends the correct but unveri�ed proposed value, which is (�(1� bj)� �(1� aj � bj)). Putting this
all together yields

bj+1 = b0 [�(1� �(1� bj)) + �0(1� �(1� bj))(�(1� bj)� �(1� aj � bj))] : (8)

Again, we can modify the equation for bj into one that does not involve aj by replacing aj by aj+1
and substituting the equation for aj+1 in the above.

Finding a code then again corresponds to �nding �(x) and �(x) so that bj+1 < bj . A greater
fraction of errors can be tolerated with this decoding scheme, at the cost of a higher probability of
a false veri�cation.



4.2 Using Reed-Solomon codes with Veri�cation Codes

We may vary our codes by allowing the check nodes to hold information other than the sum of the
variable nodes. A natural approach is to associate several check nodes with the same neighbors,
and to use the check nodes as redundant representations of the variable node symbols via a Reed-
Solomon code. For example, let us consider the case where check nodes are associated in pairs. If
the check nodes are associated with k variable nodes, then the check node values are calculating
using a (k + 2; k; 1) Reed-Solomon code. The check nodes then have the property that they can
correct any single error among the k neighboring variable nodes. As we explain below, the check
nodes have further correction properties; however, it is instructive to consider a decoding scheme
which just uses the above property.

Consider our message-passing decoding scheme in this setting. For any pair of check nodes and
the associated set of variable nodes, if there is a single error among the variable nodes, it can be
corrected and all the associated variable nodes veri�ed. Again, we have used here our assumption
that an error replaces a value with a value taken uniformly at random. Because of this assumption,
with high probability throughout the execution of the decoding no set of variable nodes containing
multiple errors will be falsely veri�ed with high probability.

In the message-passing algorithm, a variable node v will transmit an incorrect value to a neigh-
boring check node pair c after j+1 rounds if and only if it was received incorrectly and every other
neighboring check node pair had another incorrect message node neighbor after round j. This yields
the following recurrence equation to describe bj :

bj+1 = b0�(1� �(1� bj)): (9)

This is exactly the same recurrence for the erasure codes developed in [10]. By using Reed-Solomon
codes, we are making errors \equivalent" to erasures in the low-density parity-check code setting.
As described in Lemma 2, in [10] vectors ~� and ~� were determined that are essentially optimal: for
codes of rate R we can come arbitrarily close to the optimal tolerable loss probability 1 � R. We
can apply these distributions to obtain the following theorem:

Theorem 3 For any 0 < R < 1 and � > 0, there exist sequences ~� and ~� corresponding to a family

of veri�cation codes using Reed-Solomon codes as described above that corrects a (1 � R)=2 � �
fraction of errors with hihg probability.

Proof: This follows immediately from Lemma 2; note here that we must divide the (1 � R) loss
probability acceptable for erasure codes by two to get (1 � R)=2 since we use two Reed-Solomon
values per check pair. 2

We �nd that under this simple decoding rule we can correct almost the same fraction of errors as
Reed-Solomon codes. Again, we emphasize the caveat that our results hold asymptotically with high
probability assuming random errors according to the symmetric channel model, while Reed-Solomon
codes are not so restricted.

The decoding scheme above can be improved slightly. We are not taking advantage of the
following additional power of the check nodes: whenever a check node pair has only two unveri�ed
neighbors, the two neighbors can be corrected, as the k correct values suÆce to reconstruct the
remaining two. A decoding scheme that takes advantage of this fact is not substantially more
complex, although the equations that describe it are. Consider again a recursive description of the
bj . It is now not enough that every neighboring check node pair of a variable node v has another
incorrect variable node neighbor; now it must also have at least one other unveri�ed neighbor.

Consider the probability that after round j a check node pair c0 neighboring v has one other
incorrect variable node neighbor but no other unveri�ed neighbors. For a pair with k neighbors,
we must choose the one other incorrect neighboring message node, and all other nodes are veri�ed.
Hence this probability is

P
k�2 �k(k� 1)bj(1� aj � bj)

k�2, which equals bj�
0(1� aj � bj), where �

0

is the derivative of the �. This yields the recurrence

bj+1 = b0�(1� �(1� bj)� bj�
0(1� aj � bj)): (10)



A similar formula for the aj values can be obtained. Here, a variable node with the correct value
will become veri�ed if there is a neighboring check node pair c0 such that all other variable node
neighbors of c0 have the correct value, or if there is a neighboring check node pair c0 with only one
erroneous neighbor. This yields the recurrence:

aj+1 = a0�(1� �(1� bj)� bj�
0(1� bj)): (11)

Similar equations can be developed for Reed-Solomon codes that can correct more errors. More
details will appear in the full version.

5 Code Scrambling
Up to this point, we have assumed that our codes function on a symmetric q-ary channel. We can
avoid this assumption by using the techniques of code scrambling [8, 7].2 The idea of code scrambling
is as follows. Suppose the sender and receiver have a source of shared random bits. We model the
errors introduced by the channel as being governed by an oblivious adversary, who is unaware of
the random bits shared by the sender and receiver. In this setting, the sender and receiver can use
the random bits to ensure that regardless of the strategy of the adversary, the errors introduced
appear equivalent to those introduced by a symmetric q-ary channel, in the following sense: if the
adversary modi�es d transmitted symbols, the e�ect is as though d randomly selected transmitted
symbols take on erroneous values taking on random values from GF (q).

The sender and receiver use their shared random bits as follows. When sending values x1; : : : ; xn,
the random bits are used to determine values a1; : : : ; an chosen independently and uniformly at ran-
dom from the non-zero elements GF (q)� and values b1; : : : ; bn chosen independently and uniformly
at random from GF (q). Instead of sending the symbol xi, the sender sends the symbol aixi + bi.
Further, before sending the modi�ed symbols, a permutation � on f1; : : : ; ng is chosen uniformly at
random and the symbols are sent in the order given by the permutation.

Informally, it is clear that these steps sti
e the adversary. Since each symbol is now equally likely
to take on any value from GF (q), after the permutation of the symbols to be sent the adversary
cannot distinguish the original position of any transmitted symbol. Hence if the adversary modi�es
d symbols, their locations will appear random to the receiver after the permutation is undone.
Further, suppose the adversary adds an error ei to the transmitted symbol aixi + bi, so that the
received value is aixi + bi + ei. The receiver will reverse the symbol transformation, obtaining the
symbol xi+(ai)

�1ei in place of xi. Since ai is uniform over GF (q)� and unknown to the adversary,
the erroneous symbol appears to take on a random erroneous value over GF (q). A more formal
proof appears in [7]. Speci�ed to our situation, we have the following:

Theorem 4 The probability p that an adversary who introduces d errors into a veri�cation code

using code scrambling as described above causes a decoding error is equal to the probability that the

veri�cation code makes an error when d errors are introduced in the symmetric q-ary channel.

In practice, a truly large sequence of random bits would not be necessary. A pseudo-random
generator of small complexity would perform adequately, as errors introduced in real channels are
not generally adversarial.

6 Conclusion
Veri�cation codes with code scrambling demonstrate that the power of low-density parity-check
codes can be exploited for handling errors at the packet level. An important open question is to
design provably optimal families of codes designed from the underlying equations. The veri�cation
code framework may also apply to other settings; for example, [14] extends veri�cation codes to
yield polynomial time codes for packet-based deletion channels.

2We developed the techniques for code scrambling on the q-ary channel independently; however, we adopt the
framework in [7] for our description.



References
[1] Byers, J. W., Luby, M., and Mitzenmacher, M. Accessing Multiple Mirror Sites in Parallel:

Using Tornado Codes to Speed Up Downloads. In Proceedings of IEEE INFOCOM '99 (March
1999), pp. 275{83.

[2] Byers, J. W., Luby, M., Mitzenmacher, M., and Rege, A. A Digital Fountain Approach to Reli-
able Distribution of Bulk Data. In Proceedings of ACM SIGCOMM '98 (Vancouver, September
1998).

[3] S. Chung, G. D. Forney, T. Richardson, and R. Urbanke. On the Design of Low-Density Parity-
Check Codes within 0.0045 db of the Shannon Limit. IEEE Communications Letters, 5 (2001),
pp. 58-60.

[4] M.C. Davey and D. J. C. MacKay. Low Density Parity Check Codes over GF(q). IEEE Com-

munications Letters, 2:6 (1998), pp. 165-167.

[5] G. D. Forney, Jr. Concatenated Codes. MIT Press, 1966.

[6] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, 1963.

[7] P. Gopalan, R. Lipton, and Y. Z. Ding. Codes, Adversaries, and Information: a Computational
Approach. Submitted, 2001.

[8] R. J. Lipton. A New Approach to Information Theory. In 11th Symposium on Theoretical

Aspects of Computer Science, pp. 699-708, 1994.

[9] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi. Analysis of Random Processes via And-
Or Tree Evaluation. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete

Algorithms, pp. 364-373, 1998.

[10] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman. EÆcient Erasure Correcting
Codes. IEEE Transactions on Information Theory, 47(2), pp. 569-584, 2001.

[11] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman. Improved Low-Density Parity-
Check Codes Using Irregular Graphs. IEEE Transactions on Information Theory, 47(2), pp.
585-598, 2001.

[12] D. J. C. MacKay. Good Error Correcting Codes Based on Very Sparse Matrices. IEEE Trans-

actions on Information Theory, 45:2 (1999), pp. 399-431.

[13] D. J. C. MacKay and R. M. Neal, Near Shannon Limit Performance of Low Density Parity
Check Codes. Electronic Letters, 32 (1996), pp.1645-1646.

[14] M. Mitzenmacher. Veri�cation Codes for Deletions. In preparation.

[15] T. Richardson, A. Shokrollahi, and R. Urbanke, Design of Capacity-Approaching Irregular Low-
Density Parity-Check Codes. IEEE Transactions on Information Theory, 47(2), pp. 619-637,
2001.

[16] T. Richardson and R. Urbanke, The Capacity of Low-Density Parity-Check Codes under
Message-Passing Decoding. IEEE Transactions on Information Theory, 47(2), pp. 599-618,
2001.

[17] T. Richardson and R. Urbanke, EÆcient Encoding of Low-Density Parity-Check Codes. IEEE
Transactions on Information Theory, 47(2), pp. 638-656, 2001.


