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Abstract

We study the limits of performance of Gallager codes (low-density parity-check codes) over binary

linear intersymbol interference (ISI) channels with additive Gaussian noise. Using the graph representa-

tions of the channel, the code and the sum-product message-passing detector/decoder, we prove two error

concentration theorems. Our proofs expand on previous work by handling complications introduced by

the channel memory. We circumvent these problems by considering not just linear Gallager codes but

also their cosets and by distinguishing between di�erent types of message 
ow neighborhoods depending

on the actual transmitted symbols. We compute the noise tolerance threshold using a suitably developed

density evolution algorithm and verify by simulation that the thresholds represent accurate predictions of

the performance of the sum-product algorithm for �nite (but large) block lengths. We also demonstrate

that for high rates the thresholds are very close to the theoretical limit of performance for Gallager codes

over ISI channels. If C denotes the capacity of a binary ISI channel and if Ci:i:d: denotes the maximal

achievable mutual information rate when the channel inputs are independent identically distributed (i.i.d.)

binary random variables (Ci:i:d: � C), we prove that the maximum information rate achievable by the

sum-product decoder of a Gallager (coset) code is upper-bounded by Ci:i:d:. The last topic investigated is

the performance limit of the decoder if the trellis portion of the sum-product algorithm is executed only

once; this demonstrates the potential for trading o� the computational requirements and the performance

of the decoder.

Keywords

intersymbol interference channel, channel capacity, i.i.d. capacity, BCJR-once bound, low-density

parity-check codes, Gallager codes, density evolution, sum-product algorithm, turbo equalization.

I. Introduction

If continuous channel inputs are allowed, the capacity of discrete-time intersymbol in-

terference (ISI) channels with additive Gaussian noise (AWGN) can be computed using

the water-�lling theorem [1], [2]. In many applications, the physics of the channel do not

allow continuous input alphabets. A prime example of a two-level (binary) intersymbol

interference channel is the saturation magnetic recording channel, because the magneti-

zation domains can have only two stable positions [3]. Other examples include digital

communication channels where the input alphabet is con�ned to a �nite set [4].

The computation of the capacity of discrete-time ISI channels with a �nite number

of allowed signaling levels is an open problem. In the past, the strategy has been to
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obtain numeric [5] and analytic [6], [7] bounds on the capacity. Very often authors have

concentrated on obtaining bounds on the maximum achievable information rate when the

inputs are independent and identically distributed (i.i.d.) { the so-called i.i.d. capacity [6],

[7]. Recently, a method for evaluating the i.i.d. capacity using the forward recursion

of the sum-product (BCJR/Baum-Welch) algorithm has been proposed by Arnold and

Loeliger [8]. This marks the �rst exact result involving a channel capacity of a discrete-

time ISI channel with binary inputs. The remaining issue is to devise codes that will

achieve the capacity (or at least the i.i.d. capacity).

The ability to achieve (near) channel capacity has recently been numerically demon-

strated for various memoryless [9], [10] channels using Gallager codes, also known as

low-density parity-check (LDPC) codes [11]. The theory of Gallager codes has vastly ben-

e�tted from the notion of codes on graphs �rst introduced by Tanner [12] and further

expanded into a unifying theory of codes on graphs by Wiberg et.al. [13] and Forney [14].

MacKay [15], [16] showed that there exist Gallager codes that outperform turbo codes [17].

A major breakthrough was the construction of irregular Gallager codes [18], and the de-

velopment of a method to analyze them for erasure channels [9], [19]. These methods were

adapted to memoryless channels with continuous output alphabets (additive white Gaus-

sian noise channels, Laplace channels, etc.) by Richardson and Urbanke [20], who also

coined the term \density evolution" for a tool to analyze the asymptotic performance of

Gallager and turbo codes over these channels [21]. The usefulness of the tool was demon-

strated by using it to optimize codes whose performance is proven to get very close to the

capacity, culminating in a remarkable 0.0045 dB distance from the capacity of the additive

white Gaussian noise (AWGN) channel reported by Chung et. al. [22].

In this paper, we focus on developing the density evolution method for channels with

binary inputs and ISI memory. The computed thresholds are used for lower-bounding the

capacity, as well as for upper-bounding the average code performance. The main topics of

this paper are: 1) concentration theorems for Gallager codes and the sum-product message-

passing decoder over binary ISI channels, 2) a density evolution method for computing the

thresholds of \zero-error" performance over these channels, 3) theorems establishing that

the asymptotic performance of Gallager codes using the sum-product algorithm is upper
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bounded by the i.i.d. capacity, and 4) the computation of the BJCR-once bound, which is

the limit of \zero-error" performance of the sum-product algorithms if the trellis portion

of the algorithm is executed only once.

The paper is organized as follows. In Section II, we describe the channel model, intro-

duce the various capacity de�nitions, and brie
y describe the sum-product decoder [23].

In Section III, we introduce the necessary notation for handling the analysis of Gallager

codes for channels with memory and prove two key concentration theorems. Section IV

is devoted to describing the density evolution algorithm for channels with ISI memory.

In Section V, computed thresholds are shown for regular Gallager codes. Section V also

presents a theorem regarding the limit of achievable code rates using binary linear codes.

In this section we also develop the notion of the BCJR-once bound, which has a practical

implication, namely, it is the limit of performance of the sum-product algorithm if the

trellis portion of the algorithm is executed only once. This provides a concrete example

of how we can trade o� the computational load (by doing the expensive BCJR step only

once) with the decoding performance. Section VI concludes the paper.

Basic notation: Matrices are denoted with boldface uppercase letters (e.g., H). Col-

umn vectors are denoted by underlined characters. Random variables (vectors) are typ-

ically denoted by uppercase characters, while their realizations are denoted by lowercase

characters (e.g., a random vector W has a realization w). The superscript T denotes

matrix and vector transposition. If a column vector is s = [s1; s2; : : : ; sn]
T, then a sub-

vector collecting entries si; si+1; : : : ; sj is denoted by sji = [si; si+1; : : : ; sj]
T. The notation

Pr (event1) denotes the probability of event1, while Pr (event1jevent2) denotes the prob-

ability of event1 given that event2 occurred. The probability mass functions of discrete

random variables will be denoted with the symbol \Pr", e.g., the probability mass function

of a discrete random vector X evaluated at x will be denoted by Pr (X = x), i.e., it is the

probability that X takes the value x. The probability density function of a continuous

random variable will be denoted by the symbol \f". For example, the probability density

function of a continuous random vector Z evaluated at the point z will be denoted by

fZ (z).

February 22, 2001 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 104

II. The Channel, Gallager Codes and Decoding

A. Channel model, graph representation and capacity

Assume that we have a real1 discrete-time intersymbol interference (ISI) channel of �nite

length I, characterized by the channel response polynomial h(D) = h0 + h1D + : : : hID
I ,

where hi 2 R. The input xt to the discrete-time channel at time t 2 Z is a realization of

a random variable Xt drawn from a �nite alphabet X � R. The output of the channel yt

is a realization of a random variable Yt drawn from the alphabet Y = R. The channel's

probabilistic law is captured by the equation

Yt =
IX
i=0

hiXt�i +Nt; (1)

where Nt is a zero-mean additive white Gaussian noise (AWGN) sequence with variance

E [N2
t ] = �2 whose realizations are nt 2 R. In the sequel, we shall assume that the input

alphabet is binary X = f�1; 1g.

The channel in (1) is conveniently represented by a trellis [24], or equivalently, by a

graph where for each variable Xt there is a single trellis node [13], [14]. De�ne the state at

time t as the vector that collects the input variables Xt�I+1 through Xt, i.e,, Qt
= X t

t�I+1.

The realization q
t
of the random vector Q

t
can take one of 2I values. With this notation,

we can factor the function

Pr
�
Xn

1 = xn1 jY
n
1 = yn

1
; Q

0
= q

0

�
fY n

1 jQ0

�
yn
1
jQ

0
= q

0

�
=

nY
t=1

F
�
xt; yt; qt�1; qt

�
; (2)

where each factor is

F
�
xt; yt; qt�1; qt

�
= fYtjXt;Q

t�1

�
ytjxt; qt�1

�
Pr
�
Q
t
= q

t
jQ

t�1 = q
t�1

�
: (3)

This factorization is represented by the factor graph in Figure 1. Each node of the graph

(denoted by the letter \T") represents a factor (3), while each edge connected to the node

1extensions to complex channels are straight-forward, and will not be considered here.
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…T …T TTq 0 q 1 q 2 q t-1 q t q n-1
q n
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y 1 y 2 y t y n

Fig. 1. Factor graph representation of the ISI channel.

represents a variable on which the factor depends. Edges terminated by a small �lled circle

(�) are half edges. Half edges may be considered terminals to which other graphs may be

connected. For details on factor-graph representations, see [14], [23].

For the channel in (1), the capacity is de�ned as

C = lim
n!1

1

n
sup

Pr(Xn
1=x

n
1 )
I (Xn

1 ;Y
n
1 ) ; (4)

where I (Xn
1 ;Y

n
1 ) is the mutual information2 between the channel input and the output

evaluated for a speci�c probability mass function Pr (Xn
1 = xn1 ) of the channel input, where

xn1 2 X
n. Another quantity related to the mutual information is the maximum i.i.d. mutual

information (often called the i.i.d. capacity), de�ned as

Ci:i:d: = lim
n!1

1

n
sup

Pr(Xn
1=x

n
1 )=

nQ

t=1
Pr(X=xt)

I (Xn
1 ;Y

n
1 ) ; (5)

where the supremum is taken over all probability mass functions of independent identically

distributed (i.i.d.) random variables Xt, 1 � t � n. Clearly C � Ci:i:d:. For the channel

in (1), due to symmetry, we have that the i.i.d. capacity is achieved when Pr (X = 1) = 1
2
.

In general, if the input alphabet X is �nite, neither C nor Ci:i:d: are known in closed form.

Only if the channel coeÆcients are hi = 0, for i � 1 (i.e., if the channel does not have

memory), we have C = Ci:i:d:, in which case the capacity is known and can be evaluated via

numerical integration [1], [6]. For channels with ISI memory, Ci:i:d: can be very accurately

numerically evaluated using the Arnold-Loeliger method [8].

2Some authors refer to I (Xn
1 ;Y

n
1 ) as the average mutual information (AMI), see e.g., [1], [6], [7].
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B. Gallager coset codes

A Gallager code (also known as a low-density parity-check code) is a linear block code

whose parity check matrix is sparse [11]. Here, we will extend this de�nition to include

any coset of a linear block code with a sparse parity check matrix. An information block

is denoted by a k�1 vector m 2 f0; 1gk. If a sparse (n�k)�n binary parity-check matrix

is denoted by H, then G(H) denotes the n�k generator matrix corresponding to H (with

the property H �G(H) = 0). A Gallager code is speci�ed by a parity check matrix H and

an n� 1 coset-de�ning vector r. The codeword is a n� 1 vector

s = [s1; s2; : : : ; sn]
T = [G(H) �m]� r; (6)

where st 2 f0; 1g and � denotes binary vector addition. The codeword s satis�es

H � s = c = [c1; c2; : : : ; cn�k]
T = H � r: (7)

The code is linear if and only if c = 0, otherwise, the code is a coset code of a linear

Gallager code.

It is convenient to represent a Gallager coset code by a bipartite graph [12], [14], [23].

The graph has two types of nodes: n variable nodes (one variable node for each entry in

the vector s) and n�k check nodes (one check node for each entry in the vector c). There

is an edge connecting the i-th check node and the j-th variable node if the entry H(i; j)

in the i-th row and j-th column of H is non-zero. Thus, each check node represents a

parity check equation ci =
L

j:H(i;j)6=0
sj, where the symbol

L
denotes binary addition. An

example of a graph of a Gallager coset code is depicted in Figure 2.

The degree of a node is the number of edges connected to it. Two degree polynomials

�(x) =
LmaxP
i=1

�ix
i�1 and �(x) =

RmaxP
i=1

�ix
i�1 are de�ned [18], [20], where Lmax and Rmax

are the maximal variable and check node degrees respectively. If ne represents the total

number of edges in the graph, then the value �i represents the fraction of the ne edges

that are connected to variable nodes of degree i (�i is de�ned similarly). Clearly
LmaxP
i=1

�i =
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c 1 c 2 c i c n-k
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xt
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Fig. 2. Bipartite graph representation of a regular Gallager coset code (Lmax; Rmax) = (2; 3).

RmaxP
i=1

�i = 1. The design code rate3 is r = k
n
= 1 �

1R

0

�(x)dx

1R

0

�(x)dx

. A regular Gallager coset code

is a code for which �Lmax = 1 and �Rmax = 1. The graph in Figure 2 represents a regular

Gallager coset code for which (Lmax; Rmax) = (2; 3).

We de�ne the ensemble Cn (�(x); �(x)) of Gallager coset codes as the set of all block

codes that satisfy (6) and (7), whose codewords s are of dimension n � 1, whose graph

corresponding to the parity-check matrix H has variable and check degree polynomials

�(x) and �(x) respectively, and whose binary coset vector r can take any of 2n values.

Before transmission over the channel (1), the variables st 2 f0; 1g are converted to

variables xt 2 f�1; 1g as

xt = 1� 2st: (8)

Since there is a 1-to-1 correspondence between the vectors x and s, the term codeword

will be used interchangeably to describe either of the two vectors.

C. Sum-product decoding by message passing

In the literature, several methods exist for soft detection of symbols transmitted over

intersymbol interference (ISI) channels [25], [26], [27], [28], [29], [30]. There also exist

3The true code rate of a code de�ned by a graph will always be greater or equal to the design code rate. In

practice, they are often extremely close, so we do not distinguish between them throughout the paper.
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Fig. 3. Joint code/channel graph.

several message-passing algorithms that decode codes on graphs [11], [12], [18], [20]. Here,

we will adopt the algorithm referred to in the coding literature as the \sum-product"

algorithm [13], [23], but is also known as belief propagation [31], [32]. When applied

speci�cally to ISI channels, the algorithm also takes the name \turbo equalization" [33].

For convenience in the later sections, we describe here the \windowed" version of the

algorithm.

First, we join the channel factor graph (Figure 1) with the code graph (Figure 2) to

get the joint channel/code graph depicted in Figure 3. The exact schedule of the message

passing algorithm seems to have only very little e�ect on the convergence properties.

However, to do the analysis in Section III, we must adopt a message-passing schedule

because the schedule a�ects the structure of the message 
ow neighborhood de�ned in

Section III. Here, we describe the scheduling choice presented in [34] often referred to as

turbo equalization [33] due to the resemblance to turbo decoding [17].

Trellis-to-variable messages: Assume that the received vector is yn
1
. In the `-th

round of the algorithm, we compute the trellis output messages O(`)t , where the messages

e
(`)
t (these are available from the previous round of the message-passing decoding algorithm

on the code subgraph of the joint channel/code graph) are considered as the extrinsic

information (in the initial round e
(0)
t = 0). The output message is computed by running

the \windowed" version of the BCJR algorithm. The windowed BCJR algorithm for

February 22, 2001 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 109
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Fig. 4. Message-passing through the trellis - the \windowed" BCJR algorithm.

computing the message O(`)t starts W trellis stages to the left and to the right of the

t-th trellis node. The forward-going and backward-going message vectors are started as

�
(`)
W;k = �(`)

W;k
= 2�I1, where 1 is an all-ones vector of size 2I � 1. The computation of the

message O(`)t follows the BCJR algorithm described in [25] and schematically depicted in

Figure 4. In the Appendix, this algorithm is reproduced for completeness.

Variable-to-check messages: Once the messages O(`)t are computed, we compute the

messages going from the variable nodes to the check nodes. A detailed explanation of

this computation can be found in [20], [35]. Here, we just state the result. Let the t-th

variable node be of degree L, i.e., it is connected to L check nodes. In the `-th round, let

O(`)t be the message arriving from the trellis node and let u
(`)
m (where 1 � m � L) denote

the messages arriving from the check nodes (in the initial round, u
(0)
m = 0). The rule for

computing the message v
(`+1)
m is

v(`+1)m = O(`)t +
LX

j=1;j 6=m
u(`)j (9)

and is depicted in Figure 5.

Check-to-variable messages: The next step is to compute the messages going from

the check nodes back to the variable nodes. Let the variable node be of degree R, i.e., it

is connected to R variable nodes, and let it represent a parity check equation for which

ci 2 f0; 1g. In round `, let v
(`+1)
m (where 1 � m � R) denote the messages arriving from

the variable nodes to the check nodes. The rule for computing the message u
(`+1)
m is

tanh
u
(`+1)
m

2
= (�1)ci

RY
k=1;k 6=m

tanh
v
(`+1)
k

2
(10)
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Fig. 5. Computation of messages from

variable nodes to check nodes.
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Fig. 6. Computation of messages from

check nodes to variable nodes.

(O)
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(O +1)
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(O +1)

… …

     =  Σ uj
 

 
   (O +1)

L

j=1

Fig. 7. Computation of messages from

variable nodes to trellis nodes.

and is depicted in Figure 6.

Variable-to-trellis messages: The last step required to complete a round of the

message-passing sum-product algorithm is to compute the messages e
(`+1)
t passed from the

variable nodes to the trellis nodes. The rule for computing the message e(`+1)t is

e
(`+1)
t =

LX
j=1

u
(`+1)
j (11)

and is depicted in Figure 7.

The full message-passing algorithm: The algorithm is executed iteratively, where

the stopping criterion can be chosen in a number of di�erent ways [36]. Here we assume

the simplest stopping criterion, i.e., conduct the iterations for exactly `max � 1 rounds. In

short, the algorithm has the following form
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� Initialization

1. receive channel outputs y1; y2; : : : ; yt; : : : ; yn.

2. for 1 � t � n, set e
(0)
t = 0.

3. set all check-to-variable messages u
(0)
m = 0.

4. set ` = 0.

� Repeat while ` < `max

1. for 1 � t � n compute all trellis-to-variable messages O(`)t [Figure 4 and the Appendix].

2. compute all variable-to-check messages v
(`+1)
m [Figure 5 and equation (9)].

3. compute all check-to-variable messages u
(`+1)
m [Figure 6 and equation (10)].

4. for 1 � t � n compute all variable-to-trellis messages e
(`+1)
t [Figure 7 and equa-

tion (11)].

5. increment ` by 1.

� Decode

1. for 1 � t � n decide x̂t = sign
�
O(`max�1)
t + e(`max)

t

�
.

III. Concentration and the \Zero-Error" Threshold

In this section, we will prove that for information sequences generated uniformly at

random, for almost all graphs and almost all cosets, the decoder behaves very closely to

the expected behavior. The expected behavior is de�ned as the behavior of the decoder

when the channel input is a sequence of equally likely i.i.d. random variables. We will

then conclude that there exists at least one graph and one coset for which the decoding

probability of error can be made arbitrarily small on an information sequence generated

uniformly at random if the noise variance does not exceed a threshold. The proofs follow

closely the ideas presented in [19], [20] for memoryless channels and rely heavily on results

presented there. The main di�erence is that the channel under consideration here has an

input-dependent memory. Therefore, we �rst must prove a concentration statement for

every possible input sequence, and then show that the average decoder performance is

closely concentrated around the decoder performance when the input sequence is i.i.d.

The section is organized as follows. In subsection III-A, the basic notation is introduced.

Subsection III-B gives the concentration result, while subsection III-C de�nes the \zero-
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Fig. 8. Equivalent representations of a message 
ow neighborhood of depth 1. In this �gure (I;W;L;R) =

(1; 1; 2; 3).

error" threshold and concludes that there exists a Gallager coset code that achieves an

arbitrarily small probability of error if the noise variance is below the threshold.

A. Message 
ow neighborhoods, trees and error probabilities

For the clarity of the presentation, we consider only regular Gallager codes, where every

variable node has degree L = Lmax and every check node has degree R = Rmax. In the

joint code/channel graph (Figure 3), consider an edge e that connects a variable node

Ve to a check node Ce. In [20], Richardson and Urbanke de�ne a directed neighborhood

of depth d (distance d) of the edge e. Here, we cannot de�ne a neighborhood based on

the distance because the joint code/channel graph (Figure 3) is not a bipartite graph.

Instead, we de�ne a message 
ow neighborhood of depth ` (which equals the directed

neighborhood if the graph is bipartite). Let v
(`+1)
e be the message passed from the variable

node Ve to the check node Ce in round `. The message 
ow neighborhood of depth ` of

the edge e is a subgraph that consists of the two nodes Ce and Ve, the edge e and all

nodes and edges that contribute to the computation of the message v
(`+1)
e . In �gure 8a, a

depth-1 message 
ow neighborhood is depicted for the following parameters (I;W; L;R) =

(1; 1; 2; 3). The row of bits (binary symbols) \0101" given above the trellis section in

Figure 8a represent the binary symbols of the codeword s corresponding to the trellis

nodes that in
uence the message 
ow. Since the channel has ISI memory of length I,
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…

…

Fig. 9. Diagram of a message 
ow neighborhood of depth `. The neighborhood type is �T =

[0101; � � � ; 1111; � � � ; 0000; 1110; � � � ; 1001].

there are exactly 2W + I + 1 (= 4) binary symbols that in
uence the message 
ow.

Figure 8b is an equivalent short representation of the depth-1 neighborhood depicted in

Figure 8a. A message 
ow neighborhood of depth ` can now be obtained by branching

out the neighborhood of depth 1. This is depicted in Figure 9.

Since the channel has memory, the transmitted binary symbols do in fact in
uence the

statistics of the messages in the message 
ow neighborhood. We therefore must distin-

guish between neighborhoods of di�erent types, where the type depends on the transmitted

bits. The neighborhood type � is de�ned by the binary symbols that in
uence the mes-

sage at the end (top) of the message 
ow neighborhood. We simply index the types

by the binary symbols in the neighborhood (with an appropriate, say lexicographic, or-

dering). For example, the message 
ow neighborhood of depth ` in Figure 9 is of type

� = [0101; � � � ; 1111; � � � ; 0000; 1110; � � � ; 1001]T. There are as many possible types of mes-

sage 
ow neighborhoods of depth ` as there are possible �llings of binary digits in Figure 9.

One can verify that for a regular Gallager code there are exactly 2N(`) possible types of
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message 
ow neighborhoods of depth `, where

N(`) = (2W + I + 1) �
(R� 1)`(2WL+ L� 1)` � 1

(R� 1)(2WL+ L� 1)� 1
: (12)

We index these neighborhoods as �i 2 f0; 1g
N(`), where 1 � i � 2N(`).

A tree-like neighborhood, or simply a tree of depth ` is a message 
ow neighborhood of

depth ` in which all nodes appear only once. In other words, a tree of depth ` is a message


ow neighborhood that contains no loops. Just like message 
ow neighborhoods, the trees

of depth ` can be of any of the 2N(`) types �i 2 f0; 1g
N(`), where 1 � i � 2N(`).

De�ne s� as the binary symbol corresponding to the message node Ve at the top of the

message 
ow neighborhood of type �. In Figure 8a, the symbol s� can be read as the

symbol directly below the node Ve, i.e., s� = 0. The corresponding value of the symbol

is x� = 1 � 2s� = 1. De�ne �
(`)
� as the probability that the tree of type � and depth `

delivers an incorrect message, i.e.,

�� = Pr
�
v(`+1)e � x� < 0 j tree type �

�
(13)

The probability in (13) is taken over all possible outcomes of the channel outputs when �

is the tree type, i.e., when the binary symbols that de�ne � are transmitted.

We de�ne the probability Pr (�js) as the probability that a message 
ow neighborhood

(of a random edge) is of type � when the transmitted n-long sequence is s and the code

graph is chosen uniformly at random from all possible graphs with degree polynomials

�(x) and �(x), i.e.,

Pr (�js) = Pr (neighborhood type = � j transmitted sequence = s) : (14)

Note that the probability de�ned in (14) does not depend on the coset r; also note that

there always exists a vector r such that for any chosen parity check matrix H the vector

s is a codeword of the coset code speci�ed by H and r.

Next, de�ne the error concentration probability when s is the transmitted sequence as

p(`)(s) =
2N(`)X
i=1

�
(`)
�i
Pr (�ijs) : (15)
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De�ne the i.i.d. error concentration probability p
(`)
i:i:d: as the error concentration probability

when all possible 2N(`) neighborhood types �i, 1 � i � 2N(`), are equally probable

p
(`)
i:i:d: =

2N(`)X
i=1

�
(`)
�i
2�N(`): (16)

In the next subsection, we prove that for most graphs, if s is the transmitted codeword,

then the probability of a variable-to-check message being erroneous after ` rounds of the

message-passing decoding algorithm is highly concentrated around the value p(`)(s). Also,

we prove that if the transmitted sequence is i.i.d., then the probability of a variable-to-

check message being erroneous after ` rounds of the message-passing decoding algorithm

is highly concentrated around the value p
(`)
i:i:d:. To do that we need the following result

from [20]. De�ne Pt as the probability that a neighborhood of depth ` is not a tree when a

code graph is chosen uniformly at random from all possible graphs with degree polynomials

�(x) and �(x). In [20] it is shown that

Pt = Pr (neighborhood not a tree) �



n
; (17)

where 
 is a constant independent of n.4

B. Concentration theorems

Theorem 1: Let s be the transmitted codeword. Let Z(`) (s) be the random variable that

denotes the number of erroneous messages after ` rounds of the message-passing decoding

algorithm when the code graph is chosen uniformly at random from the ensemble of graphs

with degree polynomials �(x) and �(x). Let ne be the number of variable-to-check edges

in the graph. For an arbitrarily small constant " > 0, there exists a positive number �,

such that if n > 2

"
, then

Pr

�����Z(s)ne
� p(`)s

���� � "

�
� e��"

2n: (18)

4Actually, in [20] this fact is shown for a bipartite graph, but the extension to joint code/channel graphs of

Figure 3 is straight-forward.
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Proof: The proof follows closely the proof of the concentration theorem for

memoryless channels presented in [20]. First note that

Pr

�����Z(`)(s)

ne
� p(`)(s)

���� � "

�
�

Pr

 �����Z
(`)(s)

ne
�

E
�
Z(`)(s)

�
ne

����� � "

2

!
+ Pr

 �����E
�
Z(`)(s)

�
ne

� p(`)(s)

����� � "

2

!
: (19)

The random variable Z(`)(s) depends on the deterministic sequence s and its probability

space is the union of the ensemble of graphs with degree polynomials �(x), �(x) and the

ensemble of channel noise realizations (which uniquely de�ne the channel outputs since s

is known). Following [20], we form a Doob edge-and-noise-revealing martingale and apply

Azuma's inequality [37] to get

Pr

 �����Z
(`)(s)

ne
�

E
�
Z(`)(s)

�
ne

����� � "

2

!
� 2e��"

2n; (20)

where � depends only on �(x), �(x) and `.

Next, we show that the second term on the right-hand side of (19) equals to 0, by using

the result in (17). Again, this is adopted from [20], but adapted to a channel with ISI

memory. We have

E
�
Z(`)(s)

�
� ne(1� Pt)

2N(`)X
i=1

�
(`)
�i
Pr (�ijs) + ne




n

� ne

2N(`)X
i=1

�
(`)
�i
Pr (�ijs) + ne




n

� nep
(`)(s) + ne




n
(21)

and

E
�
Z(`)(s)

�
� ne(1� Pt)

2N(`)X
i=1

�
(`)
�i
Pr (�ijs)

� ne

2N(`)X
i=1

�
(`)
�i
Pr
�
�ijs
�
� nePt

2N(`)X
i=1

Pr (�ijs)

� nep
(`)(s)� ne




n
: (22)
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Combining (21) and (22), if n > 2

"
, we get

Pr

 �����E
�
Z(`)(s)

�
ne

� p(`)(s)

����� � "

2

!
= 0: (23)

Theorem 2: Let S be a random sequence of i.i.d. equally likely binary random variables

(symbols) S1; S2; : : : ; Sn. Let Z(`) (S) be the random variable that denotes the number

of erroneous messages after ` rounds of the message-passing decoding algorithm when

the code graph is chosen uniformly at random from the ensemble of graphs with degree

polynomials �(x) and �(x), and when the transmitted sequence is S. Let ne be the number

of variable-to-check edges in the graph. For an arbitrarily small constant " > 0, there exists

a positive number � 0, such that if n > 2

"
, then

Pr

�����Z(S)ne
� p

(`)
i:i:d:

���� � "

�
� 4e��

0"2n: (24)

Proof: Using Theorem 1, we have the following

Pr

�����Z(`)(S)

ne
� p

(`)
i:i:d:

���� � "

�
=

2nX
j=1

2�nPr

 �����Z
(`)(sj)

ne
� p

(`)
i:i:d:

����� � "

!

�
2nX
j=1

2�nPr

 �����Z
(`)(sj)

ne
� p(`)(sj)

����� � "

2

!

+
2nX
j=1

2�nPr
����p(`)(sj)� p

(`)
i:i:d:

��� � "

2

�

�
2nX
j=1

2�n � 2e��"
2n=4 + Pr

����p(`)(S)� p
(`)
i:i:d:

��� � "

2

�

= 2e��"
2n=4 + Pr

����p(`)(S)� p
(`)
i:i:d:

��� � "

2

�
: (25)

Next, recognize that if S is an i.i.d. random sequence, all neighborhood types are equally

probable, i.e., Pr (�ijS) = 2�N(`). Using this, we prove that E
�
p(`)(S)

�
= p

(`)
i:i:d:,

E
�
p(`)(S)

�
=

2nX
j=1

2�np(`)(sj) =
2nX
j=1

2�n
2N(`)X
i=1

�
(`)
�i
Pr
�
�ijsj

�

=
2N(`)X
i=1

�
(`)
�i

2nX
j=1

2�nPr
�
�ijsj

�
=

2N(`)X
i=1

�
(`)
�i
Pr (�ijS) =

2N(`)X
i=1

�
(`)
�i
2�N(`) = p

(`)
i:i:d::
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Now form a Doob symbol-revealing martingale sequence M0;M1; : : : ;Mn

Mt = E
�
p(`)(S) j S1; S2; : : : ; St

�
M0 = E

�
p(`)(S)

�
= p(`)i:i:d:

Mn = E
�
p(`)(S) j S

�
= p(`)(S):

If we can show that

jMt+1 �Mtj �
Æ

n
; (26)

where Æ is a constant dependent on �(x), �(x) and ` (but not dependent on n) then if we

apply Azuma's inequality [37], we will have

Pr
����p(`)(S)� p

(`)
i:i:d:

��� � "

2

�
� 2e�(8Æ

2)
�1

"2n: (27)

Then, by combining (27) and (25), for � 0 = min
�
�
4
; 1
8Æ2

�
, we will get (24). So, all that

needs to be shown is (26).

Consider two random variables p(`)(Ŝ) and p(`)( ~S). The random vectors Ŝ and ~S have

the following properties: 1) the �rst t symbols of Ŝ and ~S are deterministic and equal

Ŝ
t

1 = ~S
t

1 = st1; 2) The (t+1)-th symbol of Ŝ is the random variable St, while the (t+1)-th

symbol of ~S is �xed (non-random) ~St+1 = st+1; 3) the remaining symbols Ŝ
n

t+2 and ~S
n

t+2

are i.i.d. binary random vectors. Fixing the (t + 1)-th symbol ~St+1 = st+1 can a�ect at

most a constant number (call this number �) of message-
ow neighborhoods of depth `.

The constant � depends on �(x), �(x) and `, but it does not depend on n. Therefore, for

any given neighborhood type �i, we have���Pr��ijŜ�� Pr
�
�ij ~S

���� � �

ne
: (28)

Using the notation �0(1) = @�(x)
@x

���
x=1

, we can verify that ne = [�0(1) + 1]n. De�ning

Æ = 2N(`)��
�0(1)+1

, and using (28), we get

���p(`)(Ŝ)� p(`)( ~S)
��� �

2N(`)X
i=1

���Pr��ijŜ�� Pr
�
�ij ~S

����
� 2N(`) �

ne
=

Æ

n
: (29)
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Inequality (26) follows from (29).

Corollary 2.1: Letm be an information block chosen uniformly at random from 2k = 2rn

binary sequences of length k. Let C (H; r) be a code chosen uniformly at random from the

ensemble Cn (�(x); �(x)) of Gallager coset codes. Let Z
(`) be a random variable representing

the number of erroneous variable-to-check messages in round ` of the message-passing

decoding algorithm on the joint channel/code of the code C (H; r). Then

Pr

�����Z(`)

ne
� p

(`)
i:i:d:

���� � "

�
� 4e��

0"2n: (30)

Proof: If m, H and r are all chosen uniformly at random, then the resulting

codeword in (6) is an i.i.d. random sequence of equally likely binary random symbols, and

Theorem 2 applies directly.

C. \Zero-error" threshold

The term \zero-error" threshold is a slight abuse because the decoding error can never

be made equal to zero, but the concentration probability can be equal to zero in the limit

as `!1, and hence the probability of decoding error can be made arbitrarily small. As

in [20], the \zero-error" noise standard deviation threshold �� is de�ned as

�� = sup �; (31)

where the supremum in (31) is taken over all noise standard deviations � for which

lim
`!1

p
(`)
i:i:d: = 0: (32)

Corollary 2.2: Letm be an information block chosen uniformly at random from 2k = 2rn

binary sequences of length k. There exists a code C (H; r) in the ensemble Cn (�(x); �(x))

of Gallager coset codes, such that for any � < �� the probability of error can be made

arbitrarily low, i.e., if Z(`) is the number of erroneous variable-to-check messages in round `

of the message-passing decoding algorithm on the joint channel/code of the code C (H; r),

then

Pr

�
Z(`)

ne
� 2" j C (H; r)

�
� 4e��

0"2n: (33)
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Proof: De�ne an indicator random variable

I
�
Z(`)

�
=

8<
: 1 if

���Z(`)

ne
� p(`)i:i:d:

��� � "

0 otherwise
(34)

From Corollary 2.1, for H, r and m chosen uniformly at random we have E
�
I
�
Z(`)

��
�

4e��
0"2n. Since the expected value is lower than 4e��

0"2n, we conclude that there must exist

at least one graph H and one coset-de�ning vector r such that for m chosen uniformly

at random we have E
�
I
�
Z(`)

�
j C(H; r)

�
� 4e��

0"2n, i.e., there exists a graph H and a

coset-de�ning vector r such that for m chosen uniformly at random

Pr

�����Z(`)

ne
� p

(`)
i:i:d:

���� � " j C (H; r)

�
� 4e��

0"2n: (35)

The assumption � < �� guarantees lim
`!1

p
(`)
i:i:d: = 0. Since lim

`!1
p
(`)
i:i:d: = 0, it follows that for

every " > 0, there exists an integer `(") such that for every ` � `(") we have p
(`)
i:i:d: � ".

Then for ` � `("), we have

Pr

�
Z(`)

ne
� 2"

�
� Pr

�����Z(`)

ne
� p

(`)
i:i:d:

���� � "

�
: (36)

The desired result (33) follows by combining (35) and (36).

IV. Density Evolution and Threshold Computation

A. Density evolution

De�ne f
(`+1)
V j� (�j�) as the probability density function (pdf) of the message v

(`+1)
e obtained

at the top of a depth-` tree of type �, see Figure 8. With this notation, we may express
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the i.i.d. error concentration probability as

p
(`)
i:i:d: =

2N(`)X
i=1

2�N(`)�
(`)
�i

=
2N(`)X
i=1

2�N(`)

0Z
�1

f (`+1)V j�i (�j�i) � x�i � d�

=

0Z
�1

2
42N(`)X

i=1

2�N(`)f
(`+1)
V j�i (�j�i) � x�i

3
5 d�

=

0Z
�1

f
(`+1)
V (�)d�: (37)

Here, f
(`+1)
V (�) is the average probability density function (averaged over all tree types) of

the correct message from a variable node to a check node in round ` of the message-passing

algorithm on a tree. We can obtain the pdf f
(`+1)
V (�) in several di�erent ways. Here we

perform the averaging in every round and enter a new round with an average pdf from the

previous round, i.e., we evolve f
(`)
V (�) into f

(`+1)
V (�). This method is used in [9] for discrete

messages and in [20] for continuous messages, where it was termed density evolution.

Denote by f
(`)
O (�) the average density (pdf) of a message O(`)t in the `-th round of the

message-passing algorithm (averaged over all tree types), see Figure 5. Let f
(`)
U (�) denote

the average pdf of a message u
(`)
m in the `-th round of the message-passing algorithm on a

tree. Then the average density (pdf) f
(`+1)
V (�) is given by

f
(`+1)
V (�) = f

(`)
O (�)


"
LmaxX
i=1

�i

 
i�1O
k=1

f
(`)
U (�)

!#
; (38)

where 
 stands for the convolution operation, and
i�1N
k=1

denotes the convolution of i � 1

pdf's. For short notation, we use the following

�
�
f
(`)
U (�)

�
=

LmaxX
i=1

�i

 
i�1O
k=1

f
(`)
U (�)

!
: (39)

We also drop the function argument � since it is common for all convolved pdf's. Then (38)

may be conveniently expressed as

f
(`+1)
V = f

(`)
O 
 �

�
f
(`)
U

�
: (40)
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Equation (40) denotes the evolution of the average density (pdf) through a variable node,

Figure 5.

To express the density evolution through a check node (Figure 6), we require a variable

change, resulting in a cumbersome change of measure. A convolution can then be de�ned

in the new domain and an expression can be found for the density evolution through check

nodes [20]. Here we do not pursue this rather complicated procedure because a numerical

method for density evolution through check nodes can easily be obtained through a table-

lookup, for details see [22]. Here we simply denote this density evolution as

f
(`+1)
U =

RmaxX
i=1

�iE
i�1
c

�
f
(`+1)
V

�
; (41)

where E i�1c

�
f
(`+1)
V

�
is symbolic notation for the average message density obtained by

evolving the density f
(`+1)
V (�) through a check node of degree i. We further express equa-

tion (41) by the following notation

f
(`+1)
U = �

h
Ec
�
f
(`+1)
V

�i
: (42)

Similar to equation (40), the average density (pdf) of messages e
(`+1)
t (Figure 7) is obtained

using the convolution operator

f (`+1)E = f (`+1)U 
 �
�
f (`+1)U

�
: (43)

The step that is needed to close the loop of a single density evolution round is the evolution

of the average density f
(`+1)
E into the average density f

(`+1)
O , i.e., the evolution of message

densities through the trellis portion of the joint code/channel graph. We denote this step

as

f
(`+1)
O = Et

�
f
(`+1)
E ; fN

�
; (44)

where Et is symbolic notation for trellis evolution and fN denotes the pdf of the channel

noise (in this case a zero-mean Gaussian with variance �2). Even though no closed form

solution for (44) is known, it can be calculated numerically.
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The density evolution is now given by

� Initialization

1. fN(�) =
1p
2��2

e�
�2

2�2 .

2. set f
(0)
V (�) = Æ(�) (where Æ is the Dirac function).

� For ` = 0 to `max � 1

1. f
(`)
U = �

h
Ec

�
f
(`)
V

�i
2. f

(`)
E = f

(`)
U 
 �

�
f
(`)
U

�
.

3. f
(`)
O = Et

�
f
(`)
E ; fN

�
.

4. f
(`+1)
V = f

(`)
O 
 �

�
f
(`)
U

�
.

� Compute

1. p
(`)
i:i:d: =

0R
�1

f
(`+1)
V (�)d�.

B. Threshold computation

With the density evolution algorithm described in the previous subsection, the zero-

error threshold �� can be evaluated (up to the numerical accuracy of the computation

machine) as the maximal value of the noise variance � for which p
(`)
i:i:d: < �, where � is the

numerical accuracy tolerance.

With a �nite-precision machine, we must quantize the messages, resulting in a dis-

crete probability mass function. For a suÆciently large number of quantization levels, the

discrete probability mass functions are good approximations of continuous density func-

tions (pdf's) f
(`)
U , f

(`)
E , f

(`)
O and f

(`)
V . In the for-loop of the density evolution algorithm

in Subsection IV-A, steps 2. and 4. are straight-forward convolutions (easily implemented

numerically using the fast Fourier transform [38]). Step 1. of the for-loop can easily be

implemented using a table-lookup as explained in [22], or using a rather cumbersome

change of measure explained in [20]. Actually, only step 3. of the for-loop needs further

explanation. Since no closed-form solution is known for evolving densities through trellis

sections, we employ a Monte Carlo approach to obtain a histogram that closely approxi-

mates f
(`)
O . This has �rst been suggested in [21] for trellises of constituent convolutional

codes of turbo codes. In [21], Richardson and Urbanke run the BCJR (forward-backward)

February 22, 2001 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 124

algorithm on a long trellis section when the input is the all-zero sequence. Here, since the

channel has memory, the transmitted sequence must be a randomly chosen i.i.d. binary

sequence of equally likely symbols. The length n of the sequence must be very long so

that we can ignore the trellis boundary e�ects. For each binary symbol xt we compute the

trellis-output information O(`)t according to the BCJR algorithm. We then equate f
(`)
O to

the histogram of the values O(`)t � xt, where K � t � n�K, and K is chosen large enough

to avoid the trellis boundary e�ects. In [21] this technique is accelerated by forcing the

consistency condition on the histogram. In ISI channels, however, consistency generally

does not hold, so we must use a larger trellis section in the Monte Carlo simulation.

V. Achievable rates of Gallager codes

A. Achievable rates of binary linear codes over ISI channels

In section II, we pointed out that Ci:i:d: is the limitation of the average mutual informa-

tion betweenXn
1 and Y

n
1 whenX

n
1 is an i.i.d. sequence with Pr (Xt = �1) = Pr (Xt = +1) =

1
2
. Since the input process, the channel and hence the output process and the joint input-

output process are all stationary and ergodic, one can adopt the standard random coding

technique [1] to prove a coding theorem to assure that all rates r < Ci:i:d: are achievable

(for the de�nition of achievable, see [2], p. 194). We use the expression \standard random

coding technique" to describe a method to generate the code book, where codewords are

chosen independently at random and the coded symbols are governed by the optimal input

distribution. For a generic �nite-state channel, see [1] Section 5.9 or [39] for a detailed

description of the problem and the the proof of the coding theorem. For the channel in (1)

with binary inputs, we present a somewhat stronger result involving linear codes.5

5Here we use a di�erent (what also appear to be a simpler) proof methodology. However, the proof only applies

to �nite-state channels for which we can guarantee that we can achieve any state with a �nite number of channel

inputs (e.g., ISI channels with �nite ISI memory), not for a general �nite-state channel.
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Theorem 3: Every rate r < Ci:i:d: is achievable; furthermore, the rate r can be achieved

by linear block codes or their coset codes.

Proof: From [5], Ci:i:d: = sup
�

1
�
I (X�

1;Y
�
1) = sup

�

1
�
I
�
X�

1;Y
�
1jq0

�
, where the second

equality follows from the fact that the channel in (1) can be driven into any known state

q
0
, with at most I inputs (where I is the intersymbol interference length)6. For any � > 0,

there exists a positive integer N such that I
N
< � and r < 1

N
I
�
XN

1 ;Y
N
1 jq0

�
< Ci:i:d:, where

the starting state q
0
is a known vector of I binary values, say q

0
= [+1;+1; : : : ;+1]T.

Now we consider the following transmission scheme. We transmit a binary vector X,

where before every block of N symbols we transmit the known sequence q
0
, i.e.,

X =

2
666666664

X1

X2

...

Xn(N+I)�1

Xn(N+I)

3
777777775
=

2
666666666666664

q
0

X1

q
0

X2

...

q
0

Xn

3
777777777777775

: (45)

Clearly, from (45), for any 1 � t � n, we have q
0
= X

(t�1)(N+I)+I
(t�1)(N+I)+1 andX t = X

t(N+I)
(t�1)(N+I)+I+1.

The symbols of the vector X are transmitted over the channel in (1) to obtain a vector Y

at the channel output. Similar to the vector X in (45), we partition the vector Y as

Y =

2
666666664

Y1

Y2
...

Yn(N+I)�1

Yn(N+I)

3
777777775
=

2
666666666666664



1

Y 1



2

Y 2

...



n

Y n

3
777777777777775

;

where for any any 1 � t � n, we have 

t
= Y

(t�1)(N+I)+I
(t�1)(N+I)+1 and Y t = Y

t(N+I)
(t�1)(N+I)+I+1.

6Also, from [5], p. IV-7, footnote 1, we have I (X�
1 ; Y

�
1) = I

�
X�

1 ;Y
�
1 jq

0

�
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Clearly we have a memoryless vector-channel as follows

Input: X t whose realization is a binary vector xt 2 f+1;�1g
N .

Output: Y t whose realization is real vector y
t
2 RN .

The probability law of the vector-channel is de�ned by the following conditional pdf

fq
0

�
y
t
jxt

�
= fY tjXt;Q0

�
y
t
jxt; q0

�
since the known sequence q

0
is transmitted before ev-

ery vector Xt. This channel transition probability law is well-de�ned [1], [39], hence

I
�
X t;Y tjq0

�
is also well-de�ned. Note that the pdf fq

0
(�j�) is not dependent on t, which

makes it possible to factor the joint pdf as

fY 1;Y 2;::: ;Y njX
�
y
1
; y

2
; : : : ; y

n
j x
�

=
nY
t=1

fY tjXt;Q0

�
y
t
j xt; q0

�

=
nY
t=1

fq
0

�
y
t
j xt

�
;

showing that the vector-channel is indeed memoryless. Further, quantize the output vector

Y t to get a quantized vector ~Y t = Quant (Y t). Due to [1], chapter 7, we can always �nd a

quantizer to get a discrete channel such that the corresponding average mutual information

1
N
I
�
X t; ~Y tjq0

�
is greater than the given rate r. Since � is arbitrarily small, we can choose

integers n and k such that

r <
kN

n(N + I)
<

k

n
<

1

N
I
�
X t; ~Y tjq0

�
<

1

N
I
�
X t;Y tjq0

�
< Ci:i:d::

Similar to the proof of theorem 8.7.1, [2], p. 198, we can prove that k=n is achievable for the

obtained discrete memoryless channel. The reader should note that the random code we

generated has
�
2N
�k

codewords, which are statistically independent. The coded symbols

are i.i.d., each with probability 2�N . Every codeword consists of n vector-symbols from

f+1;�1gN , say (X1; X2; : : : ; Xn). The transmitted block is
�
q
0
; X1; q0; X2; : : : ; q0; Xn

�
with length n(N + I). So, the real code rate is kN

n(N+I)
. The received sequence also has the

same block length. However, from the proof of theorem 8.7.1 in [2], p. 198, the decoding

error probability can be made arbitrarily small even if we only use the typical-set decoding

with respect to X t and ~Y t, which is not the full received sequence.

To prove the second part of this theorem, we should note that the error probability

bound only depends on the statistical properties of the random code book, and that we
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can generate a code book with uniform i.i.d. codewords using the random linear block

code according to theorem 6.2.1 in [1], p.206.

For binary ISI channels, de�ne the capacity Cblc as the supremum of rates r achievable

by binary linear codes under any decoding algorithm. A consequence of Theorem 3 is

Ci:i:d: � Cblc � C: (46)

Formulating the exact relationship between Cblc, Ci:i:d: and C is still an open problem

since to the best of our knowledge neither the literature nor the theorems presented in

this paper answer this question. For example, it is our belief that the strict inequality

Cblc < C must hold because binary linear codes cannot achieve spectral shaping required

to match the spectral nulls of the code to the spectral nulls of the channel, see [40] for

matched spectral null codes. Also, it is not clear whether Ci:i:d: = Cblc holds because we

do not have a proof of the converse of Theorem 3.

We conjecture that Ci:i:d: = Cblc. That is, we conjecture that the converse of Theorem 3

holds, i.e., rates higher than Ci:i:d: cannot be achieved by binary linear codes. We do not

have a proof of this statement. However, we have the proof of a somewhat weaker statement

involving speci�cally Gallager codes and the sum-product decoder. We can show that the

thresholds for Gallager codes (i.e. linear codes) when using the sum-product algorithm,

computed by density evolution with i.i.d. inputs, represent lower bounds on Ci:i:d:.

Proposition 1: Let r be the rate of a Gallager code and let �� be the threshold computed

by density evolution using i.i.d. inputs. Then r � Ci:i:d:, where Ci:i:d: is the i.i.d. capacity

when the noise standard deviation equals � = ��.

Proof: According to the concentration theorem, the average probability of error

(averaged over all random choices of the graph, the coset vector r and the information

bearing vectors m) can be made arbitrarily small if � < ��. That means that there exists

at least one graph that achieves an arbitrarily small average probability of decoding error

(averaged over all random choices of the coset vector r and the information bearing vector

m). Pick the parity check matrix H corresponding to this graph as our code matrix. We

design the following transmission scheme. The messagesm are chosen uniformly at random

and the coset vectors r are chosen also uniformly at random. The resulting transmitted
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sequence is i.i.d. with probability of each symbol 0.5. If the transmitted sequence is i.i.d.,

we cannot �nd a code with rate higher than Ci:i:d: such that the decoding error is arbitrarily

small. But since the decoding error (averaged over all messages m and all cosets r) for

the sum-product decoder of Gallager codes can be made arbitrarily small for � < ��, we

conclude that the code rate r must be smaller than the value for Ci:i:d: evaluated at � < ��.

Therefore r � sup
�<��

Ci:i:d:(�) = Ci:i:d:(�
�).

B. Thresholds for Regular Gallager codes as lower bounds on Ci:i:d:

Due to the two proofs presented in the previous subsection, it follows that the curve

rate (r) vs. threshold (��) for a Gallager code over a binary ISI channel is upper bounded by

the curve Ci:i:d: vs. �. Thus, we have a practical method for numerically lower-bounding

Ci:i:d:. Furthermore, by virtue of specifying the degree polynomials �(x) and �(x), we

also characterize a code that can achieve this lower bound. This is a bounding method

that is di�erent from the closed-form bounds [6], [7] or Monte-Carlo bounds [5] proposed

in the past where no bound-achieving characterization of the code is possible (except

through random coding techniques which are impractical for implementations). Further,

we compare the thresholds obtained by density evolution to the value Ci:i:d: computed by

the Arnold-Loeliger method [8], showing that the thresholds are very close to Ci:i:d: in the

high-code-rate regions (0:7 � r � 1:0). This is exactly the region of practical importance

in storage devices where high-rate codes for binary ISI channels are a necessity [3]. The

codes studied in this paper do not provide tight bounds in the low-rate region, but we

believe that the threshold bounds can be tightened by optimizing the degree polynomials

�(x) and �(x).

In this paper we present thresholds only for regular Gallager codes7 in the family (L;R),

where L = 3 and R is allowed to vary in order to get a variable code rate r = R�3
R

. This

family of codes provides a curve r vs. threshold that is very close to Ci:i:d: for high code

rates, but not for low code rates. To get tighter bounds in the low information rate

7Thresholds for irregular Gallager codes can also be obtained via density evolution.
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code check-node code rate threshold threshold SNR� [dB]

(L;R) degree R r = R�3
R

�� SNR� = 20 log10
1
��

(3,3) 3 0.000 2.042 -6.201

(3,4) 4 0.250 1.196 -1.554

(3,5) 5 0.400 0.945 0.492

(3,6) 6 0.500 0.822 1.703

(3,8) 8 0.625 0.697 3.136

(3,10) 10 0.700 0.631 4.000

(3,15) 15 0.800 0.547 5.241

(3,30) 30 0.900 0.459 6.764

(3,60) 60 0.950 0.404 7.873

(3,150) 150 0.980 0.355 8.996

TABLE I

Thresholds for regular Gallager codes (L = 3); channel h(D) = 1p
2
� 1p

2
D.

regime, we would have to revert to irregular Gallager codes [9], [10]. Table I tabulates the

codes and their respective thresholds for the ISI channel h(D) = 1p
2
� 1p

2
D with additive

Gaussian noise (this channel was chosen for easy comparison to some previously published

bounds [5], [6], [7]). The density evolution bounds (r vs. SNR�) are plotted in Figure 10.

For comparison, the i.i.d. capacity computed by the Arnold-Loeliger method [8] is also

plotted in Figure 10.

In [7] Shamai and Laroia introduce a curve for which they conjecture that it may be

a lower bound on Ci:i:d: (dash-dotted line in Figure 10). Although the curve is only a

conjecture, it is a very useful quick way to estimate Ci:i:d: because it involves evaluating a

one-dimensional integral, and also it seems to be a relatively accurate estimate of Ci:i:d: as

veri�ed in [8]. For this reason, we compare the thresholds computed by density evolution

to both Ci:i:d: and to the Shamai-Laroia conjecture.

Figure 11 indicates the position of the threshold SNR� for two regular Gallager codes

(the (3; 6) code of rate r = 0:5 and the (3; 30) code of rate r = 0:9) along with the SNR
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Fig. 10. The i.i.d. capacity Ci:i:d: and thresholds for regular Gallager codes with message node degree

L = 3.
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Fig. 11. Comparison of bit error simulation results for �nite-block-length Gallager codes of rates r = 0:5

and r = 0:9 to Ci:i:d: and to the density evolution thresholds and to the Shamai-Laroia conjectured

bound.

values for the Shamai-Laroia conjecture at these rates and the best known value for Ci:i:d:

computed by the Arnold-Loeliger method [8]. Also shown in Figure 11 are the SNR values

for which simulated Gallager codes of lengths n 2 f104; 105; 106g achieved bit error rates of

10�5. First, observe that the thresholds accurately predict the limit of code performance

as the block length n becomes very large. Next, observe that for the code (3; 30) of rate

r = 0:9, the threshold is tight (tighter than the Shamai-Laroia conjecture), establishing

that regular Gallager codes are relatively good codes for high rates. For the code (3; 6)
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of rate r = 0:5, the threshold is far away from the SNR values corresponding to Ci:i:d:

and the Shamai-Laroia conjecture, respectively, suggesting that good Gallager codes in

the low-rate regime should be sought among irregular codes [9].

C. The BCJR-once bound

Due to the high computational complexity of the BCJR (forward-backward) algorithm,

several authors suggest applying the BCJR step only once [29], [41] and subsequently

iterating the message-passing decoding algorithm only within the code subgraph of the

joint channel/code graph (see Figure 3). Clearly, this strategy is suboptimal to fully

iterating between the channel and the code subgraphs of the joint channel/code graph,

but does provide substantial computational savings, which is of particular importance for

on-chip implementations. The question that remains is how much does one lose in terms

of achievable information rate when this strategy is applied. We develop next what we

call the BCJR-once bound CBCJR�once which answers this question.

Let xn1 be a realization of a random channel input sequence Xn
1 . Let y

n
1
be a realization

of the channel output sequence Y n
1 . Let Ot = O(0)t be the message passed from the t-th

trellis node to the variable node in the �rst round of the sum-product algorithm (i.e., it is

the output of the BJCR algorithm applied once in the �rst iteration of decoding). Denote

the vector of realizations O1; :::; On by On1 , which is a realization of a random vector On
1 .

We assume that the input sequence is i.i.d., and de�ne the BCJR-once bound as

CBCJR�once = lim
n!1

1

n
sup

Pr(Xn
1=x

n
1 )=

nQ

t=1
Pr(X=xt)

nX
t=1

I (Xt;Ot) : (47)

For the channel in (1) with binary inputs, due to the channel symmetry, the supremum

in (47) is achieved when Pr (X = 1) = 1
2
.

Two straight-forward properties can be established for the BCJR-once bound.

Property 1: CBCJR�once = lim
n!1

1
n

sup

Pr(Xn
1=x

n
1 )=

nQ

t=1
Pr(X=xt)

nP
t=1

I (Xt;Y
n
1 ).

Proof: The BCJR algorithm computes Ot = ln
Pr(Xt=1jY n

1=y
n
1 )

1�Pr(Xt=1jY n
1=y

n
1 )
. So, Ot is a suÆcient

statistic for determiningXt from Y n
1 . Therefore (see e.g. [2], p. 37), I (Xt;Y

n
1 ) = I (Xt;Ot).
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Property 2: CBCJR�once � Ci:i:d:.

Proof: Let H (Xn
1 jY

n
1 ) denote the conditional entropy of Xn

1 given Y n
1 , and let

H (Xt) denote the entropy of Xt. From the independence bound ([2], p. 28) it follows that

H (Xn
1 jY

n
1 ) �

nP
t=1

H (XtjY
n
1 ). If X

n
1 is a vector of i.i.d. random variables, we have

I (Xn
1 ;Y

n
1) =

nX
t=1

H (Xt)�H (Xn
1 jY

n
1 )

�
nX
t=1

[H (Xt)�H (XtjY
n
1)]

=
nX
t=1

I (Xt;Y
n
1 ) (48)

Using Property 1, the supremum of the right-hand side of (48) is CBCJR�once, in the limit

n!1, and the supremum of the left-hand side is Ci:i:d:.

The BCJR-once bound also has another very important property, which we state very

loosely. Let us consider the inputs Xt and the BCJR-once outputs Ot as a communications

channel. If we disregard the channel memory of the channel Xt ! Ot, then there does not

exist a code of rate r > CBCJR�once for which the decoding error can be made arbitrarily

small. Of course, this statement is not very rigorous unless we use a very precise de�nition

of the phrase \disregard the channel memory", which we will not do here. Instead, in

subsection V-D we give a precise statement involving Gallager codes: we show that the

rate of a Gallager code plotted against the BCJR-once threshold (computed for the same

Gallager code using density-evolution for the BCJR-once sum-product algorithm), must

be lower than CBCJR�once evaluated at the same SNR.

The BCJR-once bound CBCJR�once for the channel in (1) can be computed by i) running

the BJCR algorithm on a very long trellis section, ii) collecting the outputs, iii) quantizing

them, iv) forming a histogram for the symbol-to-symbol transition probabilities, and v)

computing the mutual information of a memoryless channel whose transition probabilities

equal to those computed by the histogram. Another way is to devise a method similar

to the Arnold-Loeliger method for computing Ci:i:d: (see [8]). First, we note that the

bound achieving i.i.d. input distribution is the one with equally likely symbols, yielding

1
n
H (Xn

1 ) = 1. Thus, the problem of computing CBCJR�once reduces to the problem of
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computing

lim
n!1

1

n

nX
t=1

H (XtjY
n
1 ) = lim

n!1
1

n

nX
t=1

E

2
4� X

Xt2f�1;1g
Pr (Xt = xtjY

n
1 ) log2 Pr (Xt = xtjY

n
1 )

3
5

= lim
n!1

1

n

nX
t=1

E [H (Pr (Xt = 1jY n
1 ))] ; (49)

where H(p) is the binary entropy function de�ned as H(p) = �p log2 p�(1�p) log2(1�p).

For a given channel output realization yn
1
, the sum-product (BCJR/Baum-Welch/forward-

backward) algorithm computes Pr
�
Xt = 1jyn

1

�
. So, we can estimate (49) by generating an

n-long i.i.d. input sequence, transmitting it over the channels and running the BCJR algo-

rithm (sum-product algorithm) on the observed channel output yn
1
to get Pr

�
Xt = 1jyn

1

�
for every 1 � t � n. The estimate

1

n

nX
t=1

H
�
Pr
�
Xt = 1jyn

1

��

converges in probability to (49) as n!1.

The BCJR-once bound CBCJR�once (computed in the manner described above for n =

106) is depicted as the dashed curve in Figure 12 (the same �gure also shows three other

curves: 1) the curve for Ci:i:d: as computed by the Arnold-Loeliger method, 2) the thresh-

olds presented in subsection V-B and 3) the BCJR-once thresholds for regular Gallager

codes which are presented next in subsection V-D).

D. BCJR-once thresholds for regular Gallager codes

Just as we performed density evolution for the full sum-product algorithm over the joint

channel/code graph, we do the same for the BCJR-once version of the decoding algorithm.

The only di�erence here is in the shape of the depth-` message 
ow neighborhood, while

the general method remains the same. Denote by ��BCJR�once the noise tolerance threshold

for the BCJR-once sum-product algorithm for a Gallager-code/ISI-channel combination.

The threshold ��BCJR�once can be computed by density evolution on a tree-like message 
ow

neighborhood assuming that the trellis portion of the sum-product algorithm is executed

only in the �rst decoding round.
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Proposition 2: Let r be the rate of a Gallager code and let ��BCJR�once be the BCJR-

once noise tolerance threshold (computed by density evolution using i.i.d. inputs). Then

r � CBCJR�once, where CBCJR�once is the BCJR-once bound evaluated at the noise standard

deviation � = ��BCJR�once.

Proof: The threshold ��BCJR�once is computed using the density evolution method

described in Section IV-A where the trellis evolution step is executed only in the �rst

round. Thus, the threshold ��BCJR�once is computed as the threshold of a Gallager code

of rate r on a memoryless channel, whose channel law (conditional pdf of channel output

given the channel input) is given by

fOtjXt (OtjXt = 1) = lim
W!1

fO[W ]
t jXt

(OtjXt = 1) ;

where O[W ]
t is the output of the windowed BCJR algorithm when the window size is W ,

and clearly, due to the channel symmetry fOtjXt (OtjXt = �1) = fOtjXt (�OtjXt = 1). As

evident from the density averaging in the trellis portion of the density evolution, the func-

tion fO[W ]
t jXt

(OtjXt = 1) is the average conditional pdf of O[W ]
t , taken over all conditional

pdf's of O
[W ]
t conditioned on Xt+W

t�W�I under the constraint Xt = 1, i.e.

fO[W ]
t jXt

�
O[W ]
t jXt = 1

�
= 2�(2W+I) �

X
all xt�Wt�W�I ; xt=1

fO[W ]
t jXt+W

t�W�I

�
OtjXt+W

t�W�I = xt�Wt�W�I
�
:

For this memoryless channel, the channel capacity is C+ = lim
W!1

I
�
Xt;O

[W ]
t

�
. Since

the decoder achieves an arbitrarily small probability of error for all � � ��, due to the

concentration theorem for memoryless channels [20], it follows that r � sup
����BCJR�once

C+(�) =

C+(�BCJR�once). The proof is completed by noticing that C+ = CBCJR�once as de�ned

in (47).

Again, we choose the family of regular Gallager codes with a constant check node degree

L = 3 and a varying variable node degree R. The channel is h(D) = 1p
2
� 1p

2
D with

additive white Gaussian noise. The BCJR-once thresholds are given in Table II, and the

corresponding plot is given in Figure 12. Figure 12 shows the BCJR-once bound derived

in subsection V-C. It can be seen that the regular Gallager codes have the capability to
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code check-node code rate threshold SNR�
BCJR�once [dB] distance

(L;R) degree R r = R�3
R

��BCJR�once 20 log10
�
1=��BCJR�once

�
to �� [dB]

(3,3) 3 0.000 2.001 -6.024 0.177

(3,4) 4 0.250 1.110 -0.906 0.468

(3,5) 5 0.400 0.850 1.412 0.920

(3,6) 6 0.500 0.729 2.746 1.043

(3,8) 8 0.625 0.614 4.237 1.101

(3,10) 10 0.700 0.556 5.099 1.099

(3,15) 15 0.800 0.486 6.268 1.027

(3,30) 30 0.900 0.414 7.661 0.987

(3,60) 60 0.950 0.369 8.660 0.787

(3,150) 150 0.980 0.328 9.683 0.687

TABLE II

BCJR-once thresholds for regular Gallager codes (L = 3); channel h(D) = 1p
2
� 1p

2
D.
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Fig. 12. The BCJR-once bound CBCJR�once and the BCJR-once thresholds for regular Gallager codes with

L = 3 compared to capacity Ci:i:d: and full sum-product thresholds (computed in subsection V-B).
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achieve the BCJR-once bound at high information rates if the BCJR-once version of the

message-passing decoding algorithm is applied. For comparison, Figure 12 also shows the

curve for Ci:i:d: as computed by the Arnold-Loeliger method [8]. It can be seen that the

BCJR-once bound is very close to Ci:i:d: at low SNRs, but is about 1 dB away from Ci:i:d: at

higher information rates. The di�erence between the full sum-product threshold curve and

the BCJR-once threshold curve also seems to be closely approximated by the di�erence

between Ci:i:d: and CBCJR�once. We thus conclude that, say at rate r = 0:9, we can expect

to see a loss of 1 dB if we execute the BCJR algorithm only once at the very beginning

of the sum-product decoding algorithm (as opposed to executing the trellis sum-product

algorithm in every iteration of the decoder).

VI. Conclusion

In this paper we have developed a density evolution method for determining the asymp-

totic performance of Gallager codes over binary ISI channels in the limit n!1, where n

is the block length. We proved two concentration theorems 1) for concentration for a par-

ticular transmitted sequence and 2) for a random transmitted sequence of i.i.d. symbols.

The noise tolerance threshold was de�ned as the supremum of noise standard deviations

for which the probability of decoding error tends to zero as the number of rounds of the

decoding algorithm tends to in�nity. We also established that the code rate r vs. the noise

tolerance threshold establishes a curve that is upper bounded by the i.i.d. capacity of bi-

nary ISI channels. We have computed the thresholds for regular Gallager codes with three

ones per column of the parity check matrix over the dicode channel (h(D) = 1p
2
� 1p

2
D)

and showed that they get very close to the limit of i.i.d. capacity in the high code rate

region. For low code rates, regular Gallager codes do not perform close to the capacity.

A good low-rate code should therefore be sought in the space of irregular Gallager codes.

We also showed via Monte Carlo simulations that codes with increasing code lengths n

approach closely the threshold computed by density evolution.

We also explored the limits of performance of Gallager codes if a slightly more practical

sum-product algorithm is utilized. Since the computational bottleneck in the sum-product

algorithm for ISI channels is the trellis portion of the algorithm, it is computationally
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advantageous to run the trellis portion of the algorithm only once at the beginning of the

�rst decoding iteration, i.e. the \BCJR-once" version of the algorithm. This algorithm

su�ers from a performance loss compared to the full sum-product algorithm. We computed

the maximal achievable rate of the BCJR-once sum-product algorithm and showed that for

the dicode channel (h(D) = 1p
2
� 1p

2
D), the asymptotic performance loss at high rates is

about 1 dB, while for low rates the loss is minimal. Approximately, the same di�erence (at

most 1.1 dB) was observed for the thresholds computed for the full sum-product algorithm

and the BCJR-once version.

We conclude the paper by pointing out some remaining challenges in coding for binary

ISI channels. While the computation of Ci:i:d: is now solved [8], the computation of the

capacity remains a challenge. A method for lower-bounding C by extending the memory

of the source is presented in [8], suggesting that at high rates C and Ci:i:d: are close to each

other (at low rates C and Ci:i:d: di�er substantially). In channels of practical interest, i.e.,

channels with signal-dependent noise [42], due to the signal-dependent nature of the noise

C and Ci:i:d: may not be close to each other even in the high rate region. There is a need

for a practical tool for computing the lower bound on C by optimizing the trellis transition

probabilities of an extended-memory source [8]. Another challenging problem is to move

the performance thresholds of practical codes beyond Ci:i:d:. A viable strategy may be to

somehow combine the bene�cial spectral-shaping characteristics of matched spectral null

codes [40] with Gallager's low density parity check constraints, but it is not clear how

to achieve this and still have a relatively simple encoder/decoder. Even for linear binary

codes (i.e., non-spectral-shaping codes) the optimization of irregular Gallager codes to

achieve Ci:i:d: is also a challenging problem.

Appendix

We brie
y describe the windowed BCJR algorithm mainly for completeness of the text.

Our description uses a compact matrix notation. For a conventional description, we refer

the reader to [25]. The notation in this appendix refers to Figure 4. We start with the

messages e
(`)
t available from the code portion of the graph and yt available from the channel
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output, where 1 � t � n, and n is the codeword length. First set

P
(`)
1;t =

exp
h
e
(`)
t

i
1 + exp

h
e
(`)
t

i
P
(`)
�1;t = 1� P

(`)
1;t :

(50)

Then for every t form a diagonal matrix D
(`)
t of size 2I � 2I , where I is the ISI length of

the channel. Enumerate the states of the �nite state machine with numbers 1 through 2I .

Set the i-th diagonal element of D
(`)
t as

D
(`)
t (i; i) =

8<
: P

(`)
�1;t if i�th state is reached when the channel input at time t is�1:

P (`)
1;t if i�th state is reached when the channel input at time t is 1:

:

Next, for every t form a matrix Tt of size 2
I � 2I , with the entry in the intersection of the

i-th row and j-th column given by

Tt(i; j) =

8>><
>>:

0 if no trellis branch leads from state i to state j:

exp

"
�
(yt � �[i; j])2

2�2

#
otherwise

;

where �[i; j] is the noiseless channel output when the �nite-state machine corresponding

to the ISI channel transitions from state i to state j. Now, for each t form the two vectors

of size 2I � 1

�
(`)
W;t =

�
2�I; 2�I ; � � � ; 2�I

�T
�(`)
W;t

=
�
2�I; 2�I ; � � � ; 2�I

�T
:

For every t, compute

�
(`)
0;t =

�
D

(`)
t�1Tt�1

��
D

(`)
t�2Tt�2

�
� � �
�
D

(`)
t�WTt�W

�
�
(`)
W;t (51)

�(`)
0;t

=
�
D

(`)
t+1Tt+1

�T �
D

(`)
t+2Tt+2

�T
� � �
�
D

(`)
t+WTt+W

�T
�(`)
W;t

: (52)

For each t compute the vector b(`)t as

b
(`)
t = �(`)

0;t
�
�
Tt � �

(`)
0;t

�
; (53)
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where � denotes the Hadamard (i.e., element-wise) product of two vectors. Denote byP
�1

b
(`)
t the sum of the elements of b

(`)
t that correspond to the states that are reached if the

channel input is �1, i.e., the element b
(`)
t (i) is included in the sum if state i is reached

when the channel input is �1. Similarly, denote by
P
1

b
(`)
t the sum of the elements of b

(`)
t

that correspond to the states that are reached if the channel input is 1. Then the message

to the code portion of the graph is computed as

O(`)t = ln

P
1

b(`)tP
�1

b
(`)
t

:

The windowed BCJR algorithm described in this Appendix is not the most economical

method (in terms of memory). Our aim was to give a compact description for completeness

of the text. In practice, to achieve a numerically stable method, the multiplications in (51)

and (52) need to be normalized such that the vector obtained by successive multiplication

from the left all have the property that the sum of their elements equal to 1 [25]. For

other implementations of the windowed BCJR algorithm, see [43], [44], [45].
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