
Compressed Bloom Filters

[Extended Abstract]

Michael Mitzenmacher
∗

Harvard University
33 Oxford St.

Cambridge, MA 02138

michaelm@eecs.harvard.edu

ABSTRACT
A Bloom filter is a simple space-efficient randomized data
structure for representing a set in order to support member-
ship queries. Although Bloom filters allow false positives,
for many applications the space savings outweigh this draw-
back when the probability of an error is sufficiently low. We
introduce compressed Bloom filters, which improve perfor-
mance when the Bloom filter is passed as a message, and its
transmission size is a limiting factor. For example, Bloom
filters have been suggested as a means for sharing Web cache
information. In this setting, proxies do not share the exact
contents of their caches, but instead periodically broadcast
Bloom filters representing their cache. By using compressed
Bloom filters, proxies can reduce the number of bits broad-
cast, the false positive rate, and/or the amount of computa-
tion per lookup. The cost is the processing time for compres-
sion and decompression, which can use simple arithmetic
coding, and more memory use at the proxies, which utilize
the larger uncompressed form of the Bloom filter.

1. INTRODUCTION
Bloom filters are an excellent data structure for succinctly
representing a set in order to support membership queries
[2]. We describe them in detail in Section 2.1; here, we
simply note that the data structure is randomized (in that
is uses randomly selected hash functions), and hence has
some probability of giving a false positive; that is, it may
incorrectly return that an element is in a set when it is not.
For many applications, the probability of a false positive
can be made sufficiently small and the space savings are
significant enough that Bloom filters are useful.

In fact, Bloom filters have a great deal of potential for dis-
tributed protocols where systems need to share information

∗Supported in part by NSF CAREER Grant CCR-9983832,
an Alfred P. Sloan Research Fellowship, and a Rosen Fund
award.

about what data they have available. For example, Fan et
al. describe how Bloom filters can be used for Web cache
sharing [6]. To reduce message traffic, proxies do not trans-
fer URL lists corresponding to the exact contents of their
caches, but instead periodically broadcast Bloom filters that
represent the contents of their cache. If a proxy wishes to
determine if another proxy has a page in its cache, it checks
the appropriate Bloom filter. In the case of a false positive,
a proxy may request a page from another proxy, only to find
that proxy does not actually have that page cached. In that
case, some additional delay has been incurred. The small
chance of a false positive introduced by using a Bloom filter
is greatly outweighed by the significant reduction in network
traffic achieved by using the succinct Bloom filter instead of
sending the full list of cache contents. Bloom filters have
also been suggested for other distributed protocols, e.g. [5,
8].

Our paper is based on the following insight: in this situation,
the Bloom filter plays a dual role. It is both a data struc-
ture being used at the proxies, and a message being passed
between them. When we use the Bloom filter as a data struc-
ture, we may tune its parameters for optimal performance
as a data structure; that is, we minimize the probability
of a false positive for a given memory size and number of
items. Indeed, this is the approach taken in the analysis of
[6]. If this data structure is also being passed around as a
message, however, then we introduce another performance
measure we may wish to optimize for: transmission size.
Transmission size may be of greater importance when the
amount of network traffic is a concern but there is memory
available at the endpoint machines. This is especially true in
distributed systems where information must be transmitted
repeatedly from one endpoint machine to many others. For
example, in the Web cache sharing system described above,
the required memory at each proxy is linear in the number
of proxies, while the total message traffic rate is quadratic
in the number of proxies, assuming point-to-point commu-
nication is used. Moreover, the amount of memory required
at the endpoint machines is fixed for the life of the system,
where the traffic is additive over the life of the system.

Transmission size can be affected by using compression. In
this paper, we show how compressing a Bloom filter can lead
to improved performance. By using compressed Bloom fil-
ters, protocols reduce the number of bits broadcast, the false
positive rate, and/or the amount of computation per lookup.

The tradeoff costs are the increased processing requirement
for compression and decompression and larger memory re-
quirements at the endpoint machines, who may use a larger
original uncompressed form of the Bloom filter in order to
achieve improved transmission size.

We start by defining the problem as an optimization prob-
lem, which we solve using some simplifying assumptions. We
then consider practical issues, including effective compres-
sion schemes and actual performance. We recommend arith-
metic coding [9], a simple compression scheme well-suited to
this situation with fast implementations.

Our work underscores an important general principle for
distributed algorithms: when using a data structure as a
message, one should consider the parameters of the data
structure with both of these roles in mind. If transmission
size is important, tuning the parameters so that compression
can be used effectively may yield dividends.

2. COMPRESSED BLOOM FILTERS:
THEORY

2.1 Bloom filters
We begin by introducing Bloom filters, following the frame-
work and analysis of [6].

A Bloom filter for representing a set S = {s1, s2, . . . , sn} of
n elements is described by an array of m bits, initially all
set to 0. A Bloom filter uses k independent hash functions
h1, . . . , hk with range {0, . . . , m − 1}. We make the natu-
ral assumption that these hash functions map each item in
the universe to a random number uniform over the range
{0, . . . , m − 1} for mathematical convenience. For each el-
ement s ∈ S, the bits hi(s) are set to 1 for 1 ≤ i ≤ k. A
location can be set to 1 multiple times, but only the first
change has an effect. To check if an item x is in S, we check
whether all hi(x) are set to 1. If not, then clearly x is not a
member of S. If all hi(x) are set to 1, we assume that x is
in S, although we are wrong with some probability. Hence
a Bloom filter may yield a false positive, where it suggests
that an element x is in S even though it is not. For many
applications, this is acceptable as long as the probability of
a false positive is sufficiently small.

The probability of a false positive for an element not in the
set, or the false positive rate, can be calculated in a straight-
forward fashion, given our assumption that hash functions
are perfectly random. After all the elements of S are hashed
into the Bloom filter, the probability that a specific bit is
still 0 is (

1− 1
m

)kn

≈ e−kn/m.

We let p = e−kn/m. The probability of a false positive is
then(

1−
(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k

= (1− p)k.

We let f =
(
1− e−kn/m

)k

= (1 − p)k. Note that we use

the asymptotic approximations p and f to represent respec-

tively the probability a bit in the Bloom filter is 0 and the
probability of a false positive from now on for convenience.

Although it is clear from the above discussion, it is worth
noting that there are three fundamental performance met-
rics for Bloom filters that can be traded off: computation
time (corresponding to the number of hash functions k), size
(corresponding to the array size m), and the probability of
error (corresponding to the false positive rate f).

Suppose we are given m and n and we wish to optimize the
number of hash functions k to minimize the false positive
rate f . There are two competing forces: using more hash
functions gives us more chances to find a 0 bit for an element
that is not a member of S, but using fewer hash functions
increases the fraction of 0 bits in the array. The optimal
number of hash functions that minimizes f as a function of
k is easily found taking the derivative. More conveniently,
note that f equals exp(k ln(1 − e−kn/m)). Let g = k ln(1−
e−kn/m). Minimizing the false positive rate f is equivalent
to minimizing g with respect to k. We find

dg

dk
= ln

(
1− e− kn

m

)
+

kn

m

e−
kn
m

1− e− kn
m

.

It is easy to check that the derivative is 0 when k = (ln 2) ·
(m/n); further efforts reveal that this is a global minimum.

In this case the false positive rate f is (1/2)k = (0.6185)m/n .
In practice, of course, k must be an integer, and smaller k
might be preferred since they reduce the amount of compu-
tation necessary.

Note that Bloom filters are highly effective even if m =
cn for a small constant c, such as c = 8. An alternative
approach if more bits are available is to simply hash each
item into Θ(logn) bits and send a list of hash values. Bloom
filters can allow significantly fewer bits to be sent with better
false positive rates.

2.2 Compressed Bloom filters
Our optimization above of the number of hash functions k
is based on the assumption that we wish to minimize the
failure of a false positive as a function of the array size m
and the number of objects n. This is the correct optimiza-
tion if we consider the Bloom filter as an object residing in
memory. In the Web cache application, however, the Bloom
filter is not just an object that resides in memory, but an
object that must be transferred between proxies. This fact
suggests that we may not want to optimize the number of
hash functions for m and n, but instead optimize the num-
ber of hash functions for the size of the data that needs to
be sent, or the transmission size. The transmission size,
however, need not be m; we might be able to compress the
bit array. Therefore we choose our parameters to minimize
the failure probability after using compression.

Let us consider the standard uncompressed Bloom filter,
which is optimized for k = (ln 2) · (m/n). Can we gain any-
thing by compressing the resulting bit array? If we choose
the above value for k, under our assumption of good ran-
dom hash functions, the bit array appears to be a random
string of m 0’s and 1’s, with each entry being 0 or 1 inde-

pendently with probability 1/2.1 Hence compression does
not gain anything for this choice of k.

Suppose, however, we instead choose k so that each of the
entries in the m bit array is 1 with probability 1/3. Then
we can take advantage of this fact to compress the m bit
array and reduce the transmission size. After transmission,
the bit array is decompressed for actual use. Note that the
uncompressed Bloom filter size is still m bits.2 While this
choice of k is not optimal for the uncompressed size m, if
our goal is to optimize for the transmission size, using com-
pression may yield a better result. The question is whether
this compression gains us anything, or if we would have been
better off simply using a smaller number of bits in our array
and optimizing for that size.

To contrast with the original Bloom filter discussion, we
note that for compressed Bloom filters there are now four
fundamental performance metrics for Bloom filters that can
be traded off. Besides computation time (corresponding to
the number of hash functions k) and the probability of error
(corresponding to the false positive rate f), there are two
other metrics: the uncompressed filter size that the Bloom
filter has in the proxy memory, which we continue to denote
by the number of array bits m; and the transmission size
corresponding to its size after compression, which we denote
by z. Our starting point is the consideration that in many
situations the transmission size may be more important than
the uncompressed filter size.

We may establish the problem as an optimization problem
as follows. Let z ≥ n be the desired compressed size. Re-
call that each bit in the bit array is 0 with probability p;
we treat the bits as independent. Also, as a mathemati-
cally convenient approximation, we assume that we have an
optimal compressor. That is, we assume that our m bit
filter can be compressed down to only mH(p) bits, where
H(p) = −p log2 p − (1 − p) log2(1 − p) is the entropy func-
tion. Our compressor therefore uses the optimal H(p) bits
on average for each bit in the original string. We consider
the practical implications more carefully subsequently. Here
we note just that near-optimal compressors exist; arithmetic
coding, for example, requires on average less than H(p) + ε
bits per character for any ε > 0 given suitably large strings.

Our optimization problem is as follows: given n and z,
choose m and k to minimize f subject to mH(p) ≤ z. One
possibility is to choose m = z and k = (ln 2) · (m/n) so that
p = 1/2; this is the original optimized Bloom filter. Hence

we can guarantee that f ≤ (0.6185)z/n.

1Technically, this is not precisely true, since bits are not
completely independent: the fact that one bit was set to 1
affects the probability of other bits being set to 1. Asymp-
totically (and in practice) this effect is negligible; see, for
example, [1]. Henceforth we make the simplifying assump-
tion of independence of the bit values in the array.
2A compression scheme that also provided random access
might allow us to compute on the compressed Bloom fil-
ter; however, achieving random access, efficiency, and good
compression simultaneously is generally not possible. While
this is a possible point for future study, we assume here that
computation on the Bloom filter is done after decompres-
sion.

We can, however, do better. Indeed, in theory this choice
of k is the worst choice possible once we allow compres-
sion. To see this, let us parameterize so that k = αm/n.
Then p = e−α, and we must choose m and α to minimize

f =
(
1− e−α

)αm/n
subject to m = z/H(e−α) (we may

without loss of generality choose m as large as possible).

Equivalently, we have f =
(
1− e−α

)αz/(nH(e−α))
. Since z

and n are fixed with z ≥ n, we wish to minimize

β = fn/z =
(
1− e−α)α/H(e−α)

.

Let α = − ln x. Then

β = (1− x)− ln x/H(x)

= exp

(− ln(x) · ln(1− x)

(− log2 e)(x ln x+ (1− x) ln(1− x))

)
.

The value of β is maximized when the exponent is maxi-
mized, or equivalently when the term

γ =

(
x

ln(1− x)
+
1− x

ln x

)

is minimized. Note that

dγ

dx
=

1

ln(1− x)
− 1

ln x
+

x

(1− x) ln2(1− x)
− 1− x

x ln2(x)
.

The value of dγ
dx
is clearly 0 when x = 1/2, and using sym-

metry it is easy to check that dγ
dx
is negative for x < 1/2

and positive for x > 1/2. Hence the maximum probability
of a false positive using a compressed Bloom filter occurs
when x = 1/2, corresponding to α = ln 2 or equivalently
k = (ln 2) · (m/n).

We emphasize the point again: the number of hash functions
that minimizes the false positive rate without compression in
fact maximizes the false positive rate with compression. Said
in another way, in our idealized setting using compression
always decreases the false positive rate.

The argument above also shows that γ is minimized and
hence β and f are minimized in one of the limiting situations
as x goes to 0 or 1, corresponding to α going to infinity or
0. In each case, using for example the expansion ln(1−x) ≈
−x − x2/2 − x3/3 − . . . , we find that γ goes to −1. Hence
β goes to 1/2 in both limiting cases, and we can in theory

achieve a false positive rate arbitrarily close to (0.5)z/n by
letting the number of hash functions go to 0 or infinity.

In practice we are significantly more constrained. For exam-
ple, we must use at least one hash function, and the number
of hash functions must be an integer. Note, however, that
the theory shows we may achieve improved performance by
taking k < ln 2 · (m/n) for the compressed Bloom filter.
This has the additional benefit that a compressed Bloom
filter uses fewer hash functions and hence requires less com-
putation per lookup. Further practical considerations are
discussed in the next section.

Note that the optimization framework developed above is
not the only one possible. For example, one could instead
fix the desired false positive rate f and optimize for the final
compressed size z. To compare in this situation, note that

in the limit as the number of hash functions goes to zero the
compressed Bloom filter has a false positive rate tending to
(0.5)z/n while the standard Bloom filter has a false positive

rate tending to (0.5)(m ln 2)/n. Hence the best possible com-
pressed Bloom filter achieving the same false positive rate as
the standard Bloom filter would have z = m ln 2, a savings
in size of roughly 30%. Again, this is significantly better
than what can be realized in practice.

The primary point of this theoretical analysis is to demon-
strate that compression is a viable means of improving per-
formance, in terms of reducing the false positive rate for
a desired compressed size, or for reduced the transmission
size for a fixed false positive rate. Indeed, because the com-
pressed Bloom filter allows us another performance metric,
it provides more flexibility that the standard original Bloom
filter. An additional benefit is the compressed Bloom filters
uses a smaller number of hash functions, so that lookups
are more efficient. Based on this theory, we now consider
implementation details and specific examples.

3. COMPRESSED BLOOM FILTERS:
PRACTICE

Our theoretical analysis avoided several issues that are im-
portant for a real implementation:

• Restrictions on m: While the size z of the compressed
Bloom filter may be of primary importance, limita-
tions on the size m of the uncompressed Bloom filter
also constrain the possibilities. For example, while the-
oretically we can do well using one hash function and
compressing, achieving a false positive rate of ε with
one hash function requires m ≈ n/ε, which may be too
large for real applications.

Also, it may be desirable to have m be a power of two
for various computations. We do not restrict ourselves
to powers of two here.

• Compression overhead: Compression schemes do not
achieve optimal performance; all compression schemes
have some associated overhead. Hence the gain from
the compressed Bloom filter must overcome the asso-
ciated overhead costs.

• Compression variability: Of perhaps greater practical
importance is that if there is an absolute maximum
packet size, we generally want that the compressed
array does not exceed the packet size. Otherwise,
we may have to send multiple packets, leading to in-
creased network traffic. (In some situations, we may
want to bound the number of packets used to send the
compressed Bloom filter; the idea is the same.) Com-
pression performance varies depending on the input;
moreover, if the number of elements n in the set S
cannot be exactly determined in advance, a mispre-
diction of n could yield insufficient compression.

• Hashing performance: Depending on the data and the
hash functions chosen, real hash functions may behave
differently from the analysis above.

The issue of achieving good hashing performance on ar-
bitrary data sets is outside the scope of this paper, and

we do not consider it further except to raise the following
points. First, in practice we suspect that using standard
universal families of hash functions [4, 10] or MD5 (used
in [6]) will be suitable. Second, in situations where hash-
ing performance is not sufficiently random, we expect that
compressed Bloom filters will still generally outperform the
uncompressed Bloom filter. The point is that if the false
positive rate of a compressed Bloom filter is increased be-
cause of weak hash functions, we would expect the false
positive rate of the uncompressed Bloom filter to increase
as well; moreover, since compressed Bloom filters use fewer
hash functions, we expect the effect will be worse for the un-
compressed filter. For compressed Bloom filters, however,
there is the additional problem that weak hash functions
may yield bit arrays that do not compress as much as ex-
pected. The choice of parameters may therefore have to be
tuned for the particular data type.

For compression issues, arithmetic coding provides a flexible
compression mechanism for achieving near-optimal perfor-
mance with low variability. Loosely speaking, for a random
m bit string where the bit values are independent and each
bit is 0 with probability p and 1 with probability 1−p, arith-
metic coding compresses the string to near mH(p) bits with
high probability, with the deviation from the average having
a Chernoff-like bound. For more information on arithmetic
coding, we refer the reader to [9, 11]. For more precise state-
ments and details regarding the low variability of arithmetic
coding, we refer the reader to [7]. More details will appear
in the final version.

Given this compression scheme, we suggest the following ap-
proach. Choose a maximum desired uncompressed size m.
Then design a compressed Bloom filter using the above the-
ory using a slightly smaller compressed size than desired; for
example, if the goal is that the compressed size be z, design
the structure so that the compressed size is 0.99z. This pro-
vides room for some variability in compression; the amount
of room necessary depends on m. A similar effect may be
achieved by slightly overestimating n. If our uncompressed
filter is more than half full of zeroes, then if we have fewer
than expected elements in the set, our filter will tend have
even more zeroes than expected, and hence will compress
better. With this design, the compressed filter should be
within the desired size range with high probability.

To deal with cases that still do not compress adequately, we
suggest using multiple filter types. Each filter type t is asso-
ciated with an array of size m, a set of hash functions, and a
decompression scheme. These types are agreed on ahead of
time. A few bits in the header can be used to represent the
filter type. If one of the filter types is the standard Bloom
filter (no compression) then the set can always be sent ap-
propriately using at least one of the types. In most cases two
types– compressed and uncompressed– would be sufficient.

3.1 Examples
We test the theoretical framework above by examining a few
specific examples of the performance improvements possible
using compressed Bloom filters. We consider cases where
eight and sixteen bits are use in the compressed Bloom filter
for each element; this corresponds to configurations exam-
ined in [6].

Suppose we wish to use at most eight bits per set element in
our transmission with a Bloom filter; that is, z/n = m/n =
8. Then using the optimal number of hash functions k = 6
yields a false positive rate of 0.0216. For k = 5, the false
positive probability is only 0.0217, so this might be prefer-
able in practice. If we are willing to allow 14 array bits for
the uncompressed Bloom filter per set element, then we can
reduce the false positive rate by almost 20% to 0.0177 and
reduce the number of hash functions to two while keeping
the (theoretical) transmitted bits per element z/n below 8,
as shown in Table 1.

It is also interesting to compare the standard Bloom and
the compressed Bloom filter pictorially in this case where
z/n = 8. In Figure 1 we show the false positive rate as
a function of the number of hash functions k based on the
theoretical analysis of Sections 2.1 and 2.2, where we allow k
to behave as a continuous variable. Note that as the theory
predicts the optimized uncompressed filter actually yields
the largest false positive rate once we introduce compression.

We tested the compressed Bloom filter via simulation. We
repeated the following experiment 100,000 times. A Bloom
filter for n = 10,000 elements and m = 140,000 bits was cre-
ated, with each element being hashed to two positions cho-
sen independently and uniformly at random in the bit array.
The resulting array was then compressed using a publicly
available arithmetic coding compressor based on the work
of Moffat, Neal, and Witten [3, 9].3 Using z = mH(p) sug-
gests that the compressed size should be near 9,904 bytes;
to meet the bound of 8 bits per element requires the com-
pressed size not exceed 10,000 bytes. Over the 100,000 tri-
als we found the average compressed array size to be 9,920
bytes, including all overhead; the standard deviation was
11.375 bytes; and the maximum compressed array size was
only 9,971 bytes, giving us several bytes of room to spare.
For larger m and n, we would expect even greater concen-
tration of the compressed size around its mean; for smaller
m and n, the variance would be a larger fraction of the com-
pressed size. We believe example provides good insight into
what is achievable in real situations.

Theoretically we can do even better by using just one hash
function, although this greatly increases the number of array
bits per element, as seen in Table 1.

Similarly, considering the specific case of a Bloom filter where
z/n = m/n = 16, we would use use eleven hash functions
to achieve an optimal false positive rate of 0.000459. As
eleven hash functions seems somewhat large, we note that
we could reduce the number of hash functions used with-
out applying compression, but using only six hash functions
more than doubles f to 0.000935. Table 2 summarizes the
improvements available using compressed Bloom filters. If
we allow 28 array bits per element, our false positive rate
falls about 30% while using only four hash functions. If we
allow 48 array bits per element, our false positive rate falls
over 50% using only three hash functions. We simulated

3We note that this is an adaptive compressor, which bases
its prediction of the next bit based on the bits seen thus far.
Technically is slightly suboptimal for our purposes, since we
generally know the probability distribution of the bits ahead
of time. In practice the difference is quite small.

the case with n = 10,000 elements, m = 480,000 bits, and
k = 3 hash functions using 100,000 trials. The theoreti-
cal considerations above suggest the compressed size will be
19,787 bytes. Over our simulation trials, the average com-
pressed array size was 19,805 bytes, including all overhead;
the standard deviation was 14.386 bytes; and the maximum
compressed array size was only 19,865 bytes, well below the
20,000 bytes available.

We have also tested the case where z/n = m/n = 4 against
usingm/n = 7, or seven array bits per table. We expect this
case may prove less useful in practical situations because
the false positive rate is so high. In this case using the
standard Bloom filter with the optimal three hash functions
yields a false positive rate of 0.147; using m/n = 7 and one
hash function gives a false positive rate of 0.133. Again, we
performed 100,000 random experiments with n = 10, 000.
The largest compressed filter required 4,998 bytes, just shy
of the 5,000 byte limit.

As previously mentioned, we may also consider the opti-
mization problem in another light: we may try to maintain
the same false positive ratio while minimizing the transmis-
sion size. In Tables 4 and 5 we offer examples based on this
scenario. Our results yield transmission size decreases in the
range of roughly 5-15% for systems of reasonable size. Here
again our simulations bear out our theoretical analysis. For
example, using n = 10,000 elements, m = 126,000 bits, and
k = 2 hash functions over 100,000 trials, we find the average
compressed filter required 9,493 bytes, closely matching the
theoretical prediction. The largest filter over the 100,000
trials required 9,539 bytes.

4. EXTENSIONS
In the Web cache sharing setting, the proxies periodically
broadcast updates to their cache contents. As described in
[6], these updates can either be new Bloom filters or rep-
resentations of the changes between the updated filter and
the old filter. The difference, or delta, between the updated
and old filter can be represented by the exclusive-or of the
corresponding bit arrays of size m, which can then be com-
pressed using arithmetic coding as above. For example, one
may decide that updates should be broadcast whenever 5%
of the underlying array bits have changed; in this case, the
compressed size of the delta would be roughly mH(0.05).
Hence one may wish to optimize the array size for a tar-
get size of the compressed delta and allow the one-time cost
of longer initial messages to establish a base Bloom filter
at the beginning. Compressing the delta can clearly yield
substantial gains in this setting.

Also in [6], the authors also describe an extension to a Bloom
filter, where instead of using a bit array the Bloom filter
array uses a small number of bits per entry to keep counts.
The jth entry is incremented for each hash function hi and
each element x represented by the filter such that hi(x) = j.
The counting Bloom filter is useful when items can be deleted
from the filter; when an item x is deleted, one can decrement
the value at location hi(x) in the array for each of the k
hash functions, i.e. for 1 ≤ i ≤ k. We emphasize that these
counting Bloom filters are not passed as messages in [6];
they are only used locally.

.

0
0.01

0.02
0.03

0.04
0.05
0.06

0.07
0.08

0.09

0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

F
al

se
 p

os
it

iv
e

ra
te

Standard

Compressed

Figure 1: The false positive rate as a function of the number of hash functions for compressed and standard
Bloom filters using 8 bits per element.

Array bits per element m/n 8 14 92
Transmission bits per element z/n 8 7.923 7.923
Hash functions k 6 2 1
False positive rate f 0.0216 0.0177 0.0108

Table 1: At most eight bits per item (compressed).

Array bits per element m/n 16 28 48
Transmission bits per element z/n 16 15.846 15.829
Hash functions k 11 4 3
False positive rate f 0.000459 0.000314 0.000222

Table 2: At most sixteen bits per item (compressed).

Array bits per element m/n 4 7
Transmission bits per element z/n 4 3.962
Hash functions k 3 1
False positive rate f 0.147 0.133

Table 3: At most four bits per item (compressed).

Array bits per element m/n 8 12.6 46
Transmission bits per element z/n 8 7.582 6.891
Hash functions k 6 2 1
False positive rate f 0.0216 0.0216 0.0215

Table 4: Maintaining a false positive rate around 0.02.

Array bits per element m/n 16 37.5 93
Transmission bits per element z/n 16 14.666 13.815
Hash functions k 11 3 2
False positive rate f 0.000459 0.000454 0.000453

Table 5: Maintaining a false positive rate around 0.00045.

We note in passing that if one wanted to pass counting
Bloom filters as messages, compression would yield sub-
stantial gains. The entropy per array entry would be much
smaller than the number of bits used per entry, since large
counts would be extremely unlikely. Our optimization ap-
proach for finding appropriate parameters can be extended
to this situation, and arithmetic coding remains highly ef-
fective.

5. CONCLUSIONS
We have shown that using compression can improve Bloom
filter performance, in the sense that we can achieve a smaller
false positive rate as a function of compressed size over a
Bloom filter that does not use compression. This improve-
ment is useful in situations where the Bloom filter is being
used as a message as well as a data structure in a distributed
protocol. In this case, it may be significantly more impor-
tant to optimize the transmission size rather than the data
structure size. An interesting feature of our work is that the
use of compression affects how one should tune the param-
eters of the data structure. It would be interesting to find
other useful examples of data structures that can be tuned
effectively in a different manner when being compressed.

While we have not yet implemented compressed Bloom fil-
ters in the context of a full working system for an appli-
cation such as distributed Web caching, we hope to do so
in the near future. We expect that significant performance
improvement will occur even after the minor costs of com-
pression and decompression time are factored in.

Acknowledgments
The author would like to thank Andrei Broder for introduc-
ing him to Bloom filters and for helpful discussions.

6. REFERENCES
[1] M. Adler, S. Chakrabarti, M. Mitzenmacher, L.
Rasmussen. Parallel randomized load balancing.
Random Structures and Algorithms, 13(2), pages
159-188, 1998.

[2] B. Bloom. Space/time tradeoffs in in hash coding with
allowable errors. Communications of the ACM,
13(7):422-426, July 1970.

[3] J. Carpinelli, W. Salomonsen, A. Moffat, R. Neal, and
I. H. Witten. Source code for arithmetic coding,
Version 1. Available at
http://www.cs.mu.oz.au/~alistair/arith_coder/.
March 1995.

[4] J. L. Carter and M. N. Wegman. Universal classes of
hash functions. Journal of Computer and System
Sciences, 18, pages 143-154, 1979.

[5] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R.
Katz. An architecture for a secure service discovery
service. In Proceedings of the Fifth Annual
International Conference on Mobile Computing and
Networks (MobiCOM ’99), 1999.

[6] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary
cache: A scalable wide-area Web cache sharing
protocol. In Proceeding of SIGCOMM ’98, 1998.

Extended version available as Technical Report 1361,
Computer Sciences Department, Univ. of
Wisconsin-Madison, February 1999.

[7] P. G. Howard and J. Vitter. Analysis of arithmetic
coding for data compression. Information Processing
and Management, vol 28. no. 6, pages 749-763, 1992.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An architecture for global-scale persistent
storage. In Proceedings of ASPLOS 2000, 2000.

[9] A. Moffat, R. Neal, and I. H. Witten. Arithmetic
coding revisited. ACM Transactions on Information
Systems, 16(3):256-294, July 1998.

[10] M. V. Ramakrishna. Practical performance of Bloom
filters and parallel free-text searching.
Communications of the ACM, 32(10):1237-1239,
October 1989.

[11] I. H. Witten, A. Moffat, and T. Bell. Managing
Gigabytes (2nd Edition). Morgan Kaufmann, San
Francisco, 1999.

