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Abstract

We prove that the First Fit bin packing algorithm is stable under the input distributflen- 2, k}
forall k > 3, settling an open question from the recent survey by Coffman, Garey, and Johnson [3]. Our
proof generalizes the multi-dimensional Markov chain analysis used by Kenyon, Rabani, and Sinclair to
prove that Best Fit is also stable under these distributions [11]. Our proof is motivated by an analysis of
Random Fit, a new simple packing algorithm related to First Fit, that is interesting in its own right. We
show that Random Fit is stable under the input distributidfis — 2, k}, as well as present worst-case
bounds and some results on distributio& — 1, k} andU {k, k} for Random Fit.

1 Introduction

In the one-dimensional bin packing problem, one is given a sequance., a, € (0, 1] of items to pack

into bins of unit capacity so as to minimize the number of bins used. A great deal of literature has focused
on this problem, perhaps because, as Coffman, Garey, and Johnson [3] observe in their recent survey on bin
packing, “The classical one-dimensional bin packing problem has long served as a proving ground for new
approaches to the analysis of approximation algorithms.” For example, recently the study of Best Fit bin
packing under discrete uniform distributions has led to a novel analysis technique, based on the theory of
multi-dimensional Markov chains. In this paper we extend this approach to analyze First Fit and a new bin
packing algorithm, called Random Fit, under discrete uniform distributions.

First Fit and Best Fit are two classical algorithms for online bin packing. With First Fit, the bins are indexed
in increasing order of their creation. Each item is sequentially placed into the lowest indexed bin into which
it will fit, or into a empty bin if no such bin is available. With the Best Fit algorithm, each incoming item

is placed into the non-empty bin with smallest residual capacity that can contain it; if no such bin exists,
the item is placed in an empty bin. The performance of First Fit and Best Fit in the worst case and uniform
average case has been settled for quite some time. In the worst case, the number of bins used by any of these
algorithms is at mos% times the optimum number of bins, as shown by Johmesah [10]. When item

sizes are generated b0, 1), the continuous uniform distribution @0, 1], then the performance measure

of interest is thexpected waste, which is the difference between the number of bins used and the total size of
the items packed so far. Shor [16] showed that the expected waste created by Fir®t(Rf/%. Shor [16]

and Leighton and Shor [13] proved that Best Fit does better, generating expecte®wasting® n).

Because of these tight bounds, research on First Fit and Best Fit is now focused on analyzing expected waste
when item sizes are generated by discrete uniform distributions. A discrete uniform distribution, denoted
byU{j, Kk}, 1 < j <k, isone where item sizes are chosen uniformly from thések, 2/k, ..., j/k}. For

U{k, k}, k > 1, First Fit and Best Fit achieve expected wadte/nk) and O(,/nlogk), respectively, (see
Coffmanet al. [2]). Similar bounds hold fotJ {k — 1, k}. Of particular interest are distributions for which

the algorithms arstable. We say that a algorithm is stable under a distribution if the expected waste remains
bounded (that isD (1)), even as the number of itemsyoes to infinity. Coffmaret al. [2] proved that First

Fit is stable undel {j, k}, whenk > j2, and Best Fit is stable undér{j, k}, whenk > j(j + 3)/2.

Later, Coffmaret al. [4] introduced a novel method for proving the stability (and instability) of bin packing
algorithms based on multi-dimensional Markov chains. Their methodology allowed them to show that
U{]j, k} is stable under Best Fit for several specific pairs of value$ fumdk. Kenyonet al. [11] expanded

on this work by proving that Best Fit is stable under the entire family of distributibiks— 2, k}, using a
complex analysis of the underlying Markov chains.



We briefly describe the Markov chain setting used in the results described above. Using the Best Fit al-

gorithm under a discrete uniform distribution, a packing can be represented by the number of bins of each
possible residual capacity. The order of the bins is irrelevant. This packing process can therefore be easily
represented by a Markov chain, where the state at any time is a \&etots;, ..., -1), ands is the

number of bins of residual capacityk.

The Best Fitalgorithm is well suited to the Markov chain approach, because the order of the bins is irrelevant,
leading to a simple representation of the packing. In contrast, in the First Fit algorithm, the order of the bins
cannot be dismissed. Because of the difficulty of representing the state in the First Fit algorithm, until now
these Markov chain techniques have not been successfully applied to the First Fit algorithm.

In this paper, we remedy this problem by demonstrating a Markov chain argument that shows that First Fit
is in fact stable under the family of distributiobi{k — 2, k}. This result disproves a conjecture made by
Coffmanet al. [3], who state that limited experiments suggest that the expected waste may grow unbounded
onU {k — 2, k} for sufficiently largek. Moreover, it demonstrates that the Markov chain approach may be
more generally applicable than previously believed.

Our proof emerges from an analysis of a new bin packing algorithm, cefiadom Fit (RF). Random Fit

is a simple randomized variant of First Fit. With Random Fit, each time an item is to be placed in a bin the
bins are indexed in an order determined by a permutation chosen independently and uniformly at random.
Each item is sequentially placed into the lowest indexed bin into which it will fit, or into a empty bin if no
such bin is available.

In Section 2 we introduce Random Fit by analyzing its worst-case behavior. In the following sections we
then concentrate on average-case analysis. Random Fit has the advantage that, like Best Fit, a packing can
be represented by the number of bins of each possible residual capacity. Therefore, in Section 3, we first
generalize the analysis of Best Fit shown in [11] to Random Fit. We prove stability of Random Fit under
the input distributiotd {k — 2, k} and derive some related results fbfk — 1, k} andU {k, k}. Using ideas
developed in Section 3, we proceed to prove stability of First Fit under input distridufilor- 2, k} in

Section 4.

2 Worst-caseanalysisof Random Fit

We compare the behavior of Random Fit with an optimal offline algorithm. Recall that with Random Fit,
each time an item is to be placed in a bin the bins are indexed in an order determined by a permutation
chosen independently and uniformly at random. Each item is sequentially placed into the lowest indexed
bin into which it will fit, or into a empty bin if no such bin is available.

Given a sequencB = (a1, ay, .. ., a,) of items and a bin packing algorithi let A(S) denote the number
of bins used byA to packsS. In particular, OPT$) is the number of bins used by an optimal offline algorithm,
i.e., itis the minimum number of bins required to pa&&k

Theorem 1  a) For every sequence S, RF(S) <2- OPT(S) — 1.

b) There exist sequences S, with arbitrarily large values of OPT(S), such that with high probability
RF(S) =2 - OPT(S) — 1.



Proof: Part a) At any time, the sequence of bins used by RF contains at most one bin with residual capacity
of at Ieast%. Thus, for any sequenc® the number of bins used by OPT is at Iega;RF(S)J + 1.

Part b) For any integen > 2, let S, be a sequence that contamsarge items of size%. In addition, in

between any two large items? small items each of sizgﬁ—3 must be inserted. Thus
1 1 1 1 1 1 1 1 1 1
S$=G

2'2n% " 72n32°2n3 7 2n3 223 203 2

Note that the sum of all the small itemsgn?(n — 1) < 3.

).

Clearly, OPT&,) = | 5] + 1. We show that with high probability Random Fit uselins on this sequence.

More precisely, immediately before an insertion of a large item, the probability that a bin holding a large
item does not contain a small item is bounded by- %)”2 < e ". Thus, the probability that at any of the

n insertions of large items, some open bin having a large item does not contain a small item is bounded by

ne~". We conclude that with probability at Ieast—lg—i, RF need# bins to packs,. [

While RF has a guaranteed worst-case performance, it does not achieve the same bounds as First Fit and
Best Fit. In the worst case, RF is only as good as Next Fit and Worst Fit.

Motivated by recent work [1, 15], we also consider an extension of Random Fit, &alletbm-Fit(d), that

is defined for any integedt > 2. Whenever a new item arrives, Riy(examines bins in the same way as
RF untild bins are found that can hold the item. Among thédsns, the item is inserted into the bin with
smallest residual capacity, i.e., the Best Fit rule is applied. If there ara dnly d, open bins that can hold
the item, then the item is inserted into one of theb@s, using again the Best Fit strategy. If none of the
open bins can hold the item, then the item is inserted into a new bin.

Interestingly, when making the transition from RF to B ¢he worst-case performance improves.

For any algorithmA, let

R = {r > 1| for someN > 0, A(S)/OPT(S) <r forall Swith OPT(S) > N}.
Theorem 2 For everyd > 2, R ) < .

Proof: Follows from a result by Johnson [7, 8] because djH{elongs to the class of Almost Any Fit
algorithms. -

3 Average-caseanalysis of Random Fit

In this section we prove that Random Fit is stable under the input distridutjbr- 2, k} and derive some
related results fod {k — 1, k} andU {k, k}.

3.1 Prdiminaries

We begin by reviewing some important definitions and lemmas from [11]. For considering the distribution
U{j, k}, rather than have bins of size 1, we shall instead think of having bins of sind item sizes chosen

3



uniformly from {1, ..., j}. The two notions are clearly equivalent. We shall model the system ksing
tokens that move on the non-negative integers. The value of tokartimet, denoted bys; (t) represents
the number of bins with residual capacitgftert items have been placed. THate of the system at time
t is given by a vectos(t) = (s1(1), ..., Sk_1(1)). Initially, s(0) = (O, ..., 0), as there are no open bins with
residual capacity. We shall often drop the explicit referenceé when the meaning is clear. Theste at
timet is given byZ!‘;ll is (t). We wish to show that the expected wasté¢ as oo remains bounded.

We shall divide the tokens into classes. The tokéncalledsmall if 1 < i < [ ‘51 and is calledarge if

le +2] <i < j.Inthe case whergis even, there is alsoraiddletoken, namelyg] +1. For convenience,

we shall temporarily restrict ourselves to the case wheésendd, as the case whejds even requires some
additional work to handle the middle token. We shall explain the modifications necessary for the case where
j is even after the proof of the case wheris odd.

We begin with the following lemma:
Lemma 3 Satesisreachablefromtheinitial states(0) = (O, ..., 0) onlyif

1. For distinctindicesi andi’ withi +i’ >k, eithers =0or s/ = 0.
2. YinotsmallS =1

Proof: By induction; it follows from the fact that we will not open a new bin if an item can be packed in a
current bin. m

It is also not hard to see that all states that satisfy the conditions of Lemma 3 are reachable, and hence we
assume hereafter that our state space consists exclusively of all states satisfying the conditions of Lemma 3.

From Lemma 3, ig%T (t) > 0, then all large tokens must be 0 at timeDur proof of stability will rely on
this simple feature of the chain. In particular, this feature allows us to focus on the behavior of the small
tokens, which is considered in the following lemma:

Lemma4 Using Random Fit, the motion of a small tokeni has the following properties:

1. Fori > 1, themotion of s; at all positionsother than 0 isa randomwalk on Z ., such that a positive

step istaken with probability at least Jl and a negative step i staken with probability at most jl+s_f+s .

2. The time spent by s on each visit to 0 is stochastically dominated by a random variable D with
constant expectation and variance (that depend only on j).

Proof: For the first part, note that, § > 0, thens increases whenever an element of izei enters the
system, by Lemma 3. Hence we need only consider negative steps. If an item ioésiees, thers may
decrease; if an item of size less thaanters, then it is clear that the probability of it landing in a bin of

capacityi it at mostz——. The result follows.

The second part is almost exactly the same as in Proposition 4 of [11], which we sketch here for complete-
ness. Ifs = 0, ands: = O for alli’ > k — i, then clearlys moves to 1 with probability at leasy/]L. If

s = 1forsoméa’ > k—i, however, this is not the case. It suffices to note that if two consecutive items have
sizek — i, thens will go to 1 even in this case. One may check that this fact suffices to prove the lemama.
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3.2 Outlineof the proof

We now sketch how we will prove that RF is stable, following the same approach as [11]. We first note that
by Lemma 3, the amount of waste from non-small tokens is bounded by a constant. Hence we need only
consider the waste due to small tokens, which we denotie(by= Z,“m is(t).

The proof breaks down into three steps. For the first step, we show d:}z%q i) > 0, then the expected
change inf (t), orE[ f(t + 1) — f(t)|f(1)], is negative. For the second step, we show that if we begin a
state wheref (1) is large, then for some suitably larde for almost all of the nexT stepss iy > 0 with

a suitably high probability. Combining these two steps, we find that, whenk#eiis suff|C|entIy large,

the expected change ifi(t) is negative over a suitably long intervl The third step is to this fact and
results from the general theory of Markov chains that to show that we may conclude that the expected waste
is bounded.

The challenging part of the proof is the second step, where we must shcwma{ 0 for most of a suitably

large interval. The first step is actually a simple lemma, entirely similar to one given in [11]. However, since
the lemma is heavily based on the fact that k — 2, we present a proof here.

Lemma5 ([11], Proposition 5) Suppose that s(%w(t) > 0. ThenE[f(t+21) — f®O|f )] =-1/j.

Proof: Consider the sizeof the item inserted at time+ 1. If 1 <i < [j/2], then the new item is assigned
to a bin with remaining capacity i < | < [j/2], and f decreases by. If (%1 < i < j, then, since
Srj/21 > 0, Proposition 3 implies that there is no bin with remaining capacihus, the incoming item is
put into a new bin, i.e $_j increases by 1 anél increases bi — i. The expected change inis therefore

[/21 j [/21 [i/21
(Z( EIY (k—i)) (Z( |>+Z ) (1)

i=[j/2]+1

becaus&k — ] = k — (k—2) = 2 and, sincg is odd,k — ([j/2] + 1) = [j/2]. Itis easy to verify that
eqguation (1) evaluates tel/j. [

The third step relies on general conditions for a multi-dimensional Markov chain to be ergodic; we cite the
appropriate lemma from [11], which is derived from [5].

Lemma6 ([11], Lemma 6, or [5], Corollary 7.1.3) Let M beanirreducible, aperiodic Markov chainwith
state space S C ZX, and b a positive integer. Denote by pgs, the transition probability fromsto s’ in MP,
the b-step version of M. Let & : S — R be a non-negative real-valued function on S which satisfies the
following conditions:

1. There are constantsC,, u > 0 such that ®(s) > Cq||s||* forall se S.
2. Thereisaconstant C, > 0 such that pgs, = Owhenever |®(s) — ®(s)| > Cy, forall s,s' € S.

3. Thereisafiniteset B C Sand aconstante > Osuchthat ) g pgs,(CD(s/) — ®(s)) < —e for all
s e S\B.



Then M isergodic with stationary distribution 7 satisfying(s) < Ce~%®® for all s € S, where C and §
are positive constants.

For the bin-packing problem, we shall udgs) = ZE; is +k—1=f +k—1, wheref is the waste

from small tokens. This is an upper bound on the total waste. One may check that the first two conditions
of Lemma 6 are satisfied for any choiceloflt remains to find appropriate B, ande; this is equivalent to

the second step of our proof sketch, which we now focus on.

3.3 Random Fit over long intervals

We now show that, for all but a finite humber of starting stal;?zssT > 0 for most of sufficiently large
intervals. We shall often compare the behavior of a token witdndom walk over an interval [QR]. We
shall usep; (i) to denote the probability that a walk aimoves toi + 1 in one step. Similarlyp (i) is
the probability that a walk at moves toi — 1 in one step, angp_, = 1 — p;(i) — p, (i) (the self-loop
probability) is the probability that the walk remainsiavhen ati. We shall drop the in cases wher@ 4 (i)

is independent af (except at 0 andR, asp, (0) and p;(R) are necessarily 0, and the self-loop probabilities
are increased accordingly); this is called ti@nogeneous case. A random walk idownward biased if
py(i) < p, (i) for alli inthe range of the walk (except the boundaries).

In order to bound the behavior of the random walks we study, we shall require the following lemma, which
is a weak bound derived from Corollary 4.2 of [12]:

Lemma7 Let A1 < 1 denote the second largest eigenvalue of the transition matrix for a randomwalk W

on [0, R]. Let 7 (A) = ), A 7a bethe stationary probability that thewalk liesin A C R, and W, (A) be the
number of stepsthe walk spendsin A during thefirst| time steps. If thewalk startsat O, then for any integer

| >1land2 <8 < 1/n(A),

PIIW (A) = (] < %TO exp(—m (W21 1)),

To use the above lemma we will require the following fact about the eigenvalues:
Lemma8 For therandomwalk on [0, Rl with py = p, =, A1 < 1— .

We start with a preliminary lemma that provides both the first step and the main idea of the proof. In this
lemma, and all that follows, we assume tfiias at least as large as some constant chosen so that the bounds
hold.

Lemma9 For sufficientlylarge T, if s; > T* over thetimeinterval [0, T], thensi11 > T/16for all but at
most T 15/16 steps with probabilityat least 1 — 5.

Proof: By Lemma 4, the behavior of the token ; at any point on the interval [OF'] can be related to

a random walk over the positive integers, whexgi) > 1/j andp, (i) < Jl + S+Ss+l (except ai = 0).

6



Furthermore, the probability that,; > T/16 for all but at mosfT %16 steps, which we shall hereafter call
z, is clearly minimized if we start, 1 at 0. This information is sufficient to prove that> % directly;

however, we suggest an easier approach.

We first note that, since we are comparing the behavigr,gfto a specific random wallg,can only increase

if we restrict the walk (or, equivalently, the toksn 1) to the interval [0 T4 — 1]. Bounding the walk in

this way will simplify the analysis. Also, for convenience, we also temporarily ignore the problem of the
waiting time whers; ;1 = 0 as described in Lemma 6.

We now split each step, or item arrival, into two phases. In phase one, a random permutation order is chosen
for the open bins. In phase two, an item size is chosen from the distribuifiprk}, and this item is placed
according to the RF rule.

By breaking each step up in this manner, we see that whenever the permutation chosen in phase one has a
bin with remaining capacity ahead of all bins of remaining capacity 1, then for phase two, the worst
possible case is thaf,, behaves like an unbiased random walk, with = p, = 1/j. (Note that it is

possible thap; < 1/j, but we maximize the time that,; > T/1® by assuming thap, = 1/j.) In the

alternate case where a bin with remaining capacityl lies ahead of all bins of capacityn phase one, we

may again overestimateby assuming thap, = 0 andp; = 1 in phase two. As we now show, by splitting

each step into two phases in this way, we have essentially reduced the problem to an unbiased walk.

We note that, over the interval [I] we have enforced the restrictiogs.y < T4 ands > T*. Hence,
with probability at Ieast%, for no steps in this interval do we place a bin of capadity 1 ahead of all
bins of capacityi in phase one. We call this evefit Conditioned or€, sj;1 behaves like an unbiased
random walk on [0T /4 — 1] over the entire interval. In particular, the stationary distribution is uniform, so
m = T~Y4foralli. Let Z be the number of steps for whish,; < T¥5. From Lemmas 7 and 8, we find
that for sufficiently largeT,

—2TY/8
Priz>T¥1 g < T1/8-T1/8exp( . ) ()
j
1

Using a union bound on probabilities now yields the lemma.

To handle the discrepancy when the walk is at 0, we note that we can explicitly bound the total number of
steps at 0 with sufficiently high probability using part 2 of Lemma 4. The bounds given by equations (2)
and (3) can also be tightened so that for sufficiently largéne lemma as stated holds. [

We have shown that & is extremely large over a sufficiently long interval, thep, is also be large over

most of the interval with high probability. Our actual goal is to show that if ginis extremely large (for

i< [‘7]), thensm > 0 over most of the interval. Hence we will require an inductive, but slightly weaker,
2

version of Lemma 9.

One problem in generalizing Lemma 9 is thasifis large only for most, and not all, of the steps, then
there are several steps where we cannot explicitly saydipmwbehaves. Moreover, these steps may affect

the behavior o0& ;1 at any point. We avoid the problem by introducing an adversary model, generalizing a
similar argument from [11]. This adversary model allows us to consider the worst possible case for the steps
wheres is smaller than we need.



We consider how an adversary can affect a homogeneous downward biased random walR]orT [

goal of the adversary is to keep the random walk at or below somellevet 2, for as many steps as
possible. The adversary may control a fixed number of steps. In a controlled step, the adversary may specify
any probability distribution on the legal moves from the current state; the step of the walk is then made
according to that distribution. In all the other steps, the process behaves like a homogeneous downward
biased random walk.

In the following, given an adversary strategy let pa(y, i, n, m, 1) denote the probability that a homoge-
neous downward biased random walkno$teps on the interval [(R] starting ati with y controlled steps
used according té, spends at leash steps at or below

Lemma 10 For all non-negativeintegersy, i, n, mandl, withl < Randi < R—1, theexistsan adversary
strategy Ag

(a) that never usesa controlled step when thewalk is below |

(b) that always uses a controlled step as soon as possible when the walk is at or abovel + 1 to push the
walk downwards

such that pa,(y, i, n,m,1) > pa(y, i, n,m,|) for all adversaries A.

Proof: The case wherk= 0, the walk is unbiased, and the self-loop probability is O corresponds to what

is proven in [11, Lemma 7]; we extend the argument to this more general case. We use indunti®eon

first note that any adversary that uses a downward move when the walk islbedowbe replaced by one

that does not. This follows by a simple coupling argument. Compare the strategy where the adversary uses
a downward move beloWwto one where the adversary waits until the walk i$ by coupling all random

moves; the second strategy will be at the same height or below the first after the downward move. (It will
end up below only if the walk reaches 0.) Thus we have shown that there is an optimal adversary strategy
that satisfies condition (a).

We now concentrate on adversary strategies that use their moves at o abdvelLet DYR denote the
strategyA; which uses they adversary-controlled steps as soon as possible when the walk is at or above
| 4+ 1, and then follows the random walk. LBD?Y denote the strategi, that begins with a random step,

and then uses the adversary-controlled steps as soon as possible when the walk is at lor-ahovet

pa, (Y, i, n, m, 1) be the probability of the event that the walk is at or beloker at leastm of the nextn

steps after starting atwhen adversary strategds = DYR is used. Similarly, lepa,(y, i, n, m, 1) be the
probability of the event that the walk is at or belbfor at leasim of the nexin steps after starting atwvhen
adversary strategf, = RDY. We claim

pAl(yaivnv mvl) Z pAZ(yaivn’ m")? (4)
and by induction this suffices to prove that there is an optimal strategy satisfying condition (b).

We first present two useful propositions.

Proposition 11 pa, (y,l,n,m,1) > pa, (y,l,n,m+1,1)

Proposition 12 pa, (y, I =1L, n,m, 1) > pa(y+ 1L 1,n+ 1, m+11)

8



Proposition 11 is easy to verify. We prove Proposition 12.\Wet; be the walk that starts bt 1 and follows
strategyDY R; similarly letW; be the walk that starts atand follows strategp Y*1R. Let T,_; be the time
whenW, _; first makes the transitioh — 1) — | and letT, be the time wheW first makes the transition
| — (I +1). Clearly,T,_; = T, in distribution. We only have to consider the eventthat; = T <n+1
andT,_1 = T) = m. Then, the remainder &} _; is a walk starting al that follows strategyD ¥ R and must
be at or below for at leastm — T, _; of the nextn — T;_1 steps. In the case o}, the adversary first pushes
the walk down td and the remainder is also a walk that startls &llows strategyD ¥ R and must be at or
belowl for atleasm+1—T, = m+1—T,_; of the nexin+1— (T, +1) = n—T, steps. Using Proposition 11
and taking again into account thit 1 = T, in distribution, we conclude the probability of the first walk is
not smaller than that of the second walk, iga, (y,| —1,n,m, 1) > pa(y+ 1,1, n+ 1, m+11).

We return to the proof of inequality (4). if< I, both strategie#\; and A, start the same and we are done
by induction. Ifi > y + I, both strategies give the same distribution after 1 steps, so the two quantities
Pa, (Y, i, n, m, 1) andpa,(y, i, n,m, 1) are equal. The interesting case is wheai <y +1. In this case,
strategyA; forces the walk from down tol usingi — | controlled steps. Thus,

Pa (Y, i, n,m 1) = pa, (Y, 1,0, m—1,1),

wheren"=n—i+landy =y —i+1. Also

Pac(y.i,n,m D = pyepaly’ =110 =2m=10+p - pay + 110 m-10D
+p—>'IOA1(y/,|,n/—l,m—1,|)
and
pAl(y/’I,n/’m—l,I) = pT'pAl(y/_lvl’n/_zvm_sz)"i_pl,'pAl(y/,I_l,n/—l,m—z,I)

+po - pa (Y, =1, m=21).

Using Proposition 11, we havpa, (Y — 1L,I,n" —=2,m—2,1) > pa(y — L I,n" =2 m—-11) and
Pa, (Y, 1,n =1 m—21)> pa(y,l,n" =1, m—1,1). Thus,

Pa (Y, i, n,m D) — pa(y,i,n,m D) > p(pa (Y, =Ln" =1 m—=21) — pa(y+1,1,n, m—11)).

Proposition 12 implies that the last term in non-negative. [

Lemma 13 Suppose, over a period of T steps, si_1 > T¢ over all but T1~¢ stepsfor somea < 1/16. Then
s > T%/%8for all but at most T 1~/16 steps with probability at least 1 — 3T /4,

Proof: Asin Lemma 9, we may, without loss of generality, restsidip the interval [0 T*/4 — 1]. Thens

behaves like a slightly biased random walk on all butTHe® steps for whicls;_; lies belowT?. Rather

than consider the biased walk, however, we use the same technique as in Lemma 9 to reduce the problem to
an unbiased random walk by splitting each step into two phases. We give the adversary control on all steps
in which a bin with remaining capaciiylies ahead of all bins with capacity— 1 after the first phase. On

any step for whiclsi_; > T¢ ands < T/, the probability that a bin with remaining capaditifes ahead

of all bins with capacity — 1 after the first phase is at mo%. Hence, the expected number of such steps

is at mostT 1=3*/4_ and by Markov’s inequality, the number of such steps is at st with probability

at leasfT /4, Let £ be the event that there are no more tAdn® such steps.



Conditioned or€, the adversary controls at mosE 2 steps:T1~¢ from the above paragraph, afid—

from the steps wherg_1 < T%. On all other steps the walk behaves like an unbiased random walk with
pr = p; = 1/j. (Again, this is not quite true whesy = 0, but this small discrepancy can be easily handled
explicitly as described in Lemma 9; for convenience we dismiss the problem here.) We use this to bound
the probability thas; lies belowT %/16 for more tharT 1-¢/16 steps.

We first consider the moves controlled by the adversary. In the worstgasegins at 0. By Lemma 10,

there exists an optimal adversary stratégythat uses a controlled step whenesereachesr*/16 — 1 or

T%/18, Hence, to overestimate the effect of the adversary, we assume the following: the adversary uses its
moves wheneves reachesr*/16; the adversary’s move returns the walksto= 0; and all steps until the
adversary’s moves are used count as steps wherd0, T*/16 — 1]. These assumptions can only increase

the time until the adversary’s moves are used. The expected tinsg foreachT/16 from 0 iscT*/8

for some constant. Thus the expected number of steps uAtihas used all of its moves it bounded by
cT1-72/8 et Z, be the number of steps until t#& uses all of its moves. Then by Markov’s inequality

1-«/16
2

Pr [zl > |5] < 2cT 13/16 < T —a/4

for sufficiently largeT .

After the adversary steps are used, the number of steps; thpénds in the interval = [0, T*/16 — 1] is
stochastically dominated by that of an unbiased random Wadk [0, T %/4] that runs forT steps and begins
at 0. LetZ, be the number of step$ spendsin . As in the proof of Lemma 9, the equilibrium distribution
of U is uniform over [Q T%* — 1]. Thusz (1) = T~3/16, Using Lemmas 7 and 8 we obtain

Tl—a/lG Toz/8 . Toz/8 _T—3a/8 . T—oz/2 T
Pr [Zz > ] < exp( - )

= 2 J
< T—Ol/4

for sufficiently largeT .

Taking a union bound, we find that the probability t@at + Z, > T1~*/16 s at least - 3T ~%/4, which
proves the lemma. [

We are now ready to prove the main theorem:
Theorem 14 RandomFit is stable under the distributionU {k — 2, k} for all k > 3.

Proof: As in our previous calculations we first assume thé odd. As in Theorem 1 of [11], it suffices
to consider the drift off (s) over a suitably large interval, and show that it is negative for all but a finite
number of states. The excluded set of st&egsill be

G={seS:Vi,s <T%,

whereT will be determined. Consider any starting state outside of thi&sétpplying Lemma 9 and then

Lemma 13 inductively, we find that with probability at least Xc1/T¢?), Siip > 0 over all butT <2 of the

steps, for some constartsandes, €2 < 1 dependent only of. Let.4 be the event thaeim > 0 over all
2
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but T <2 of the steps. As the expected valuefoflecreases by/] Whenevers(%-T > 0 by Lemma 5, and it
increases by at mogtotherwise,

E[f(T) - f(O)If(©0)] E[f(T) = f(0)[f(©0) A A+ (1 —PrlADE[f(T) — f(0)|f(0) A ~A](5)
[—Tl (T-T9)+ ijZ] +oThaj, (6)

A

A

By choosingT sufficiently large, we may make this expression smaller th&ror some constarft. This
suffices to prove the theorem, by Lemma 6.

If k is even, then there is middle tokef) 2111. If Sj/2141 = O, everything is exactly as in the case where

kK is odd. Ifs;j 2141 > O, then by Lemma 3,241 = 1 and no bins with larger capacity are open. We
consider the time steps whep 2111 = 1. In these step$ might increase because a small item may be
inserted in the bin of capacityj /2] + 1. Lemmas 9 and 13, which apply whkris even, give that with
probability at least - (c1/T<), Sy > T1=<2 gver all butT<2 of the steps, for some constamsand

€1, €2 < 1 dependent only ofn. Hence it should be a very rare event for a small item to be placed into a bin
of capacity[j/2] + 1.

In fact, in exactly the same manner as shown in Lemma 5, one may show the following:
Proposition 15 Supposethatk isevenand syj,2y > Z. ThenE[f(t + 1) — f (D) f (V)] < -1/] +2/Z.

We conclude that in this case
E[f(T) - fOIf©O)] =< E[f(T) - fOIfO) AA+@A—-Pr[ADE[f(T) - f(O)|f () A—=A](7)

1 2 . er
=< [(—J— + Tl—ez) (T-T2)+ jTQ] + o Ty (8)
This expression can also be boundeddyif T is chosen large enough. [

One may check that from the inductive use of Lemma 13th@ Theorem 14 is exponential i, and
hence our bounds on the expected waste is doubly exponeniialliris an interesting question whether
better bounds are possible.

It is also worthwhile to note the following:
Theorem 16 RandomFit(d) for d > 2 is stable under the distributionU {k — 2, k} for all k > 3.

The proof is entirely similar to that for Random Fit. Simulations suggest thatrageases, the behavior of
Random Fitd) rapidly approaches that of Best Fit, as one might expect.

Theorem 17 Random Fit and Random Fit(d), for d > 2, have expected waste o(n) under the distributions
U{k — 1, k} and U{k, k}, for all k > 3.

Proof: We only consider the distributidni{k — 1, k}, as the waste under the distributidik, k} is entirely
similar. Under this distribution, the statement correspondingto Lemma 5 is ﬁ}g{df) > 0, thenE[ f (t +

1) — f ()| f(t)] = 0. Using the same notation as in the proof of Theorem 14 we obtain

E[f(T) — fOIf(O] < jTZ+ca T

11



for some constantg andes, €2 < 1 dependent only op. Hence, once the expected waste reaches a certain
constant, its expected growth is sublinear, proving the theorem. [

Whether tighter bounds, more like those known for Best Fit and First Fit, are possible for Random Fit under
these distributions remains an open question.

4 Analysisof First Fit under distribution U {k — 2, k}

We now consider how to modify the proof of RF on the distributibiik — 2, k} to work for First Fit. Again
we focus on the case whekds odd; the case wheleis even requires some minor additional work, as for
Random Fit, which we omit here.

One way of thinking about the difficulty in extending the results from RF to FF is to consider the dependence
among the steps. In RF, at each step we have an independent random ordering assigned to the bins, while
in FF, the orders of the bins at different steps are clearly dependent. In particular, the order of the bins at
each step depends on the initial state, over which we have negligible control. The work of this section will
focus on finding ways to circumvent effect of these dependencies so that we can apply the same ideas that
we used in Section 3.

Let us consider an initial state, given at time- 0. In order to avoid problems caused by the order of bins

in the initial state, we focus on bins that are created after time 0. In fact, we are even more restrictive: let a
singlei bin at timet be a bin created after time 0 that has remaining capaeitd contains only one item,

and denote the number of singleins byu;(t). Instead of the vectas we considered previously, we shall
primarily the vectomu = (uy, ..., u(%w). The following important points aboutmake it useful:

o If Uiy > 0, thensm > 0 also. Hence, provingm > 0 over most of the steps is sufficient.
2 2 2

e Regardless of the initial stateys, .. ., u(%w) =(0,...,0) attime 0.

To see how the consideringmakes things easier, let us prove a lemma similar to Lemma 9 for First Fit.

Lemma 18 Suppose s (0) > T. Then when u; ;1 > 0, uj; behaves like a random walk with probability
at least 1/j of increasing at each step and probability at most 1/j of decreasing at each step. Also, the
time spent by u;, 1 on each visit to 0 is stochastically dominated by a random variable D with constant
expectation (that depends only on j). In particular, uj,1 > T8 for all but at most T %16 steps with
probabilityatleast 1 — .

Proof: Sinces (0) > T, over the nex@T steps there is always a bin with remaining capacigead of all
single bins with remaining capacity- 1 created after time 0. This implies that,; can decrease only when
an item of sizé + 1 arrives, and hence decreases with probability at mgsatleach step. Whan 1 > 0,
thenu;, 1 increases whenever an item of skzei — 1 arrives, and hence itincreases with probability at least
1/j. The case where;,; = 0 is special, and is handled as in Lemma 4. The final resultithat> T /16
most of the time, now follows using an argument similar to Lemma 9. [
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As in the proof for RF, we now want to extend the above lemma inductively. Similar to the RF case, we
would like to say that a bin of siZdies ahead of all single+ 1 bins most of the time, whenever the number

of singlei + 1 bins is sufficiently small. In Lemma 13, we accomplished this by splitting each step into two
substeps, with the first substep re-ordering the bins randomly. We do not have this luxury for the FF case.
However, it seems intuitive that the bins should be “almost” randomly distributed at each step. This pointis
made explicit in the following lemma:

Lemmal9 Let £ be the event that a singlei bin at timet lies ahead of all singlei + 1 bins. Let th,c =

Pr{€]ui(t) = b, uip1(t) = c}. Then° < 2.

Proof: Consider any sequenee= a,, ay, ..., & Of t items that ends with a singlet+ 1 bin ahead of all

singlei bins withu; (t) = b andu; 1 (t) = c. We center on the steps where the sirigh@di + 1 bins were
created. We first claim that if a singléoin was created at stepand a singleé + 1 bin was created at step

h, then switching the entering items at stgpandh switches the order of these two bins, but has no other
effect on the algorithm. This can easily be proven by induction for all bins behind the first sirdlebin,

since there is no way a second item could have been placed in any of these bins. The only difficult case is
that of the first singlé + 1 bin, call it B. The reason thaB is a special case is that it is possible that since

B is the frontmost single bin, it may be that a second item could have been placed in it if we change its
capacity. However, since switching the appropriate steasdh would only lower the capacity dB, it is

clear that ifB has not obtained a second item in the original sequence, it cannot in the modified sequence as
well.

We now divide the sequences into equivalence classes. For a sec;p.,letet:ﬁti (a) be the set of times at
w_hich the single bins at timet were created. Two sequenceanda’ are equivalent iy} (a) U Yt'”(a) =
Y{@)u Yt'“(a/) andu; (t) = b, uj;1(t) = c for both sequences.

Take any sequenaewith a singlei + 1 bin ahead of all singlebins at timet. From the above paragraph,
permuting the times when a singler 1 bin and a singleé bin were created yields equivalent sequences.
Hence, by taking all ways of splittimg{ti (@ u Yt'”(a) into two groups of sizéd andc, and using this
division to determine when singleandi + 1 bins are created, we find that every sequembes at least
(bfgc) sequences in its equivalence class. Since the probahitityd any of these othe(’; ) sequences
occurring are equal, it is straightforward to show combinatorially that there are abjeatitnes as many
sequences with a singléin ahead of all single + 1 bins as there are with a sindgle- 1 bin ahead of all

singlei bin. Hencez>® < b%c. =

Lemma 19 suggests that the behavior of FF should not be worse than RF, with the understanding that the
u; now play the role of the;. As in the case of RF, we would like to say the small tokenbehave like

a unbiased random walk over most of the steps. This leads us to the prove a variant of Lemma 13 in this
setting, which is phrased slightly differently in order to appropriately handle the conditioning.

Lemma 20 Suppose, over aperiodof T steps, uj_1 > T* over all but at most T 1% stepsfor somea < 1/16
with probability at least 1/2. Then, conditionedonu;_; > T¢ over all but at most T~ steps, u; > T%/16
for all but at most T 1-%/16 stepswith probability at least 1 — 4T —*/4,

Proof: As in Lemma 13, we must bound the number of steps for which the behavigrisfnot that of
an unbiased random walk, and then apply an adversary argument. Also as in Lemma 13, we will restrict
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our consideration to the behavior of to the interval [0 T*/4 — 1]. (This can be interpreted as though
if ui > T%4 we may assume that a single bin of siz¢ 1 lies ahead of all bins of size which is a
conservative assumption.)

To bound the number of steps the adversary controls, then, we bound the number &f Stapsatisfy the
following conditions:

o Uj_q1>T¢.

o U < T¥4—1.

e Asinglei bin lies ahead of all single— 1 bins.
The value ofX, in addition to the number of steps for whigh_1 < T%, bounds the number of steps where
the adversary controls the walk; on all other steps, we either have;thatT®/# or a singlei — 1 bin lies

in front of all singlei bins, and sa; behaves (at worst) as an unbiased random walk pjte= p, = 1/j.
(As usual, we ignore the discrepancyuat= 0.)

Let y; be the probability that on thigh step the above conditions hold. Then

T-1 T-1
E[X]=E[> %] = Y Ely
t=0 t=0
T-1

IA
NN

_i

R
+

_i

R

=

Although it would seem this is enough to bound the number of adversary steps, we must be careful. Let
be the event that;_; > T* over all butT1~® steps. The expected number of additional adversary steps
from singlei — 1 bins being frontmost is nd&[ X], but E[X|£]. From the hypothesis of the lemma that
Pr(€) > 1/2, however, we must ha\g{ X |£] < 2T1-3¢/4, Using Markov’s law, we have

Pr({X|£} = T < 2194,
Hence, conditioned of, the number of steps the adversary controls is at mb$t2 with a probability at
least 1— 2T ~*/4. The rest of the proof now proceeds as in Lemma 13. [

We are now ready to prove the main theorem:
Theorem 21 First Fitisstable under the distributionU {k — 2, k} for all k > 3.

Proof: As in Theorem 14, it suffices to consider the driftfofs) over a suitably large interval, and show
that it is negative for all but a finite number of states. The excluded set of Satésbe

G={seS:Vvi,s <T},

for some suitably largd. We now apply Lemma 18 and Lemma 20 to obtain a boundpf(T) —
f (0)| f (0)] similar to that in Theorem 14.
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We would then like to apply Lemma 6; however, technically we cannot do so, as the state space of the
underlying Markov chain is not embedded in a fixed dimensional space. Similar results, however, can be
applied in this setting, once we have shown that the expected change in thefvisastgyative for a suitably
largeT. For example, [14, Theorem 13.0.1] can be used to show that the chain is ergodic, and [6, Theorem
3.1] implies that in the stationary distribution, the distribution of the waste has an exponentially decreasing
tail. [

5 Conclusions

We have demonstrated that the First Fit bin packing algorithm is stable on the distridgkien2, k}. We

believe that our result demonstrates that the Markov chain approach may be useful, even in situations where
the natural description of a problem does not have a convenient state space. Our analysis made use of insight
gained from a novel packing algorithm, Random Fit, which appears interesting in its own right.

An open question is to tighten the bounds developed in this paper. For both First Fit and Random Fit, our
bounds for the expected waste are doubly exponential 8Bimulations suggest that the expected waste for
First Fit may only be exponential in[9]. Unfortunately, the simulations for Random Fit seem to suggest
that the expected waste for Random Fit may indeed be doubly exponerijtjahiavhich case it seems that
another approach may be necessary to achieve better bounds for First Fit.
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