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Abstract

Recently, I became interested in a current debate over whether �le size distribu-

tions are best modelled by a power law distribution or a a lognormal distribution.

In trying to learn enough about these distributions to settle the question, I found a

rich and long history, spanning many �elds. Indeed, several recently proposed mod-

els from the computer science community have antecedents in work from decades

ago. Here, I brie
y survey some of this history, focusing on underlying generative

models that lead to these distributions. One �nding is that lognormal and power

law distributions connect quite naturally, and hence it is not surprising that lognor-

mal distributions have arisen as a possible alternative to power law distributions

across many �elds.

1 Introduction

Power law distributions (also often referred to as heavy-tail distributions, Pareto dis-
tributions, Zip�an distributions, etc.) are now pervasive in computer science; see, for
example, [1, 8, 7, 9, 16, 19, 21, 22, 24, 25, 27, 28, 33, 34, 40, 41, 43, 45, 47, 50, 61, 69].1

This paper was speci�cally motivated by a recent paper by Downey [25] challenging
the now conventional wisdom that �le sizes are governed by a power law distribution.
The argument was substantiated both by collected data and by the development of an
underlying generative model which suggested that �le sizes were better modeled by a
lognormal distribution.2 In my attempts to learn more about this question, I was drawn
to the history the lognormal and power law distributions. As part of this process, I delved
into past and present literature, and came across some interesting facts that appear not
to be well known in the computer science community. This paper represents an attempt

�Supported in part by an Alfred P. Sloan Research Fellowship and NSF grant CCR-9983832. Har-
vard University, Division of Engineering and Applied Sciences, 33 Oxford St., Cambridge, MA 02138.
michaelm@eecs.harvard.edu. A preliminary version of this work appeared as [64].

1I apologize for leaving out countless further examples.
2I elaborate on this speci�c model in another paper [63].
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to disseminate what I have found, focusing speci�cally on the models of processes that
generate these distributions.

Perhaps the most interesting discovery is that much of what we in the computer sci-
ence community have begun to understand and utilize about power law and lognormal
distributions has long been known in other �elds, such as economics and biology. For
example, models of a dynamically growing Web graph that result in a power law distri-
bution for in- and out-degrees have become the focus of a great deal of recent study. In
fact, as I describe below, extremely similar models date back to at least the 1950's, and
arguably back to the 1920's.

A second discovery is the argument over whether a lognormal or power law distribution
is a better �t for some empirically observed distribution has been repeated across many
�elds over many years. For example, the question of whether income distribution follows a
lognormal or power law distribution also dates back to at least the 1950's. The issue arises
for other �nancial models, as detailed in [59]. Similar issues continue to arise in biology
[37], chemistry [67], ecology [4, 80], astronomy [82], and information theory [48, 70].
These cases serve as a reminder that the problems we face as computer scientists are not
necessarily new, and we should look to other sciences both for tools and understanding.

A third discovery from examining previous work is that power law and lognormal
distributions are intrinsically connected. Very similar basic generative models can lead
to either power law or lognormal distributions, depending on seemingly trivial variations.
There is therefore a reason why this argument as to whether power law or lognormal
distributions are more accurate has arisen and repeated itself across a variety of �elds.

The purpose of this paper is therefore to explain some of the basic generative models
that lead to power law and lognormal distributions, and speci�cally to cover how small
variations in the underlying model can change the result from one to the other. A second
purpose is to provide along the way (incomplete) pointers to some of the recent and
historically relevant scienti�c literature.

This survey is intended to be accessible to a general audience. That is, it is intended
for computer science theorists, computer scientists who are not theorists, and hopefully
also people outside of computer science. Therefore, while mathematical arguments and
some probability will be used, the aim is for the mathematics to be intuitive, clean,
and comprehensible rather than rigorous and technical. In some cases details may be
suppressed for readability; interested readers are referred to the original papers.

2 The Distributions: Basic De�nitions and Proper-

ties

We begin by reviewing basic facts about power law and lognormal distributions.
For our purposes, a non-negative random variable X is said to have a power law
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distribution if
Pr[X � x] � cx��

for constants c > 0 and � > 0. Here f(x) � g(x) represents that the limit of the ratios
goes to 1 as x grows large. Roughly speaking, in a power law distribution asymptotically
the tails fall according to the power �. Such a distribution leads to much heavier tails
than other common models, such as exponential distributions. One speci�c commonly
used power law distribution is the Pareto distribution, which satis�es

Pr[X � x] =
�
x

k

���

for some � > 0 and k > 0. The Pareto distribution requires X � k. The density function
for the Pareto distribution is f(x) = �k�x���1. For a power law distribution, usually �
falls in the range 0 < � � 2, in which case X has in�nite variance. If � � 1, then X also
has in�nite mean.

If X has a power law distribution, then in a log-log plot of Pr[X � x], also known as
the complementary cumulative distribution function, asymptotically the behavior will be
a straight line. This provides a simple empirical test for whether a random variable has
a power law given an appropriate sample. For the speci�c case of a Pareto distribution,
the behavior is exactly linear, as

ln(Pr[X � x]) = ��(lnx� ln k):

Similarly, on a log-log plot the density function for the Pareto distribution is also a
straight line:

ln f(x) = (��� 1) lnx+ � ln k + ln�:

A random variable X has a lognormal distribution if the random variable Y = lnX
has a normal (i.e., Gaussian) distribution. Recall that the normal distribution Y is given
by the density function

f(y) =
1p
2��

e�(y��)
2=2�2

where � is the mean, � is the standard deviation (�2 is the variance), and the range is
�1 < y <1. The density function for a lognormal distribution therefore satis�es

f(x) =
1p
2��x

e�(lnx��)
2=2�2 :

Note that the change of variables introduces an additional 1=x term outside of the expo-
nential term. The corresponding complementary cumulative distribution function for a
lognormal distribution is given by

Pr[X � x] =
Z 1

z=x

1p
2��z

e�(ln z��)
2=2�2dz:
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We will say that X has parameters � and �2 when the associated normal distribution
Y has mean � and variance �2, where the meaning is clear. The lognormal distribution
is skewed, with mean e�+

1

2
�2 , median e�, and mode e���

2

. A lognormal distribution
has �nite mean and variance, in contrast to the power law distribution under natural
parameters.

Despite its �nite moments, the lognormal distribution is extremely similar in shape
to power law distributions, in the following sense: if X has a lognormal distribution, then
in a log-log plot of the complementary cumulative distribution function or the density
function, the behavior will be a straight line except for a large portion of the body of
the distribution. Intuitively, for example, the complementary cumulative distribution
function of a normal distribution appears close to linear. Indeed, if the variance of the
corresponding normal distribution is large, the distribution may appear linear on a log-log
plot for several orders of magnitude.

To see this, let us look the logarithm of the density function, which is easier to work
with than the complementary cumulative distribution function (although the same idea
holds). We have

ln f(x) = � lnx� ln
p
2�� � (lnx� �)2

2�2
(1)

= �(ln x)2

2�2
+
�
�

�2
� 1

�
lnx� ln

p
2�� � �2

2�2
: (2)

If � is suÆciently large, then the quadratic term of equation (2) will be small for a large
range of x values, and hence the logarithm of the density function will appear almost
linear for a large range of values.

Finally, recall that normal distributions have the property that the sum of two normal
random variables Y1 and Y2 with �1 and �2 and variances �2

1 and �2
2 respectively is a

normal random variable with mean �1 + �2 and variance �2
1 + �2

2. It follows that the
product of lognormal distributions is again lognormal.

3 Power Laws via Preferential Attachment

We now move from mathematical de�nitions and properties to generative models. For
the power law distribution, we begin by considering the World Wide Web. The World
Wide Web can naturally be thought of as a graph, with pages corresponding to vertices
and hyperlinks corresponding to directed edges. Empirical work has shown indegrees and
outdegrees of vertices in this graph obey power law distributions. There has subsequently
been a great deal of recent theoretical work on designing random graph models that
yield Web-like graphs [7, 16, 19, 24, 40, 41, 43, 45]. An important criterion for an
appropriate random graph model is that it yields power law distributions for the indegrees
and outdegrees.
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Most models are variations of the following theme. Let us start with a single page,
with a link to itself. At each time step, a new page appears, with outdegree 1. With
probability � < 1, the link for the new page points to a page chosen uniformly at random.
With probability 1��, the new page points to page chosen proportionally to the indegree
of the page. This model exempli�es what is often called preferential attachment; new
objects tend to attach to popular objects. In the case of the Web graph, new links tend
to go to pages that already have links.

A simple if slightly non-rigorous argument for the above model goes as follows [7, 24,
41, 45]. Let Xj(t) (or just Xj where the meaning is clear) be the number of pages with
indegree j when there are t pages in the system. Then for j � 1 the probability that Xj

increases is just
�Xj�1=t+ (1� �)(j � 1)Xj�1=t;

the �rst term is the probability a new link is chosen at random and chooses a page
with indegree j � 1, and the second term is the probability that a new link is chosen
proportionally to the indegrees and chooses a page with indegree j � 1. Similarly, the
probability that Xj decreases is

�Xj=t+ (1� �)jXj=t:

Hence, for j � 1, the growth of Xj is roughly given by

dXj

dt
=

�(Xj�1 �Xj) + (1� �)((j � 1)Xj�1 � jXj)

t
:

Some mathematical purists may object to utilizing a continuous di�erential equation
to describe what is clearly a discrete process. This intuitively appealing approach can be
justi�ed more formally using martingales [45] and in particular the theoretical frameworks
of Kurtz and Wormald [24, 46, 83].

The case of X0 must be treated specially, since each new page introduces a vertex of
indegree 0.

dX0

dt
= 1� �X0

t
:

Suppose in the steady state limit that Xj(t) = cj �t; that is, pages of indegree j constitute
a fraction cj of the total pages. Then we can successively solve for the cj. For example,

dX0

dt
= c0 = 1� �X0

t
= 1� �c0;

from which we �nd c0 =
1

1+�
. More generally, we �nd using the equation for dXj=dt that

for j � 1,
cj(1 + � + j(1� �)) = cj�1(� + (j � 1)(1� �)):
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This recurrence can be used to determine the cj exactly. Focusing on the asymptotics,
we �nd that for large j

cj
cj�1

= 1� 2� �

1 + � + j(1� �)
� 1�

�
2� �

1� �

� 
1

j

!
:

Asymptotically, for the above to hold we have cj � cj�
2��
1�� for some constant c, giving a

power law. To see this, note that cj � cj�
2��
1�� implies

cj
cj�1

�
 
j � 1

j

! 2��
1��

� 1�
�
2� �

1� �

� 
1

j

!
:

Strictly speaking, to show it is a power law, we should consider c�k =
P

j�k cj, since
we desire the behavior of the tail of the distribution. However, we have

c�k �
X
j�k

cj�
2��
1�� �

Z 1

j=k
cj�

2��
1��dj � c0k�

1

1��

for some constant c0. More generally, if the fraction of items with weight j falls roughly
proportionally to j��, the fraction of items with weight greater than or equal to j falls
roughly proportionally j1��, a fact we make use of throughout.

Although the above argument was described in terms of degree on the Web graph,
this type of argument is clearly very general and applies to any sort of preferential
attachment. In fact the �rst similar argument dates back to at least 1925. It was
introduced by Yule [84] to explain the distribution of species among genera of plants,
which had been shown empirically by Willis to satisfy a power law distribution. While
the mathematical treatment from 1925 is di�erent than modern versions, the outline of
the general argument is remarkably similar. Mutations cause new species to develop
within genera, and more rarely mutations lead to entirely new genera. Mutations within
a genus are more likely to occur in a genus with more species, leading to the preferential
attachment.

A clearer and more general development of how preferential attachment leads to a
power law was given by Simon [75] in 1955. Again, although Simon was not interested
in developing a model for the Web, he lists �ve applications of this type of model in his
introduction: distributions of word frequencies in documents, distributions of numbers
of papers published by scientists, distribution of cities by population, distribution of
incomes, and distribution of species among genera. Simon was aware of Yule's previous
work, and suggests his work is a generalization. Simon's argument, except for notation
and the scaling of variables, is painfully similar to the outline above.

As one might expect from Simon's list of applications, power laws had been observed in
a variety of �elds for some time; Simon was attempting to give a mathematical argument
explaining these observations. The earliest apparent reference is to the work by Pareto
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[68] in 1897, who introduced the Pareto distribution to describe income distribution.
The �rst known attribution of the power law distribution of word frequencies appears
to be due to Estoup in 1916 [26], although generally the idea (and its elucidation) are
attributed to Zipf [86, 87, 88]. Similarly, Zipf is often credited with noting that city sizes
appear to match a power law, although this idea can be traced back further to 1913 and
Auerbach [6]. Lotka (circa 1926) found in examining the number of articles produced by
chemists that the distribution followed a power law [52]; indeed, power laws of various
forms appear in many places in informetrics [15].

Although we now associate the argument above with the Web graph, even before
the Web graph became popular, more formal developments of the argument above had
been developed as part of the study of random trees. Speci�cally, consider the following
recursive tree structure. Begin with a root node. At each step, a new node is added; its
parent is chosen from the current vertices with probability proportional to one plus the
number of children of the node. This is just another example of preferential attachment;
indeed, it is essentially equivalent to the simple Web graph model described above with
the probability � of choosing a random node equal to 1/2. That the degree distribution of
such graphs obey a power law (in expectation) was proven in 1993 in works by Mahmoud,
Smythe, and Szyma�nski [54]. See also the related [53, 81, 71, 79].

Of course, in recognizing the relationship between the recent work on Web graph
models and this previous work, it would be remiss to not point out that modern devel-
opments have led to many new insights. Perhaps most important is the development
of a connection between Simon's model, which appears amenable only to limiting anal-
ysis based on di�erential equations, and purely combinatorial models based on random
graphs [14, 54, 79]. Such a connection is important for further rigorous analysis of these
structures. Also, current versions of Simon's arguments based on martingales provide a
much more rigorous foundation [14, 19, 45, 53]. More recent work has focused on greater
understanding of the structure of graphs that arise from these kinds of preferential at-
tachment model. It has been shown that in the Web graph model described above where
new pages copy existing links, the graphs have community substructures [45], a property
not found in random graphs but amply found in the actual Web [32, 44]. The diameter
of these random Web graphs have also been the subject of recent study [5, 13]. Still, it
is important to note how much was already known about the power law phenomenon in
various �elds well before the modern e�ort to understand power laws on the Web, and
how much computer scientists had to reinvent.

4 Power Laws via Optimization

Mandelbrot had developed other arguments for deriving power law distributions based
on information theoretic considerations somewhat earlier than Simon [55]. His argument
is very similar in spirit to other recent optimization based arguments for heavy tailed
distributions [17, 27, 85].
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We sketch Mandelbrot's framework, which demonstrates a power law in the rank-
frequency distribution of words. That is, the frequency pj of the jth most-used word,
given as a fraction of the time that word appears, follows a power law in j, so pj � cj��.
This is a slightly di�erent 
avor than the type power law than we considered previously;
Simon's model considers the fraction of words that appear j times. But of course the
two are related. We clarify this by following an argument of Bookstein [15].

Suppose we have a text where the number of words qk that appear k times is given
by qk = Qk�� for � > 1. Further suppose for convenience we have one most frequent
word that appears km times, so that we may write qk = (k=km)

��. The number of words
that appear k or more times is then approximatelyZ km

k

�
x

km

���
dx;

and hence the rank j of a word that appears k times is approximately

j =
jm

�� 1

"�
jm
k

���1
� 1

#
:

Now solving for k in terms of j, we �nd that the jth most-used word appears approxi-
mately

k = jm

"
(�� 1)j

jm
+ 1

#�1=(��1)

times, yielding a power law for the frequency pj as a function of j.
We now begin Mandelbrot's argument. Consider some language consisting of n words.

The cost of using the jth word of the language in a transmission is Cj. For example,
if we think of English text, the cost of a word might be thought of as the number of
letters plus the additional cost of a space. Hence a natural cost function has Cj � logd j
for some alphabet size d. Suppose that we wish to design the language to optimize the
average amount of information per unit transmission cost. Here, we take the average
amount of information to be the entropy. We think of each word in our transmission
as being selected randomly, and the probability that a word in the transmission is the
jth word of the language is pj. Then the average information per word is the entropy
H = �Pn

j=1 pj log2 pj, and the average cost per word is C =
Pn

j=1 pjCj. The question is
how would the pj be chosen to minimize A = C=H. Taking derivatives, we �nd

dA

dpj
=

CjH + C log2(epj)

H2
:

Hence all the derivatives are 0 (and A is in fact minimized) when pj = 2�HCj=C=e. Using
Cj � logd j, we obtain a power law for the pj.

3 Mandelbrot argues that a variation of

3The eagle-eyed reader might note that technically the result above does not quite match a power
law as we have de�ned it; just because Cj � logd j does not strictly give us pj � j��. In this case this is
a minor point; really Cj is within an additive constant of logd j, and we therefore �nd that pj is within
a constant multipilcative factor of a power law. We ignore this distinction henceforth.
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this model matches empirical results for English quite well.
Carlson and Doyle suggest a similar framework for analyzing �le sizes and forest �les

[17]. Fabrikant, Koutsoupias, and Papadimitriou introduce combinatorial models for the
Internet graph (which should not be confused with the Web graph; the Internet graph
consists of the servers and links between them as opposed to Web pages) and �le sizes
based on local optimization that also yield power laws [27].

As an aside, I found when reviewing the literature that Mandelbrot strongly argued
against Simon's alternative assumptions and derivations based on preferential attachment
when his article came out. This led to what is in retrospect an amusing but apparently
at the time quite heated exchange between Simon and Mandelbrot in the journal Infor-
mation and Control [56, 76, 57, 77, 58, 78].4

It is worth noting that economists appear to have given the nod to Simon and the
preferential attachment model. Indeed, a recent popular economics text by Krugman
[42] o�ers a derivation of the power law similar to Simon's argument.5 A more formal
treatment is given by Gabaix [29].

5 Multiplicative processes

Lognormal distributions are generated by processes that follow what the economist Gibrat
called the law of proportionate e�ect [30, 31]. We here use the term multiplicative process
to describe the underlying model. In biology, such processes are used to described the
growth of an organism. Suppose we start with an organism of size X0. At each step j,

4At the risk of o�ending the original authors, a few excerpts from the exchange are worth citing to
demonstrate the disagreement. The abstract of Mandelbrot's initial note begins, \This note is a discus-
sion of H. A. Simon's model (1955) concerning the class of frequency distributions generally associated
with the name of G. K. Zipf. The main purpose is to show that Simon's model is analytically circular
in the case of the linguistic laws of Estouf-Zipf and Willis-Yule." [56] The abstract of Simon's rebuttal
begins, \This note takes issue with a recent criticism by Dr. B. Mandelbrot of a certain stochastic model
to explain word-frequency data. Dr. Mandelbrot's principal empirical and mathematical objections to
the model are shown to be unfounded." [76] Mandelbrot begins his \Final Note" in response to Simon's
rebuttal as follows: \In a \Note" published in this Journal in 1959 (Mandelbrot, 1959), we had shown
the impossibility of ever explaining the Pareto-Yule-Zipf class of skew distribution functions by using the
model due to H. A. Simon (1955). That model was most ingenious and tempting but it turned out to
be totally inadequate to derive the desired results." [57] Simon's further rebuttal contains the sentence,
\Thus we have come to the end of the list of Dr. Mandelbrot's objections to my approximation without
�nding a single one that is valid." [77] In the �nal volley of the series of exchanges (Mandelbrot felt
it necesary to add a \Post Scriptum" after his \Final Note") the abstracts are short and to the point.
Mandelbrot says, \My criticism has not changed since I �rst had the privilege of commenting upon a
draft of Simon (1955)." [58] Simon's �nal word is: \Dr. Mandelbrot has proposed a new set of objections
to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." [78]

5As an interesting example of the breadth of the scope of power-law behavior, one review of Krugman's
book, written by an urban geographer, accuses the author of excessive hubris for not noting the signi�cant
contributions made by urban geographers with regard to Simon's model [11].
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the organism may grow or shrink, according to a random variable Fj, so that

Xj = FjXj�1:

The idea is that the random growth of an organism is expressed as a percentage of its
current weight, and is independent of its current actual size. If the Fk; 1 � k � j; are all
governed by independent lognormal distributions, then so is each Fj, inductively, since
the product of lognormal distributions is again lognormal.

More generally, lognormal distributions may be obtained even if the Fj are not them-
selves lognormal. Speci�cally, consider

lnXj = lnX0 +
jX

k=1

lnFk:

Assuming the random variables lnFk satisfy appropriate conditions, the Central Limit
Theorem says that

Pj
k=1 lnFk converges to a normal distribution, and hence for suÆ-

ciently large j, Xj is well approximated by a lognormal distribution. In particular, if the
lnFk are independent and identically distributed variables with �nite mean and variance,
then asymptotically Xj will approach a lognormal distribution.

Multiplicative processes are used in biology and ecology to describe the growth of
organisms or the population of a species. In economics, perhaps the most well-known
use of the lognormal distribution derives from the Black-Scholes option pricing model
[12], which is a speci�c application of Ito's lemma (see, e.g., [35, 36]). In a simpli�ed
version of this setting [20, 35], the price of a security moves in discrete time steps, and the
price Xj changes according to Xj = FjXj�1, where Fj is lognormally distributed. Using
this model, Black and Scholes demonstrate how to use options to guarantee a risk-free
return equivalent to the prevailing interest rate in a perfect market. Other applications
in for example geology and atmospheric chemistry are given in [23]. More recently,
as described below, Adamic and Huberman suggest that multiplicative processes may
describe the growth of sites on the Web as well as the growth of user traÆc on Web sites
[33, 34]. Lognormal distributions have also been suggested for �le sizes [8, 9, 25].

The connection between multiplicative processes and the lognormal distribution can
be traced back to Gibrat around 1930 [30, 31], although Kapteyn described in other terms
an equivalent process in 1903 [38], and McAlister described the lognormal distribution
around 1879 [60]. Aitchison and Brown suggest that the lognormal distribution may be a
better �t for income distribution than a power law distribution, representing perhaps the
�rst time the question of whether a power law distribution or a lognormal distribution
gives a better �t was fully developed [2, 3]. It is interesting that when examining income
distribution data, Aitchison and Brown observe that for lower incomes a lognormal dis-
tribution appears a better �t, while for higher incomes a power law distribution appears
better; this is echoed in later work by Montroll and Schlesinger [65, 66], who o�er a pos-
sible mathematical justi�cation discussed below. Similar observations have been given
for �le sizes [8, 9].
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5.1 Multiplicative Models and Power Law Distributions

Although the multiplicative model is used to generate lognormal or approximately dis-
tributions, only a small change from the lognormal generative process yields a generative
process with a power law distribution. To provide a concrete example, we consider the
interesting history of work on income distributions.

Recall that Pareto introduced the Pareto distribution in order to explain income dis-
tribution at the tail end of the nineteenth century. Champernowne [18], in a work slightly
predating Simon (and acknowledged by Simon, who suggested his work generalized and
extended Champernowne), o�ered an explanation for this behavior. Suppose that we
break income into discrete ranges in the following manner. We assume there is some
minimum income m. For the �rst range, we take incomes between m and 
m, for some

 > 1; for the second range, we take incomes between 
m and 
2m. We therefore say
that a person is in class j for j � 1 if their income is between m
j�1 and m
j. Champer-
nowne assumes that over each time step, the probability of an individual moving from
class i to class j, which we denote by pij, depends only on the value of j � i. He then
considers the equilibrium distribution of people among classes. Under this assumption,
Pareto distributions can be obtained.

Let us examine a speci�c case, where 
 = 2, pij = 2=3 if j = i � 1, and pij = 1=3
if j = i + 1. Of course the case i = 1 is a special case; in this case p11 = 2=3. In this
example, outside of class 1, the expected change in income over any step is 0. It is also
easy to check that in this case the equilibrium probability of being in class k is just 1=2k,
and hence the probability of being in class greater than or equal to k is 1=2k�1. Hence
the probability that a person's income X is larger than 2k�1m in equilibrium is given by

Pr[X � 2k�1m] = 1=2k�1;

or
Pr[X � x] = m=x

for x = 2k�1m. This is a power law distribution.
Note, however, the speci�c model above looks remarkably like a multiplicative model.

Moving from one class to another can be thought of as either doubling or halving your
income over one time step. That is, if Xt is your income after t time steps, then

Xt = FtXt�1;

where Ft is 1=2 with probability 2=3 and 2 with probability 1=3. Again, E[Xt] = E[Xt�1].
Our previous discussion therefore suggests that Xt should converge to a lognormal dis-
tribution for large t.

What is the di�erence between the Champernowne model and the multiplicative
model? In the multiplicative model, income can become arbitrarily close to zero through
successive decreases; in the Champernowne model, there is a minimum income corre-
sponding to the lowest class below which one cannot fall. This small change allows one
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model to produce a power law distribution while the other produces a lognormal. As long
as there is a bounded minimum that acts as a lower re
ective barrier to the multiplicative
model, it will yield a power law instead of a lognormal distribution. The theory of this
phenomenon is more fully developed in [29, 39].

6 Monkeys Typing Randomly

We return now to Mandelbrot's optimization argument for the power law behavior of
word frequency in written language. A potentially serious objection to Mandelbrot's
argument was developed by the psychologist Miller [62], who demonstrated that the
power law behavior of word frequency arises even without an underlying optimization
problem. This result, explained below, should perhaps serve as warning: just because
one �nds a compelling mechanism to explain a power law does not mean that there are
not other, perhaps simpler explanations.

Miller suggests the following experiment. A monkey types randomly on a keyboard
with n characters and a space bar. A space is hit with probability q; all other characters
are hit with equal probability (1� q)=n. A space is used to separate words. We consider
the frequency distribution of words.

It is clear that as the monkey types each word with c (non-space) characters occurs
with probability

qc =
�
1� q

n

�c
q;

and there are nc words of length c. (We allow the empty word of length 0 for convenience.)
The words of longer length are less likely and hence occur lower in the rank order of
word frequency. In particular, the word with frequency ranks 1 + (nj � 1)=(n � 1) to
(nj+1 � 1)=(n � 1) have j letters. Hence, the word with frequency rank rj = nj occurs
with probability

qj = q
�
1� q

n

�logn rj
= q (rj)

logn(1�q)�1 ;

and the power law behavior is apparent. Hence the power law associated with word fre-
quency requires neither preferential attachment nor optimization; monkeys typing ran-
domly would produce it.

Bell, Cleary, and Witten observe empirically that when the probabilities of each letter
are not equal, a smoother match to the power law develops [10]. I am currently unaware
of a proof similar to the one above demonstrating that power law behavior occurs when
the probabilities for each of the letters are arbitrary. Indeed, to confuse the issue, one
paper on the subject claims that if the letter frequencies are not equal, a lognormal
distribution occurs [70] (see also [51], where this claim is repeated). It is worth examining
this argument more carefully, since it demonstrates the confusion that can arise in trying
to distinguish models that generate power law and lognormal distributions.
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Perline notes that in the experiment with monkeys typing randomly, if we consider
words only of some �xed length m, for m suÆciently large their frequency-rank distribu-
tion will approximate a lognormal distribution, following the paradigm of multiplicative
processes. To see this, let the probabilities for our n characters be p1; p2; : : : ; pn. Consider
the generation a random m-letter word. Let Xi take on the value pj if the ith letter is j.
Then Ym = X1X2 : : :Xm is a random variable whose value corresponds to the probability
that a word chosen uniformly at random from all m-letter words appears as the monkeys
type. We have that lnYm =

Pm
k=1 lnXi; since the Xi are independent and identically

distributed, logYm converges to a normal distribution by the Central Limit Theorem,
and hence Ym converges to a lognormal distribution. Notice that this holds true even if
all letter frequencies are equal, although in this case the resulting distribution is trivial.

Perline then argues that if we consider all words of length up to m, we still obtain
asymptotic convergence to a lognormal distribution. This follows from a generalization
of the Central Limit Theorem due to Anscombe. Intuitively, this is because most words
have length close to m, so the words with small length are just noise in the distribution.
This result does require that the probability some two letters have di�erent probabilities
of being hit.

From this, it might be tempting to conclude that the distribution if the word length
is unrestricted is also lognormal when letters do not all have the same probabilities.
However, this does not follow. The problem is that for each value ofm we obtain a slightly
di�erent lognormal distribution. Hence it is not necessarily true that in the limit as m
increases we are getting closer and closer to some �nal lognormal distributions. Rather,
we have a sequence of lognormal distributions that is converging to some distribution.
To justify that the result need not be lognormal, I present an amusing example of my
own devising.

Consider an alphabet with two letters: \a" occurs with probability q, \b" occurs with
probability q2, and a space occurs with probability 1�q�q2. The value q must be chosen
so that 1� q � q2 > 0. In this case, every valid word the monkey can type occurs with
probability qj(1� q � q2) for some integer j. Let us say a word has pseudo-rank j if it
occurs with probability qj(1 � q � q2). There is 1 word with pseudo-rank 0 (the empty
word), 1 with pseudo-rank 1 (\a"), 2 with pseudo-rank 2 (\aa" and \b"), and so on.
A simple induction yields that the number of words with pseudo-rank k is in fact the
(k + 1)st Fibonacci number Fk+1 (where here we start with F0 = 0 and F1 = 1). This
follows obviously from the fact that to obtain the words with pseudo-rank k we append
an \a" to a word with pseudo-rank k � 1, or a \b" to a word with pseudo-rank k � 2.

Recall that Fk � �k=
p
5 for large k, where � is the golden ratio. Also

Pk
i=1 Fk =

Fk+2 � 1. Now the argument is entirely similar to the case where all items have the
same probability. If we ask for the frequency of the rj = Fjth most frequent item, it has
pseudo-rank j � 2, and hence its frequency is

qj�2(1� q � q2) � qlog�
p
5rj�2(1� q � q2) = r

log� q

j qlog�
p
5�2(1� q � q2);
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and again we have power law behavior.
There is nothing special about having two characters for this example; one could

easily expand it to include more complex generalized Fibonacci sequences. A suitable
generalization is in fact appears feasible for any probabilities p1; p2; : : : ; pn associated with
the n characters, although a formal proof is beyond the scope of this survey.6 Roughly,
let p1 be the largest of the pi, and let pj = p


j
1 for j � 1. Then the number of words

with frequency greater than or equal to pk1 grows approximately proportionally to (1=c)k,
where c is the unique real root between 0 and 1 of

Pn
j=1 x


j = 1. This is all we need for
the monkeys to produce a power law distribution, following the arguments above.

7 Double Pareto Distributions

Interestingly, there is another variation on the multiplicative generative model also yields
power law behavior. Recall that in the multiplicative model, if we begin with valueX0 and
every step yields an independent and identically distributed multiplier from a lognormal
distribution F , then any resulting distribution Xt after t steps is lognormal. Suppose,
however, that instead of examining Xt for a speci�c value of t, we examine the random
variable XT where T itself is a random variable. As an example, when considering
income distribution, in seeing the data we may not know how long each person has lived.
If di�erent age groups are intermixed, the number of multiplicative steps each person
may be thought to have undergone may be thought of as a random variable.

This e�ect was noticed as early as 1982 by Montroll and Schlesinger [65, 66]. They
show that a mixture of lognormal distributions based on a geometric distribution would
have essentially a lognormal body but a power law distribution in the tail. Huberman
and Adamic suggest a pleasantly simple variation of the above result; in the case where
the time T is an exponential random variable, and we may think of the number of
multiplicative steps as being continuous, the resulting distribution of XT has a power
law distribution [33, 34]. Huberman and Adamic go on to suggest that this result can
explain the power law distribution observed for the number of pages per site. As the
Web is growing exponentially, the age of a site can roughly be thought of as distributed
like an exponential random variable. If the growth of the number of pages on a Web site
follows a multiplicative process, the above result suggests a power law distribution.

In more recent independent work, Reed provides the correct full distribution for the
above model, which yields what he calls a double Pareto distribution [72]. Speci�cally,
the resulting distribution has one Pareto tail distribution for small values (below some
point) and another Pareto tail distribution for large values (above the same point).7

6I am currently constructing a formal treatment of this argument, which appears to require some
non-trivial analytic number theory. This work will hopefully appear in the near future.

7For completeness we note that Huberman and Adamic concentrate only on the tail of the density
function, and correctly determine the power law behavior. However, they miss the two-sided nature of
the distribution. Reed gives the complete correct form, as we do below.
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For example, consider for simplicity the case where if we stop a process at time t the
result is a lognormal random variable with mean 0 and variance t. Then if we stop the
process at an exponentially distributed time with mean 1=�, the density function of the
result is

f(x) =
Z 1

t=0
�e��t

1p
2�tx

e�(lnx)
2=2tdt:

Using the substitution t = u2 gives

f(x) =
2�p
2�x

Z 1

u=0
e��u

2�(lnx)2=2u2du:

An integral table gives us the identity

Z 1

z=0
e�az

2�b=z2 =
1

2

r
�

a
e�2

p
ab;

which allows us to solve for the resulting form. Note that in the exponent
p
2ab of

the identity we have b = (lnx)2=2. Because of this, there are two di�erent behaviors,

depending on whether x � 1 or x � 1. For x � 1, f(x) =
�q

�=2
�
x�1�

p
2�, so the result

is a power law distribution. For x � 1, f(x) =
�q

�=2
�
x�1+

p
2�.

The double Pareto distribution falls nicely between the lognormal distribution and
the Pareto distribution. Like the Pareto distribution, it is a power law distribution. But
while the log-log plot of the density of the Pareto distribution is a single straight line, for
the double Pareto distribution the log-log plot of the density consists of two straight line
segments that meet at a transition point. This is similar to the lognormal distribution,
which has a transition point around its median e� due to the quadratic term, as shown
in equation (1). Hence an appropriate double Pareto distribution can closely match the
body of a lognormal distribution and the tail of a Pareto distribution. For example,
Figure 1 shows the complementary cumulative distribution function for a lognormal and
a double Pareto distribution. (These graphs have only been minimally tuned to give a
reasonable match.) The plots match quite well with a standard scale for probabilities,
as shown on the left. On the log-log scale, however, one can see the di�erence in the tail
behavior. The double Pareto distribution follows a power law; the lognormal distribution
has a clear curvature.

Reed also suggests a generalization of the above called a double Pareto-lognormal
distribution with similar properties [73]. The double Pareto-lognormal distribution has
more parameters, but might allow closer matches with empirical distributions.

It seems reasonable that in many processes the time an object has lived should be
considered a random variable as well, and hence this model may prove more accurate for
many situations. For example, that the double Pareto tail phenomenon could explain why
income distributions and �le size distributions appear better modeled by a distribution
with a lognormal body and a Pareto tail [2, 8, 9, 65, 66]. Reed presents empirical evidence
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Figure 1: Shapes of lognormal and double Pareto distributions.

in favor of using the double Pareto and double-Pareto lognormal distributions for incomes
and other applications [72, 73].

To give an idea of why it might be natural for the time parameter to be (roughly)
exponentially distributed, I brie
y describe a model that I introduced in [63]. This model
combines ideas from the theory of recursive trees, preferential attachment, and the double
Pareto framework. Consider a graph process that works as follows: at each step, with
probability 
, a new node is introduced that becomes the root of a new tree. Each
new node has an associated size chosen independently and uniformly at random from a
distribution D1. With probability 1�
, an existing node is chosen uniformly at random,
and it generates a child. The size of a child is equal to the size of its parent, multiplied
by some multiplicative factor chosen by a distribution D2. It is easy to show that the
distribution of the depths of the nodes generated in this manner converges to a geometric
distribution. Along each branch of the tree, the size of the nodes follows a multiplicative
process. If D1 and D2 are lognormal distributions, then the size of a randomly chosen
node is a geometric mixture of lognormally distributed random variables, which closely
matches the exponential mixture required for a double Pareto distribution. In fact, the
tail behaviors are the same. I use this model to explain �le size distributions in [63]; [74]
analyzes other similar models.

This line of thought also ties back into the discussion of monkeys typing randomly.
In the case of unrestricted word lengths and unequal letter probabilities, the word length
is geometrically distributed, and the probability of a word of any (large) �xed length is
approximately lognormal, with the appropriate mean and variance being proportional to
the length of the word. Hence the underlying distribution of word lengths is a geometric
mixture of approximately lognormal random variables as in the framework above, and
hence the resulting power law is unsurprising.
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8 Conclusions

Power law distributions and lognormal distributions are quite natural models and can
be generated from simple and intuitive generative processes. Because of this, they have
appeared in many areas of science. This example should remind us of the importance of
seeking out and recognizing work in other disciplines, even if it lies outside our normal
purview. Since computer scientists invented search engines, we really have little excuse.
On a personal note, I was astounded at how the Web and search engines have transformed
the possibilities for mining previous research; many of the decades-old articles (including
the 1925 article by Yule!) cited here are in fact available on the Web.

It is not clear that the above discussion settles one way or another whether lognormal
or power law distributions are better models for things like �le size distributions. Given
the close relationship between the two models, it is not clear that a de�nitive answer
is possible; it may be that in seemingly similar situations slightly di�erent assumptions
prevail. The fact that power law distributions arise for multiplicative models once the
observation time is random or a lower boundary is put into e�ect, however, may suggest
that power laws are more robust models. Indeed, following the work of Reed [72, 73], we
recommend the double Pareto distribution and its variants as worthy of further consid-
eration in the future.

From a more pragmatic point of view, it might be reasonable to use whichever distri-
bution makes it easier to obtain results. This runs the risk of being inaccurate; perhaps
in some cases the fact that power law distributions can have in�nite mean and variance
are salient features, and therefore substituting a lognormal distribution loses this impor-
tant characteristic. Also, if one is attempting to predict future behavior based on current
data, misrepresenting the tail of the distribution could have severe consequences. For
example, large �les above a certain size might be rare currently, and hence both lognor-
mal and power law distibutions based on current data might capture these rare events
adequately. As computer systems with more memory proliferate, and even larger �les
become more frequent, the prediction from two models may vary more substantially. The
recent work [51] argues that for at least some network applications the di�erence in tails
is not important. We believe that formalizing this idea is an important open question.
Speci�cally, it would be useful to know in a more formal sense in what situations the
small di�erences between power laws and lognormal distributions manifest themselves in
vastly di�erent qualitative behavior, and in what cases a power law distribution can be
suitably approximated by a lognormal distributions.
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vides both underlying mathematics and an economic perspective and history. Similarly,
Mandelbrot provides both history about and his own perspective on lognormal and power
law distributions in a recent book [59]. Wentian Li has a Web page devoted to Zipf's law
which is an excellent reference [49]. For lognormal distributions, useful sources include
the text by Aitchison and Brown [3] or the modern compendium edited by Crow and
Shimizu [23].

References

[1] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages
171-180, 2000.

[2] J. Aitchison and J. A. C. Brown. On criteria for descriptions of income distribution.
Metroeconomica, 6:88-98. 1954.

[3] J. Aitchison and J. A. C. Brown. The Lognormal Distribution. Cambridge Uni-
versity Press, 1957.

[4] A. P. Allen, B. Li, and E. L. Charnov. Population 
uctuations, power laws and
mixtures of lognormal distributions. Ecology Letters, 4:1-3, 2001.

[5] R. Albert, H. Jeong, and A.-L. Barab�asi. Diameter of the World Wide Web. Nature,
401:130-131, 1999.

[6] F. Auerbach. Das Gesetz der Bevolkerungskonzentration. Petermanns Geographische
Mitteilungen, LIX (1913), 73-76.

[7] A.-L. Barab�asi, R. Albert, and H. Jeong. Mean-�eld theory for scale-free random
networks. Physica A, vol. 272, pages 173-189, 1999.

[8] P. Barford, A. Bestavros, A. Bradley, and M. Crovella. Changes in Web client access
patterns: characteristics and caching implications. World Wide Web, 2:15-28, 1999.

[9] P. Barford and M. Crovella. Generating representative Web workloads for network
and server performance evaluation. In Proceedings of ACM SIGMETRICS, pages
151-160, 1998.

[10] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice-Hall,
Englewood Cli�s, New Jersey, 1990.

[11] B. Berry. D�ej�a vu, Mr. Krugman. Urban Geography, vol 20, 1, pages 1-2, 1999.

[12] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of
Political Economics, 81:637-654, 1973.

18



[13] B. Bollob�as and O. Riordan. The diameter of a scale-free random graph. To appear.

[14] B. Bollob�as, O. Riordan, J. Spencer, and G. Tusn�ady. The degree sequence of a
scale-free random process. Random Structures and Algorithms, vol 18(3): 279-290,
2001.

[15] A. Bookstein. Informetric Distributions, Part I: Uni�ed Overview. Journal of the
American Society for Information Science, 41(5):368-375, 1990.

[16] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A.
Tomkins, and J. Wiener. Graph structure in the Web: experiments and models. In
Proc. of the 9th World Wide Web Conference, 2000.

[17] J. M. Carlson and J. Doyle. Highly optimized tolerance: a mechanism for power
laws in designed systems. Physics Review E, 60(2):1412-1427, 1999.

[18] D. Champernowne. A model of income distribution. Economic Journal, 63:318-351,
1953.

[19] C. Cooper and A. Frieze. On a general model of undirected Web graphs. In Proceed-
ings of the 9th Annual European Symposium on Algorithms, pages 500-511, 2001.

[20] J. Cox, S. Ross, and M. Rubinstien. Option pricing: a simpli�ed approach. Journal
of Financial Economics, 7:229-265, 1979.

[21] M. Crovella and A. Bestavros. Self-similarity in world wide web traÆc: evidence and
possible causes. IEEE/ACM Transactions on Networking, 5(6):835-846, 1997.

[22] M. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed probability distributions
in the world wide web. In A Practical Guide to Heavy Tails, editors R. J. Adler, R.
E. Feldman, M. S. Taqqu. Chapter 1, pages 3-26, Chapman and Hall, 1998.

[23] E. L. Crow and K. Shimizu (editors). Lognormal Distributions: Theory and
Applications. Markel Dekker, Inc., New York, 1988.

[24] E. Drinea, M. Enachescu, and M. Mitzenmacher. Variations on random graph models
of the Web. Harvard Computer Science Technical Report TR-06-01.

[25] A. B. Downey. The structural causes of �le size distributions. To appear in MAS-
COTS 2001. Available at http://rocky.wellesley.edu/downey/�lesize/

[26] J. B. Estoup. Gammes Stenographiques. Institut Stenographique de France,
Paris, 1916.

[27] A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou. Heuristically Optimized
Tradeo�s: A new paradigm for power laws in the Internet. In Proceedings of the 29th
International Colloquium on Automata, Languages, and Programming, 2002.

19



[28] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
Internet topology. In Proceedings of the ACM SIGCOMM 1999 Conference, pages
251-261, 1999.

[29] X. Gabaix. Zipf's law for cities: an explanation. Quarterly Journal of Economics,
114:739-767. 1999.

[30] R. Gibrat. Une loi des r�eparations �economiques: l'e�et proportionnel. Bull. Statist.
g�en Fr.. 19:469, 1930.

[31] R. Gibrat. Les inegalites economiques. Libraire du Recueil Sirey, Paris France,
1931.

[32] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring Web communities from link
topology. In Proceedings of the 9th ACM Conference on Hypertext and Hypermedia,
pp. 225-234, 1998.

[33] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide
Web. Technical Report, Xerox Palo Alto Research Center, 1999. Appears as a brief
communication in Nature, 401, p. 131, 1999.

[34] B. A. Huberman and L. A. Adamic. The nature of markets in the World Wide Web.
Quarterly Journal of Economic Commerce, vol 1., pages 5-12, 2000.

[35] J. C. Hull. Introduction to futures and options markets (third edition).
Prentice-Hall, Inc., New Jersey, 1997.
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