Deriving Performance Bounds for ISI Channels using Gallager Codes

Aleskandar Kavic
Division of Engineering
and Applied Science
Harvard University
33 Oxford Street
Cambridge, MA 02138
kavic@hr1.harvard.edu

Brian Marcus
IBM Almaden R. C.
650 Harry Road
San Jose, CA 95120
marcus@almaden.ibm.com

Michael Mitzenmacher
Division of Engineering
and Applied Science
Harvard University
33 Oxford Street
Cambridge, MA 02138
michaelm@eecs.harvard.edu

Bruce Wilson
IBM Almaden R. C.
650 Harry Road
San Jose, CA 95120
bawilson@almaden.ibm.com

Abstract — We develop density evolution methods for evaluating the performance of Gallager’s low-density parity-check (LDPC) codes over binary intersymbol interference (ISI) channels. In contrast to previous work on memoryless channels, the noise tolerance thresholds for ISI channels depend on the transmitted sequences. The concentration statements are appropriately adjusted to reflect this difference. We compare the thresholds of regular Gallager codes over the 1 – D partial response channel to the i.i.d. information rate, showing that at high code rates, regular Gallager codes are asymptotically optimal.

I. CONCENTRATION AND DENSITY EVOLUTION

We rely on the notation and graph-based framework presented in [1]. Define $p_1^T(q)$ as the probability that a branch from a variable node to a check node carries a wrong message when q is the transmitted sequence. Similarly, define $p_{1,i,d}^T$, as the probability that the branch carries a wrong message when the transmitted sequence consists of independent identically distributed (i.i.d.) binary symbols. We assume that the code graph is chosen uniformly at random from the ensemble of graphs with degree polynomials $\lambda(x)$ and $\rho(x)$ and that the cost is always chosen such that the transmitted sequence is a codeword. Let Z_1^T denote the number of edges carrying wrong messages in the t-th round of decoding, let n_e denote the total number of edges in the graph and let n denote the block length. The following theorems hold for an ISI channel and with additive white Gaussian noise (AWGN). The constant γ in these theorems is independent of n, see [1].

Theorem 1 Let g be the transmitted codeword. For an arbitrary small constant $\varepsilon > 0$, there exists a positive number β independent of ε, such that if $n > \frac{\beta}{\varepsilon}$, then

$$\Pr\left(\frac{Z_{1,i}^T}{n_e} - p_1^T(g) \geq \varepsilon\right) \leq 2e^{-\beta\varepsilon^2n}. \quad (1)$$

Theorem 2 Let a random sequence of i.i.d. equiprobable binary symbols be transmitted. For an arbitrary $\varepsilon > 0$, there exists $\beta > 0$ independent of ε, such that if $n > \frac{\beta}{\varepsilon}$, then

$$\Pr\left(\frac{Z_{1,i}^T}{n_e} - p_{1,i,d}^T \geq \varepsilon\right) \leq 4e^{-\beta\varepsilon^2n}. \quad (2)$$

Define the noise standard deviation threshold σ^* (dependent on the degree polynomials $\lambda(x)$ and $\rho(x)$) as the supremum of standard deviations σ for which $\lim_{t \to \infty} p_{1,i,d}^T = 0$.

Corollary 2.1 Let m be an information block chosen uniformly at random from $2^n = 2^m$ binary sequences of length k. Then exists a cost of a Gallager code with degree polynomials $\lambda(x)$ and $\rho(x)$, such that for any $\sigma < \sigma^*$

$$\Pr\left(\frac{Z_{1,i}^T}{n_e} \geq \varepsilon\right) \leq 4e^{-\beta\varepsilon^2n}. \quad (3)$$

The thresholds are computed by a combination of density evolution methods for variable and check nodes [1] and for trellis sections resembling the Monte Carlo methods for computing thresholds of turbo codes [2].

II. THE DICO DE CHANNEL

We consider a dicode channel $(1 - D)$ with AWGN and regular Gallager codes with variable node degree $L = 3$. Fig. 1 compares the thresholds for the regular Gallager codes to the i.i.d. information rate $C_{i.i.d.}$ (computed by the Arnold-Loeliger method [3]). Regular Gallager codes asymptotically approach the i.i.d rate at high signal-to-noise ratios (SNRs), or equivalently, high-rate regular Gallager codes achieve rates close to $C_{i.i.d.}$.

References