
Average-Case Analyses of First Fit and Random Fit Bin Packing

Susanne Albers∗ Michael Mitzenmacher†

Abstract

We prove that the First Fit bin packing algorithm is stable under the input distribution
U{k − 2, k} for all k ≥ 3, settling an open question from the recent survey by Coffman, Garey,
and Johnson [3]. Our proof generalizes the multi-dimensional Markov chain analysis used by
Kenyon, Rabani, and Sinclair to prove that Best Fit is also stable under these distributions [10].
Our proof is motivated by an analysis of Random Fit, a new simple packing algorithm related
to First Fit, that is interesting in its own right. We show that Random Fit is stable under
the input distributions U{k − 2, k}, as well as present worst-case bounds and some results on
distributions U{k − 1, k} and U{k, k} for Random Fit.

1 Introduction

In the one-dimensional bin packing problem, one is given a sequence a1, . . . , an ∈ (0, 1] of items to
pack into bins of unit capacity so as to minimize the number of bins used. A great deal of literature
has focused on this problem, perhaps because, as Coffman, Garey, and Johnson [3] observe in their
recent survey on bin packing, “The classical one-dimensional bin packing problem has long served
as a proving ground for new approaches to the analysis of approximation algorithms.” For example,
recently the study of Best Fit bin packing under discrete uniform distributions has led to a novel
analysis technique, based on the theory of multi-dimensional Markov chains. In this paper we
extend this approach to analyze First Fit and a new bin packing algorithm, called Random Fit,
under discrete uniform distributions.

First Fit and Best Fit are two classical algorithms for online bin packing. With First Fit,
the bins are indexed in increasing order of their creation. Each item is sequentially placed into the
lowest indexed bin into which it will fit, or into a empty bin if no such bin is available. With the Best
Fit algorithm, each incoming item is placed into the non-empty bin with smallest residual capacity
that can contain it; if no such bin exists, the item is placed in an empty bin. The performance of
First Fit and Best Fit in the worst case and uniform average case has been settled for quite some
time. In the worst case, the number of bins used by any of these algorithms is at most 17

10 times
the optimum number of bins, as shown by Johnson et al. [9]. When item sizes are generated by
U(0, 1), the continuous uniform distribution on (0, 1], then the performance measure of interest is
the expected waste, which is the difference between the number of bins used and the total size of
the items packed so far. Shor [15] showed that the expected waste created by First Fit is Θ(n2/3).
Shor [15] and Leighton and Shor [12] proved that Best Fit does better, generating expected waste
Θ(

√
n log3/4 n).
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Because of these tight bounds, research on First Fit and Best Fit is now focused on analyzing
expected waste when item sizes are generated by discrete uniform distributions. A discrete uniform
distribution, denoted by U{j, k}, 1 ≤ j ≤ k, is one where item sizes are chosen uniformly from the
set {1/k, 2/k, . . . , j/k}. For U{k, k}, k > 1, First Fit and Best Fit achieve expected waste Θ(

√
nk)

and O(
√
n log k), respectively, (see Coffman et al. [2]). Similar bounds hold for U{k − 1, k}. Of

particular interest are distributions for which the algorithms are stable. We say that an algorithm
is stable under a distribution if the expected waste remains bounded (that is, O(1)), even as the
number of items n goes to infinity. Coffman et al. [2] proved that First Fit is stable under U{j, k},
when k ≥ j2, and Best Fit is stable under U{j, k}, when k ≥ j(j + 3)/2. Later, Coffman et al. [4]
introduced a novel method for proving the stability (and instability) of bin packing algorithms based
on multi-dimensional Markov chains. Their methodology allowed them to show that Best Fit is
stable under U{j, k} for several specific pairs of values for j and k. Kenyon et al. [10] expanded on
this work by proving that Best Fit is stable under the entire family of distributions U{k − 2, k},
using a complex analysis of the underlying Markov chains.

We briefly describe the Markov chain setting used in the results described above. Using the Best
Fit algorithm under a discrete uniform distribution, a packing can be represented by the number
of bins of each possible residual capacity. The order of the bins is irrelevant. This packing process
can therefore be easily represented by a Markov chain, where the state at any time is a vector
s = (s1, . . . , sk−1), and si is the number of bins of residual capacity i/k.

The Best Fit algorithm is well suited to the Markov chain approach, because the order of the
bins is irrelevant, leading to a simple representation of the packing. In contrast, in the First Fit
algorithm, the order of the bins cannot be dismissed. Because of the difficulty of representing the
state in the First Fit algorithm, until now these Markov chain techniques have not been successfully
applied to the First Fit algorithm.

In this paper, we remedy this problem by demonstrating a Markov chain argument that shows
that First Fit is in fact stable under the family of distributions U{k− 2, k}. This result disproves a
conjecture made by Coffman et al. [3], who state that limited experiments suggest that the expected
waste may grow unbounded on U{k− 2, k} for sufficiently large k. Moreover, it demonstrates that
the Markov chain approach may be more generally applicable than previously believed.

Our proof emerges from an analysis of a new bin packing algorithm, called Random Fit (RF).
Random Fit is a simple randomized variant of First Fit. With Random Fit, each time an item
is to be placed in a bin the bins are indexed in an order determined by a permutation chosen
independently and uniformly at random. Each item is sequentially placed into the lowest indexed
bin into which it will fit, or into a empty bin if no such bin is available.

In Section 2 we introduce Random Fit by analyzing its worst-case behavior. In the following
sections we then concentrate on average-case analysis. Random Fit has the advantage that, like
Best Fit, a packing can be represented by the number of bins of each possible residual capacity.
Therefore, in Section 3, we first generalize the analysis of Best Fit shown in [10] to Random Fit.
We prove stability of Random Fit under the input distribution U{k−2, k} and derive some related
results for U{k − 1, k} and U{k, k}. Using ideas developed in Section 3, we proceed to prove
stability of First Fit under input distribution U{k − 2, k} in Section 4. Finally, in Section 5, we
present some simulation results which provide some further insight into the ideas presented in this
paper.
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2 Worst-case analysis of Random Fit

Recall that with Random Fit (RF), each time an item is to be placed in a bin the bins are indexed
in an order determined by a permutation chosen independently and uniformly at random. Each
item is sequentially placed into the lowest indexed bin into which it will fit, or into a empty bin if
no such bin is available.

Given a sequence S = (a1, a2, . . . , an) of items and a bin packing algorithm A, let A(S) denote
the number of bins used by A to pack S. In particular, OPT(S) is the number of bins used by an
optimal offline algorithm, i.e., it is the minimum number of bins required to pack S.

Theorem 1 a) For every sequence S, RF (S) ≤ 2 ·OPT (S) − 1.

b) There exist sequences S, with arbitrarily large values of OPT(S), such that with high proba-
bility RF (S) = 2 ·OPT (S) − 1.

Proof: Part a) At any time, the sequence of bins used by RF contains at most one bin with
residual capacity of at least 1

2 . Thus, for any sequence S, the number of bins used by OPT is at
least 	1

2RF (S)
 + 1.
Part b) For any integer n ≥ 2, let Sn be a sequence that contains n large items of size 1

2 . In
addition, in between any two large items, n2 small items each of size 1

2n3 must be inserted. Thus

Sn = (1
2 ,

1
2n3 , . . . ,

1
2n3 ,

1
2 ,

1
2n3 , . . . ,

1
2n3 ,

1
2).

Note that the sum of all the small items is 1
2n3n

2(n− 1) < 1
2 .

Clearly, OPT(Sn) = 	n
2 
 + 1. We show that with high probability Random Fit uses n bins on

this sequence. More precisely, immediately before an insertion of a large item, the probability that
a bin holding a large item does not contain a small item is bounded by (1− 1

n)n2 ≤ e−n. Thus, the
probability that at any of the n insertions of large items, some open bin having a large item does
not contain a small item is bounded by n2e−n. We conclude that with probability at least 1 − n2

en ,
RF needs n bins to pack Sn.

While RF has a guaranteed worst-case performance, it does not achieve the same bounds as
First Fit and Best Fit. In the worst case, RF is only as good as Next Fit and Worst Fit.

Motivated by recent work [1, 14], we also consider an extension of RF, called Random-Fit(d),
that is defined for any integer d ≥ 2. When a new item arrives, RF(d) examines bins in the same way
as RF until d bins are found that can hold the item. Among these d bins, the item is inserted into the
bin with smallest residual capacity, i.e., the Best Fit rule is applied. If there are only i, i < d, open
bins that can hold the item, then the item is inserted into one of these i bins, using again the Best
Fit strategy. If no open bin can hold the item, then the item is inserted into a new bin. Interestingly,
when making the transition from RF to RF(d), the performance improves. For any algorithm A,
let R∞

A = inf{r ≥ 1| for some N > 0, A(S)/OPT (S) ≤ r for all S with OPT (S) ≥ N}.
The next theorem follows from a result by Johnson [7, 8] because RF(d) is an Almost Any Fit

algorithm.

Theorem 2 For every d ≥ 2, R∞
RF (d) ≤

17
10 .

3 Average-case analysis of Random Fit

In this section we prove that Random Fit is stable under the input distribution U{k − 2, k} and
derive some related results for U{k − 1, k} and U{k, k}.
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3.1 Preliminaries

We begin by reviewing briefly some definitions and lemmas from [10]. For considering the distribu-
tion U{j, k}, rather than have bins of size 1, we shall instead think of having bins of size k and item
sizes chosen uniformly from {1, . . . , j}. The two notions are clearly equivalent. We shall model the
system using k − 1 tokens that move on the non-negative integers. The value of token i at time
t, denoted by si(t) represents the number of bins with residual capacity i after t items have been
placed. The state of the system at time t is given by a vector s(t) = (s1(t), ..., sk−1(t)). Initially,
s(0) = (0, . . . , 0), as there are no open bins with residual capacity. We shall often drop the explicit
reference on t when the meaning is clear. The waste at time t is given by

∑k−1
i=1 isi(t). We wish to

show that the expected waste as t → ∞ remains bounded under the distribution U{k − 2, k}. In
the lemmas and theorems that follow, we implicitly assume that this is the input distribution.

We shall divide the tokens into classes. The token i is called small if 1 ≤ i ≤ � j
2� and is called

large if 	 j
2 + 2
 ≤ i ≤ j. In the case where j is even, there is also a middle token, namely � j

2� + 1.
For convenience, we restrict ourselves to the case where j is odd. We shall explain the modifications
necessary for the case where j is even after the proof of the case where j is odd.

We begin with the following lemma:

Lemma 3 State s is reachable from the initial state s(0) = (0, . . . , 0) only if

1. For distinct indices i and i′ with i + i′ ≥ k, either si = 0 or si′ = 0.

2.
∑

i not small si ≤ 1

Proof: Follows from the fact that we will not open a new bin if an item can be packed in a current
bin.

It is also not hard to see that all states that satisfy the conditions of Lemma 3 are reachable,
and hence we assume hereafter that our state space consists exclusively of all states satisfying the
conditions of Lemma 3. From Lemma 3, if s� j

2
�(t) > 0, then all large tokens must be 0 at time t.

This feature allows us to focus on the behavior of the small tokens.

Lemma 4 Using Random Fit, the motion of a small token i has the following properties:

1. For i > 1, the motion of si at all positions other than 0 is a random walk on Z+, such that a
positive step is taken with probability at least 1

j and a negative step is taken with probability
at most 1

j + si
si−1+si

.

2. The time spent by si on each visit to 0 is stochastically dominated by a random variable D
with constant expectation and variance (that depend only on j).

Proof: For the first part, note that, if si > 0, then si increases whenever an element of size k − i
enters the system, by Lemma 3. Hence we need only consider negative steps. If an item of size i
enters, then si may decrease; if an item of size less than i enters, then it is clear that the probability
of it landing in a bin of capacity i it at most si

si−1+si
. The result follows.

The second part is almost exactly the same as in Proposition 4 of [10], which we sketch here for
completeness. If si = 0, and si′ = 0 for all i′ ≥ k− i, then clearly si moves to 1 with probability at
least 1/j. If si′ = 1 for some i′ ≥ k − i, however, this is not the case. It suffices to note that if two
consecutive items have size k − i, then si will go to 1 even in this case. One may check that this
fact suffices to prove the lemma.
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3.2 Outline of the proof

We sketch how we will prove that RF is stable following a similar approach as [10]. By Lemma 3,
the amount of waste from non-small tokens is bounded by a constant. Hence we need only consider
the waste due to small tokens, which we denote by f(t) =

∑�j/2�
i=1 isi(t). The proof breaks down

into three steps. The first step, we show that if s� j
2
�(t) > 0, then the expected change in f(t) is

negative.

Lemma 5 ([10], Proposition 5) Suppose that s� j
2
�(t) > 0. Then E[f(t+ 1)− f(t)|f(t)] = −1/j.

Proof: Consider the size i of the item inserted at time t + 1. If 1 ≤ i ≤ �j/2�, then the new item
is assigned to a bin with remaining capacity l, i ≤ l ≤ �j/2�, and f decreases by i. If � j

2� < i ≤ j,
then, since s�j/2� > 0, Proposition 3 implies that there is no bin with remaining capacity i. Thus,
the incoming item is put into a new bin, i.e., sk−i increases by 1 and f increases by k − i. The
expected change in f is therefore

1
j


�j/2�∑

i=1

(−i) +
j∑

i=�j/2�+1

(k − i)


 =

1
j


�j/2�∑

i=1

(−i) +
�j/2�∑
i′=2

i′


 , (1)

because k − j = k − (k − 2) = 2 and, since j is odd, k − (�j/2� + 1) = �j/2�. It is easy to verify
that equation (1) evaluates to −1/j.

For the second step, we show that if we begin a state where f(t) is large, then for some suitably
large T , for almost all of the next T steps s� j

2
� > 0 with a suitably high probability. This step is

the challenging part of the proof and Section 3.3 is entirely devoted to it.
Combining the first two steps, we find that, whenever f(t) is sufficiently large, the expected

change in f(t) is negative over a suitably long interval T . The third step is to use this fact and
results from the general theory of Markov chains to show that we may conclude that the expected
waste is bounded. The third step relies on general conditions for a multi-dimensional Markov chain
to be ergodic; we cite the appropriate lemma from [10], which is derived from [5].

Lemma 6 ([10], Lemma 6, or [5], Cor. 7.1.3) Let M be an irreducible, aperiodic Markov chain
with state space S ⊆ Zk, and b a positive integer. Denote by pb

s s′ the transition probability from s
to s′ in Mb, the b-step version of M. Let Φ : S → R+ be a non-negative real-valued function on S
which satisfies the following conditions:

1. There are constants C1, µ > 0 such that Φ(s) > C1||s||µ for all s ∈ S.

2. There is a constant C2 > 0 such that pb
s s′ = 0 whenever |Φ(s)−Φ(s′)| > C2, for all s, s′ ∈ S.

3. There is a finite set B ⊂ S and a constant ε > 0 such that
∑

s′∈S p
b
s s′(Φ(s′)− Φ(s)) < −ε for

all s ∈ S\B.

Then M is ergodic with stationary distribution π satisfying π(s) < Ce−δΦ(s) for all s ∈ S, where
C and δ are positive constants.

For the bin-packing problem, we shall use Φ(s) =
∑� j

2
�

i=1 isi + k − 1 = f + k − 1, where f is the
waste from small tokens. This is an upper bound on the total waste. One may check that the first
two conditions of Lemma 6 are satisfied for any choice of b. It remains to find appropriate b,B,
and ε; this is equivalent to the second step of our proof sketch, which we now focus on.
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3.3 Random Fit over long intervals

We now show that, for all but a finite number of starting states, s� j
2
� > 0 for most of sufficiently

large intervals. We shall often compare the behavior of a token with a random walk over an interval
[0, R]. We shall use p↑(i) to denote the probability that a walk at i moves to i + 1 in one step.
Similarly p↓(i) is the probability that a walk at i moves to i−1 in one step, and p→ = 1−p↑(i)−p↓(i)
(the self-loop probability) is the probability that the walk remains at i when at i. We shall drop the
i in cases where p↑(i) is independent of i (except at 0 and R, as p↓(0) and p↑(R) are necessarily
0, and the self-loop probabilities are increased accordingly); this is called the homogeneous case.
A random walk is downward biased if p↑(i) ≤ p↓(i) for all i in the range of the walk (except the
boundaries).

In order to bound the behavior of the random walks we study, we shall require the following
lemma, which is a restricted bound derived from Corollary 4.2 of [11]:

Lemma 7 Let λ1 < 1 denote the second largest eigenvalue of the transition matrix for a random
walk W on [0, R]. Let π(A) =

∑
a∈A πa be the stationary probability that the walk lies in A ⊂ R,

and Wl(A) be the number of steps the walk spends in A during the first l time steps. If the walk
starts at 0, then for any integer l ≥ 1 and 2 ≤ β < 1/π(A),

Pr[Wl(A) ≥ βπ(A)l] ≤ β
√
π0

exp
(
−π(A)2(1 − λ1)l

)
.

To use the above lemma we will require the following fact about the eigenvalues:

Lemma 8 For the random walk on [0, R] with p↑ = p↓ = α, λ1 ≤ 1 − 2α
R2 .

We start with a preliminary lemma that provides both the first step and the main idea of the
proof. In this lemma, and all that follows, we assume that T is at least as large as some constant
chosen so that the bounds hold.

Lemma 9 For sufficiently large T , if si > T 4 over the time interval [0, T ], then si+1 ≥ T 1/16 for
all but at most T 15/16 steps with probability at least 1 − 2

T 2 .

Proof: By Lemma 4, the behavior of the token si+1 at any point on the interval [0, T ] can be
related to a random walk over the positive integers, where p↑(i) ≥ 1/j and p↓(i) ≤ 1

j + si
si+si+1

(except at i = 0). Furthermore, the probability that si+1 ≥ T 1/16 for all but at most T 15/16 steps,
which we shall hereafter call z, is clearly minimized if we start si+1 at 0. This information is
sufficient to prove that z ≥ 2

T 2 directly; however, we suggest an easier approach.
We first note that, since we are comparing the behavior of si+1 to a specific random walk, z can

only increase if we restrict the walk (or, equivalently, the token si+1) to the interval [0, T 1/4 − 1].
Bounding the walk in this way will simplify the analysis. Also, for convenience, we also temporarily
ignore the problem of the waiting time when si+1 = 0 as described in Lemma 6.

We now split each step, or item arrival, into two phases. In phase one, a random permutation
order is chosen for the open bins. In phase two, an item size is chosen from the distribution U{j, k},
and this item is placed according to the RF rule.

By breaking each step up in this manner, we see that whenever the permutation chosen in phase
one has a bin with remaining capacity i ahead of all bins of remaining capacity i+1, then for phase
two, the worst possible case is that si+1 behaves like an unbiased random walk, with p↑ = p↓ = 1/j.
(Note that it is possible that p↓ ≤ 1/j, but we maximize the time that si+1 ≥ T 1/16 by assuming
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that p↓ = 1/j.) In the alternate case where a bin with remaining capacity i + 1 lies ahead of all
bins of capacity i in phase one, we may again overestimate z by assuming that p↑ = 0 and p↓ = 1 in
phase two. As we now show, by splitting each step into two phases in this way, we have essentially
reduced the problem to an unbiased walk.

We note that, over the interval [0, T ] we have enforced the restrictions si+1 ≤ T 1/4 and si ≥ T 4.
Hence, with probability at least 1

T 2 , for no steps in this interval do we place a bin of capacity
i + 1 ahead of all bins of capacity i in phase one. We call this event E . Conditioned on E , si+1

behaves like an unbiased random walk on [0, T 1/4 − 1] over the entire interval. In particular, the
stationary distribution is uniform, so πi = T−1/4 for all i. Let Z be the number of steps for which
si+1 ≤ T 1/16. From Lemmas 7 and 8, we find that for sufficiently large T ,

Pr[Z ≥ T 15/16 | E ] ≤ T 1/8 · T 1/8 exp
(−2T 1/8

j

)
≤ 1

T 2
. (2)

Using a union bound on probabilities now yields the lemma.
To handle the discrepancy when the walk is at 0, we note that we can explicitly bound the total

number of steps at 0 with sufficiently high probability using part 2 of Lemma 4. The bound given
by equation (2) can also be tightened so that for sufficiently large T , the lemma as stated holds.

We have shown that if si is extremely large over a sufficiently long interval, then si+1 is also
be large over most of the interval with high probability. Our actual goal is to show that if any si

is extremely large (for i ≤ � j
2�), then s� j

2
� > 0 over most of the interval. Hence we will require an

inductive, but slightly weaker, version of Lemma 9.
One problem in generalizing Lemma 9 is that if si is large only for most, and not all, of the

steps, then there are several steps where we cannot explicitly say how si+1 behaves. Moreover,
these steps may affect the behavior of si+1 at any point. We avoid the problem by introducing
an adversary model, generalizing a similar argument from [10]. This adversary model allows us to
consider the worst possible case for the steps where si is smaller than we need.

We consider how an adversary can affect a homogeneous downward biased random walk on
[0, R]. The goal of the adversary is to keep the random walk at or below some level l, l ≥ 2, for as
many steps as possible. The adversary may control a fixed number of steps. In a controlled step,
the adversary may specify any probability distribution on the legal moves from the current state;
the step of the walk is then made according to that distribution. In all the other steps, the process
behaves like a homogeneous downward biased random walk.

In the following, given an adversary strategy A, let pA(y, i, n,m, l) denote the probability that
a homogeneous downward biased random walk of n steps on the interval [0, R] starting at i with y
controlled steps used according to A, spends at least m steps at or below l.

Lemma 10 For all non-negative integers y, i, n,m and l, with l < R and i < R− 1, the exists an
adversary strategy A0

(a) that never uses a controlled step when the walk is below l

(b) that always uses a controlled step as soon as possible when the walk is at or above l + 1 to
push the walk downwards

such that pA0(y, i, n,m, l) ≥ pA(y, i, n,m, l) for all adversaries A.

Proof: The case where l = 0, the walk is unbiased, and the self-loop probability is 0 corresponds
to what is proven in [10, Lemma 7]; we extend the argument to this more general case. We use
induction on n. We first note that any adversary that uses a downward move when the walk is
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below l can be replaced by one that does not. This follows by a simple coupling argument. Compare
the strategy where the adversary uses a downward move below l to one where the adversary waits
until the walk is at l by coupling all random moves; the second strategy will be at the same height
or below the first after the downward move. (It will end up below only if the walk reaches 0.) Thus
we have shown that there is an optimal adversary strategy that satisfies condition (a).

We now concentrate on adversary strategies that use their moves at or above l + 1. Let DyR
denote the strategy A1 which uses the y adversary-controlled steps as soon as possible when the
walk is at or above l+ 1, and then follows the random walk. Let RDy denote the strategy A2 that
begins with a random step, and then uses the adversary-controlled steps as soon as possible when
the walk is at or above l+ 1. Let pA1(y, i, n,m, l) be the probability of the event that the walk is at
or below l for at least m of the next n steps after starting at i when adversary strategy A1 = DyR
is used. Similarly, let pA2(y, i, n,m, l) be the probability of the event that the walk is at or below l
for at least m of the next n steps after starting at i when adversary strategy A2 = RDy. We claim

pA1(y, i, n,m, l) ≥ pA2(y, i, n,m, l), (3)

and by induction this suffices to prove that there is an optimal strategy satisfying condition (b).
We first present two useful propositions.

Proposition 11 pA1(y, l, n,m, l) ≥ pA1(y, l, n,m + 1, l)

Proposition 12 pA1(y, l − 1, n,m, l) ≥ pA1(y + 1, l, n + 1,m + 1, l)

Proposition 11 is easy to verify. We prove Proposition 12. Let Wl−1 be the walk that starts at
l − 1 and follows strategy DyR; similarly let Wl be the walk that starts at l and follows strategy
Dy+1R. Let Tl−1 be the time when Wl−1 first makes the transition (l − 1) → l and let Tl be the
time when Wl first makes the transition l → (l + 1). Clearly, Tl−1 = Tl in distribution. We only
have to consider the event that Tl−1 = Tl ≤ n+1 and Tl−1 = Tl ≥m. Then, the remainder of Wl−1

is a walk starting at l that follows strategy DyR and must be at or below l for at least m− Tl−1 of
the next n− Tl−1 steps. In the case of Wl, the adversary first pushes the walk down to l and the
remainder is also a walk that starts at l, follows strategy DyR and must be at or below l for at least
m+1−Tl = m+1−Tl−1 of the next n+1−(Tl+1) = n−Tl steps. Using Proposition 11 and taking
again into account that Tl−1 = Tl in distribution, we conclude the probability of the first walk is
not smaller than that of the second walk, i.e., pA1(y, l − 1, n,m, l) ≥ pA1(y + 1, l, n + 1,m + 1, l).

We return to the proof of inequality (3). If i ≤ l, both strategies A1 and A2 start the same and
we are done by induction. If i > y + l, both strategies give the same distribution after y + 1 steps,
so the two quantities pA1(y, i, n,m, l) and pA2(y, i, n,m, l) are equal. The interesting case is when
l < i ≤ y+ l. In this case, strategy A1 forces the walk from i down to l using i− l controlled steps.
Thus,

pA1(y, i, n,m, l) = pA1(y′, l, n′,m− 1, l),

where n′ = n− i+ l and y′ = y − i + l. Also

pA2(y, i, n,m, l) = p↑ · pA1(y′ − 1, l, n′ − 2,m− 1, l)
+ p↓ · pA1(y′ + 1, l, n′,m− 1, l)
+ p→ · pA1(y′, l, n′ − 1,m− 1, l)

and
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pA1(y′, l, n′,m− 1, l) =
p↑ · pA1(y′ − 1, l, n′ − 2,m− 2, l)
+ p↓ · pA1(y′, l − 1, n′ − 1,m− 2, l)
+ p→ · pA1(y′, l, n′ − 1,m− 2, l).

Using Proposition 11, we have pA1(y′ − 1, l, n′ − 2,m − 2, l) ≥ pA1(y′ − 1, l, n′ − 2,m − 1, l) and
pA1(y′, l, n′ − 1,m− 2, l) ≥ pA1(y′, l, n′ − 1,m− 1, l). Thus,

pA1(y, i, n,m, l) − pA2(y, i, n,m, l) ≥
p↓(pA1(y′, l − 1, n′ − 1,m− 2, l)
− pA1(y′ + 1, l, n′,m− 1, l)).

Proposition 12 implies that the last term in non-negative.

Lemma 13 Suppose, over a period of T steps, si−1 ≥ Tα over all but T 1−α steps for some α ≤
1/16. Then si ≥ Tα/16 for all but at most T 1−α/16 steps with probability at least 1 − 3T−α/4.

Proof: As in Lemma 9, we may, without loss of generality, restrict si to the interval [0, Tα/4 − 1].
Then si behaves like a slightly biased random walk on all but the T 1−α steps for which si−1 lies
below Tα. Rather than consider the biased walk, however, we use the same technique as in Lemma 9
to reduce the problem to an unbiased random walk by splitting each step into two phases. We give
the adversary control on all steps in which a bin with remaining capacity i lies ahead of all bins
with capacity i − 1 after the first phase. On any step for which si−1 ≥ Tα and si ≤ Tα/4, the
probability that a bin with remaining capacity i lies ahead of all bins with capacity i− 1 after the
first phase is at most 1

T 3α/4 . Hence, the expected number of such steps is at most T 1−3α/4, and by
Markov’s inequality, the number of such steps is at most T 1−α with probability at least T−α/4. Let
E be the event that there are no more than T 1−α such steps.

Conditioned on E , the adversary controls at most 2T 1−α steps: T 1−α from the above paragraph,
and T 1−α from the steps where si−1 < Tα. On all other steps the walk behaves like an unbiased
random walk with p↑ = p↓ = 1/j. (Again, this is not quite true when si = 0, but this small
discrepancy can be easily handled explicitly as described in Lemma 9; for convenience we dismiss
the problem here.) We use this to bound the probability that si lies below Tα/16 for more than
T 1−α/16 steps.

We first consider the moves controlled by the adversary. In the worst case, si begins at 0. By
Lemma 10, there exists an optimal adversary strategy A0 that uses a controlled step whenever
si reaches Tα/16 − 1 or Tα/16. Hence, to overestimate the effect of the adversary, we assume the
following: the adversary uses its moves whenever si reaches Tα/16; the adversary’s move returns
the walk to si = 0; and all steps until the adversary’s moves are used count as steps where
si ∈ [0, Tα/16 − 1]. These assumptions can only increase the time until the adversary’s moves are
used. The expected time for si to reach Tα/16 from 0 is cTα/8 for some constant c. Thus the
expected number of steps until A has used all of its moves it bounded by cT 1−7α/8. Let Z1 be the
number of steps until the A0 uses all of its moves. Then by Markov’s inequality

Pr

[
Z1 ≥ T 1−α/16

2
|E
]
≤ 2cT−13α/16 ≤ T−α/4

for sufficiently large T .
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After the adversary steps are used, the number of steps that si spends in the interval I =
[0, Tα/16 − 1] is stochastically dominated by that of an unbiased random walk U on [0, Tα/4] that
runs for T steps and begins at 0. Let Z2 be the number of steps U spends in I. As in the proof
of Lemma 9, the equilibrium distribution of U is uniform over [0, Tα/4 − 1]. Thus π(I) = T−3α/16.
Using Lemmas 7 and 8 we obtain

Pr

[
Z2 ≥ T 1−α/16

2

]
≤ Tα/8 · Tα/8

2
exp

(
−T−3α/8 · T−α/2 · T

j

)

≤ T−α/4

for sufficiently large T . Taking a union bound, we find that the probability that Z1 +Z2 ≥ T 1−α/16

is at least 1 − 3T−α/4, which proves the lemma.

Lemmas 5, 9, and 13 allow us to prove the following theorem.

Theorem 14 Random Fit is stable under the distribution U{k − 2, k} for all k ≥ 3.

Proof: As in our previous calculations we first assume that k is odd. It suffices to consider the
drift of f(s) over a suitably large interval T , and show that it is negative for all but a finite number
of states. The excluded set of states G will be

G = {s ∈ S : ∀i, si ≤ T 4},

where T will be determined. Consider any starting state outside of this set G. Applying Lemma 9
and then Lemma 13 inductively, we find that with probability at least 1 − (c1/T ε1), s� j

2
� > 0 over

all but T ε2 of the steps, for some constants c1 and ε1, ε2 < 1 dependent only on j. Let A be the
event that s� j

2
� > 0 over all but T ε2 of the steps. As the expected value of f decreases by 1/j

whenever s� j
2
� > 0 by Lemma 5, and it increases by at most j otherwise,

E[f(T ) − f(0)|f(0)] ≤ E[f(T ) − f(0)|f(0) ∧ A]
+ (1 −Pr[A]) E[f(T ) − f(0)|f(0) ∧ ¬A]

≤
[
−1
j

(T − T ε2) + jT ε2

]
+ c1T

1−ε1j.

By choosing T sufficiently large, we may make this expression smaller than −δ for some constant
δ. This suffices to prove the theorem, by Lemma 6.

If k is even, then there is middle token s�j/2�+1. If s�j/2�+1 = 0, everything is exactly as in
the case where k is odd. If s�j/2�+1 > 0, then by Lemma 3 s�j/2�+1 = 1 and no bins with larger
capacity are open. We consider the time steps when s�j/2�+1 = 1. In these steps f might increase
because a small item may be inserted in the bin of capacity �j/2� + 1. Lemmas 9 and 13, which
apply when k is even, give that with probability at least 1 − (c1/T ε1), s� j

2
� > T 1−ε2 over all but

T ε2 of the steps, for some constants c1 and ε1, ε2 < 1 dependent only on j. Hence it should be a
very rare event for a small item to be placed into a bin of capacity �j/2� + 1.

In fact, in exactly the same manner as shown in Lemma 5, one may show the following:

Proposition 15 Suppose that k is even and s�j/2� > Z. Then E[f(t+1)−f(t)|f(t)] ≤ −1/j+2/Z.
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We conclude that in this case

E[f(T ) − f(0)|f(0)] ≤ E[f(T ) − f(0)|f(0) ∧ A]
+ (1 −Pr[A]) E[f(T ) − f(0)|f(0) ∧ ¬A]

≤
[(

−1
j

+
2

T 1−ε2

)
(T − T ε2) + jT ε2

]
+ c1T

1−ε1j.

This expression can also be bounded by −δ if T is chosen large enough.

One may check that from the inductive use of Lemma 13, the ε2 in Theorem 14 is exponential
in j, and hence our bounds on the expected waste is doubly exponential in j. It is an interesting
question whether better bounds are possible.

It is also worthwhile to note the following:

Theorem 16 Random Fit(d) for d ≥ 2 is stable under the distribution U{k − 2, k} for all k ≥ 3.

The proof is entirely similar to the proof for Random Fit. Simulations suggest that as d increases,
the behavior of Random Fit(d) approaches that of Best Fit, as one might expect.

Theorem 17 Random Fit and Random Fit(d), for d ≥ 2, have expected waste o(n) under the
distributions U{k − 1, k} and U{k, k}, for all k ≥ 3.

Proof: We only consider the distribution U{k− 1, k}, as the waste under the distribution U{k, k}
is entirely similar. Under this distribution, the statement corresponding to Lemma 5 is that if
s� j

2
�(t) > 0, then E[f(t+1)−f(t)|f(t)] = 0. Using the same notation as in the proof of Theorem 14

we obtain
E[f(T ) − f(0)|f(0)] ≤ jT ε2 + c1T

1−ε1j

for some constants c1 and ε1, ε2 < 1 dependent only on j. Hence, once the expected waste reaches
a certain constant, its expected growth is sublinear, proving the theorem.

Whether tighter bounds, more like those known for Best Fit and First Fit, are possible for
Random Fit under these distributions remains an open question.

4 Analysis of First Fit under distribution U{k − 2, k}
We now consider how to modify the proof of RF on the distribution U{k − 2, k} to work for First
Fit. Again we focus on the case where k is odd; the case where k is even requires some minor
additional work, as for Random Fit, which we omit here.

One way of thinking about the difficulty in extending the results from RF to FF is to consider
the dependence among the steps. In RF, at each step we have an independent random ordering
assigned to the bins, while in FF, the orders of the bins at different steps are clearly dependent.
In particular, the order of the bins at each step depends on the initial state, over which we have
negligible control. The work of this section will focus on finding ways to circumvent effect of these
dependencies so that we can apply the same ideas that we used in Section 3.

Let us consider an initial state, given at time t = 0. In order to avoid problems caused by the
order of bins in the initial state, we focus on bins that are created after time 0. In fact, we are
even more restrictive: let a single i bin at time t be a bin created after time 0 that has remaining
capacity i and contains only one item, and denote the number of single i bins by ui(t). Instead
of the vector s we considered previously, we shall primarily focus on the vector u = (u1, . . . , u� j

2
�).

The following important points about u make it useful:
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• If u� j
2
� > 0, then s� j

2
� > 0 also. Hence, proving u� j

2
� > 0 over most of the steps is sufficient.

• Regardless of the initial state, (u1, . . . , u� j
2
�) = (0, . . . , 0) at time 0.

To see how the considering u makes things easier, let us prove a lemma similar to Lemma 9 for
First Fit.

Lemma 18 Suppose si(0) ≥ T . Then when ui+1 > 0, ui+1 behaves like a random walk with
probability at least 1/j of increasing at each step and probability at most 1/j of decreasing at each
step. Also, the time spent by ui+1 on each visit to 0 is stochastically dominated by a random variable
D with constant expectation (that depends only on j). In particular, ui+1 ≥ T 1/16 for all but at
most T 15/16 steps with probability at least 1 − 1

T 2 .

Proof: Since si(0) ≥ T , over the next T steps there is always a bin with remaining capacity i
ahead of all single bins with remaining capacity i + 1 created after time 0. This implies that ui+1

can decrease only when an item of size i+ 1 arrives, and hence decreases with probability at most
1/j at each step. When ui+1 > 0, then ui+1 increases whenever an item of size k − i − 1 arrives,
and hence it increases with probability at least 1/j. The case where ui+1 = 0 is special, and is
handled as in Lemma 4. The final result, that ui+1 ≥ T 1/16 most of the time, now follows using an
argument similar to Lemma 9.

As in the proof for RF, we now want to extend the above lemma inductively. Similar to the
RF case, we would like to say that a bin of size i lies ahead of all single i + 1 bins most of the
time, whenever the number of single i+ 1 bins is sufficiently small. In Lemma 13, we accomplished
this by splitting each step into two substeps, with the first substep re-ordering the bins randomly.
We do not have this luxury for the FF case. However, it seems intuitive that the bins should be
“almost” randomly distributed at each step. This point is made explicit in the following lemma:

Lemma 19 Let E be the event that a single i bin at time t lies ahead of all single i + 1 bins. Let
zb,c
t = Pr{E|ui(t) = b, ui+1(t) = c}. Then zb,c

t ≤ b
b+c .

Proof: Consider any sequence a = a1, a2, . . . , at of t items that ends with a single i+ 1 bin ahead
of all single i bins with ui(t) = b and ui+1(t) = c. We center on the steps where the single i and
i+ 1 bins were created. We first claim that if a single i bin was created at step g and a single i+ 1
bin was created at step h, then switching the entering items at steps g and h switches the order of
these two bins, but has no other effect on the algorithm. This can easily be proven by induction
for all bins behind the first single i + 1 bin, since there is no way a second item could have been
placed in any of these bins. The only difficult case is that of the first single i + 1 bin, call it B.
The reason that B is a special case is that it is possible that since B is the frontmost single bin, it
may be that a second item could have been placed in it if we change its capacity. However, since
switching the appropriate steps g and h would only lower the capacity of B, it is clear that if B
has not obtained a second item in the original sequence, it cannot in the modified sequence as well.

We now divide the sequences into equivalence classes. For a sequence a, let Y i
t (a) be the set of

times at which the single i bins at time t were created. Two sequences a and a′ are equivalent if
Y i

t (a) ∪ Y i+1
t (a) = Y i

t (a′) ∪ Y i+1
t (a′) and ui(t) = b, ui+1(t) = c for both sequences.

Take any sequence a with a single i + 1 bin ahead of all single i bins at time t. From the
first paragraph of the proof, permuting the times when a single i + 1 bin and a single i bin were
created yields equivalent sequences. Hence, by taking all ways of splitting Y i

t (a) ∪ Y i+1
t (a) into

two groups of size b and c, and using this division to determine when single i and i + 1 bins are
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created, we find that every sequence a has at least
(b+c

b

)
sequences in its equivalence class. Since

the probability a and any of these other
(b+c

b

)
sequences occurring are equal, it is straightforward

to show combinatorially that there are at least b/c times as many sequences with a single i bin
ahead of all single i + 1 bins as there are with a single i + 1 bin ahead of all single i bin. Hence
zb,c
t ≤ b

b+c .

Lemma 19 suggests that the behavior of FF should not be worse than RF, with the understand-
ing that the ui now play the role of the si. As in the case of RF, we would like to say the small
tokens ui behave like a unbiased random walk over most of the steps. This leads us to the prove a
variant of Lemma 13 in this setting, which is phrased slightly differently in order to appropriately
handle the conditioning.

Lemma 20 Suppose, over a period of T steps, ui−1 ≥ Tα over all but at most T 1−α steps for some
α ≤ 1/16 with probability at least 1/2. Then, conditioned on ui−1 ≥ Tα over all but at most T 1−α

steps, ui ≥ Tα/16 for all but at most T 1−α/16 steps with probability at least 1 − 4T−α/4.

Proof: As in Lemma 13, we must bound the number of steps for which the behavior of ui is not
that of an unbiased random walk, and then apply an adversary argument. Also as in Lemma 13,
we will restrict our consideration to the behavior of ui to the interval [0, Tα/4 − 1]. (This can be
interpreted as though if ui ≥ Tα/4, we may assume that a single bin of size i + 1 lies ahead of all
bins of size i, which is a conservative assumption.)

To bound the number of steps the adversary controls, then, we bound the number of steps X
that satisfy the following conditions:

• ui−1 ≥ Tα.

• ui ≤ Tα/4 − 1.

• A single i bin lies ahead of all single i− 1 bins.

The value of X, in addition to the number of steps for which ui−1 < Tα, bounds the number of
steps where the adversary controls the walk; on all other steps, we either have that ui ≥ Tα/4 or a
single i− 1 bin lies in front of all single i bins, and so ui behaves (at worst) as an unbiased random
walk with p↑ = p↓ = 1/j. (As usual, we ignore the discrepancy at ui = 0.)

Let yt be the probability that on the tth step the above conditions hold. Then

E[X] = E[
T−1∑
t=0

yt] =
T−1∑
t=0

E[yt]

≤
T−1∑
t=0

Tα/4

Tα + Tα/4
< T 1−3α/4.

Although it would seem this is enough to bound the number of adversary steps, we must be
careful. Let E be the event that ui−1 ≥ Tα over all but T 1−α steps. The expected number of
additional adversary steps from single i − 1 bins being frontmost is not E[X], but E[X|E ]. From
the hypothesis of the lemma that Pr(E) ≥ 1/2, however, we must have E[X|E ] ≤ 2T 1−3α/4. Using
Markov’s law, we have

Pr({X|E} ≥ T 1−α) ≤ 2T−α/4.

Hence, conditioned on E , the number of steps the adversary controls is at most 2T 1−α with
probability at least 1 − 2T−α/4. The rest of the proof now proceeds as in Lemma 13.

We are now ready to prove the main theorem:
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Figure 1: Average waste over long sequences

Theorem 21 First Fit is stable under the distribution U{k − 2, k} for all k ≥ 3.

Proof: As in Theorem 14, it suffices to consider the drift of f(s) over a suitably large interval T ,
and show that it is negative for all but a finite number of states. The excluded set of states G will
be

G = {s ∈ S : ∀i, si ≤ T},

for some suitably large T . We now apply Lemma 18 and Lemma 20 to obtain a bound on E[f(T )−
f(0)|f(0)] similar to that in Theorem 14.

We would then like to apply Lemma 6; however, technically we cannot do so, as the state space
of the underlying Markov chain is not embedded in a fixed dimensional space. Similar results,
however, can be applied in this setting, once we have shown that the expected change in the waste
f is negative for a suitably large T . For example, [13, Theorem 13.0.1] can be used to show that the
chain is ergodic, and [6, Theorem 3.1] implies that in the stationary distribution, the distribution
of the waste has an exponentially decreasing tail.

5 Simulation Results

In this section, we briefly provide some simulation results comparing the BF, RF, and FF algorithms
on the input distribution U{k−2, k}. We emphasize that the purpose of this section is not to provide
a detailed simulation-based comparison. Rather, the purpose is to gain further insight into some
of the technical ideas presented in this paper.

In Figure 1, we present the average waste seen over the first one million time steps for BF and
FF for various values of k. Each data point is the average of ten trials. Similarly, the average waste
for some values of RF are shown. Here, we again averaged over ten trials, but the used one hundred
million time steps. We chose these numbers of steps because they appeared sufficient for the waste
to reach a stable level. Although the decision for the number of time steps to use was somewhat
subjective, we note that generally the maximum waste seen over the lifetime of the process was
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often obtained significantly far from the end of the process, which suggests that the system waste
had reached a stable level.

The most visibly striking feature is that the waste from Random Fit grows significantly more
rapidly with k than the waste from Best Fit and First Fit. Recalling that the work of [10] showed
that in the stationary distribution the expected waste was at most exponential in k for Best Fit,
these simulations suggest that our doubly exponential bounds may be correct for Random Fit but
incorrect for First Fit. Indeed, the much slower convergence of Random Fit to a stable waste
level suggests this possibility as well. However, we caution that because the waste grows extremely
quickly with k, it is very difficult to assess the true behavior from these simulations. Also, it is
interesting to note that the jumps between consecutive values are much larger between even-odd
pairs than odd-even pairs. This suggests the technicality in the analysis regarding whether k is
even or odd corresponds to a significant feature in the process.

In Figure 2 we examine the remaining capacity of the first bin in the First Fit ordering over all
time steps. As k grows, a bin with remanining capacity one is almost always up front. Figure 2
validates the intuition that FF tends to order the bins so that bins with smaller remaining capacity
lie in front. We note that for RF, although we have fewer results, the behavior trends appear the
same. In Figure 3, we concentrate on the fraction of time a bin with remanining capacity one is
expected to be up front over various time scales. That is, at each step, we consider the probability
a bin with remanining capacity one will end up first after the bins are randomly permuted, and
Figure 3 shows the average of this probability observed over the lifetime of this process. Again, as
k rises, so does the fraction of the time a bin with remaining capacity one lies up front. Figure 3
also demonstrates the slow convergence of this behavior for RF, and the importance of carefully
choosing the time scale to judge the behavior of these processes through simulations.

6 Conclusions

We have demonstrated that the First Fit bin packing algorithm is stable on the distribution U{k−
2, k}. We believe that our result demonstrates that the Markov chain approach may be useful,
even in situations where the natural description of a problem does not have a convenient state
space. Our analysis made use of insight gained from a novel packing algorithm, Random Fit, which
appears interesting in its own right.

An open question is to tighten the bounds developed in this paper. For both First Fit and
Random Fit, our bounds for the expected waste are doubly exponential in j. Simulations suggest
that the expected waste for First Fit may only be exponential in j. Unfortunately, the simulations
for Random Fit seem to suggest that the expected waste for Random Fit may indeed be doubly
exponential in j, in which case it seems that another approach may be necessary to achieve better
bounds for First Fit.
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