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Abstract

We investigate variations of a novel, recently proposed load balancing
scheme based on small amounts of choice. The static (hashing) setting is
modeled as a balls-and-bins process. The balls are sequentially placed into
bins, with each ball selecting d bins randomly and going to the bin with the
fewest balls. A similar dynamic setting is modeled as a scenario where tasks
arrive as a Poisson process at a bank of FIFO servers and queue at one for
service. Tasks probe a small random sample of servers in the bank and queue
at the server with the fewest tasks.

Recently it has been shown that breaking ties in a �xed, asymmetric fash-
ion, actually improves performance, whereas in all previous analyses, ties were
broken randomly. We demonstrate the nature of this improvement using 
uid
limit models, suggest further improvements, and verify and quantify the im-
provement through simulations.

1 Introduction

In this paper, we study a novel load balancing scheme proposed by V�ocking
[13] using 
uid limit models. We study his scheme both in the static scenario,
which corresponds to a hashing scheme using multiple hash functions and can
be described as distributing a �xed number of balls into a �xed number of
bins, and a natural queueing setting, where tasks arrive at a bank of servers
and queue at one for service.
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To motivate this paper, we �rst provide the relevant history. It is well
known that when n balls are thrown into n bins, the maximum load, or
balls in a bin, is lnn

ln lnn(1 + o(1)) with high probability. Azar, Broder, Karlin,
and Upfal suggested the following variation [1]. Suppose that n balls are
sequentially placed into n bins in the following manner: for each ball, d � 2
bins are chosen independently and uniformly at random from the n bins, and
the ball is placed in the bin with the fewest balls, ties being broken arbitrarily.
Then in this case the maximum load is only ln lnn

ln d ��(1) with high probability.
This implies that two choices yields an \exponential improvement" over one
choice, but three choices is just a small factor better than two. If we model a
hash function by a perfectly random placement function, then this result says
that if we hash items using two hash functions and place the item in the least
loaded bucket, then we can dramatically reduce the maximum load (and hence
the maximum search time) for an item. (Of course the average search time
may increase, since a search requires examining multiple buckets.) We note
that the paper [1] also examined several related problems, including a closed
dynamic model where at each step a random ball is deleted and re-inserted
into the system.

This result was generalized to natural queueing theoretic models indepen-
dently by Vvedenskaya, Dobrushin, and Karpelevich [14] and Mitzenmacher
[9, 10]. (See also the work by Eager, Lazowska, and Zahorjan [2].) The stan-
dard model is as follows. Suppose that tasks arrive at a bank of n First In
First Out processors as a Poisson process of rate �n, where � < 1. (Note the
arrival rate per processor is a �xed constant.) Tasks require an exponentially
distributed amount of service with mean 1. If each task queues at a random
processor, then in the stationary distribution the probability that a server
has at least k tasks is simply �k. If instead each task chooses two processors
at random and queues at the shorter, than in the 
uid limit process repre-
senting the limiting behavior as n grows, the probability that a server has

at least k tasks converges to �
dk�1
d�1 . That is, the tails of the processor queue

lengths decrease doubly exponentially, rather than exponentially, when d > 1.
This naturally leads to exponential gains in the average time in the system;
moreover, the e�ect is clear in simulations even for relatively small values of
n.

In this paper, we consider variations on these schemes, based on the work
by V�ocking [13]. He considered the following variation of the original balls-
and-bins problem: split the n bins into d groups of size n=d. For convenience,
let us think of these groups as being laid out linearly from 1 to n, with the
�rst group (bins 1 to n=d) being thought of being as the leftmost, and so on.
A ball is placed as follows: a bin is chosen independently and uniformly at
random from each of the d groups. A ball is placed into the least loaded of
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d bins, but ties are broken by placing the ball in the leftmost bin. V�ocking
showed that the maximum number of balls in a bin in this case is ln lnn

d ln�d
��(1)

with high probability, where here �d corresponds to the exponent of growth
for a generalized Fibonacci sequence. (We explain this later; for reference,
�2 = 1:61 < �3 < �4 : : : < 2.) Surprisingly, then, coordinating ties in this
manner improves performance! This model is also quite natural for hashing:
when using multiple hash functions, the hash table is split into disjoint blocks,
and each hash function provides a bucket from a speci�c block. These results
also hold for dynamic models where the number of balls in the system is
bounded, and deletions are controlled by an adversary of limited power; see
[13] for more details. To di�erentiate the original multiple-choice scheme from
the one recently presented in [13], we call the prior the d-random scheme and
the latter the d-left scheme.

Here, following the work of [12], we examine the d-left scheme using a

uid limit model, which corresponds to a family of di�erential equations. We
also examine the natural queueing generalization, where balls are tasks and
bins are First In First Out queues. Besides providing natural intuition for the
results in [13], the 
uid limit model provides the correct limiting distributions
for both the balls and bins scenario and the queueing scenario. Also the 
uid
limit models provide insights that lead to further small improvements in the
d-left approach.

2 Balls and bins

We �rst review the 
uid limit model for the d-random scheme by considering
the case d = 2. Let wi(t) be the fraction of the n bins that have load at least
i when tn balls have been thrown. Note w0(t) = 1 always. We will drop the
reference to t where the meaning is clear, using wi in place of wi(t). For i � 1,
the 
uid limit describing the behavior of the wi are

dwi

dt
= w2

i�1 � w2
i : (1)

The intuition is that wi increases when both of the bins chosen have load
at least i � 1 but both do not have load at least i. That these di�erential
equations accurately describe the behavior of the process follows from the
framework established by Kurtz [3, 4, 5]. Here we will just assume that the
intuitive di�erential equations are the proper 
uid limit; further details and
similar results can be found in for example [9, 12, 14].

For the static load balancing problem, we are most interested in the case
of n balls and n bins. For the 
uid limit model, this corresponds to the time
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t = 1. As the wi are increasing, we can bound their behavior using simple
manipulation:

dwi

dt
� (wi�1(t))

2;

wi(1) �

Z 1

0
(wi�1(t))

2dt

�

Z 1

0
(wi�1(1))

2dt

� (wi�1(1))
2

From this, a simple induction yields that the wi decrease doubly exponen-

tially; that is, wi(1) � (w1(1))
2i�1 . This doubly exponential decrease of the

tails is noteworthy, as it is an entirely di�erent behavior than when each ball
has a single random choice.

For general d, the 
uid limit model is given by

dwi

dt
= wd

i�1 � wd
i ; (2)

and we �nd that wi(1) � (w1(1))
di�1 .

We now consider a 
uid limit model for the d-left scheme, again starting
with d = 2. Let yi(t) be the fraction of the n bins that have load at least i and
are in the �rst, leftmost group when nt balls have been thrown. Similarly, let
zi(t) be the fraction of the n bins that have load at least i and are in the second
group on the right when nt balls have been thrown. Note yi(t); zi(t) � 1=2
and y0(t) = z0(t) = 1=2 for all time. If we choose a random bin on the left,
the probability that it has load at least i is yi

1=2 = 2yi. Analogously, if we
choose a random bin on the right, the probability that it has load at least i
is 2zi.

The 
uid limit as n grows to in�nity is given by the following di�erential
equations, where again i � 1:

dyi
dt

= 2 (yi�1 � yi) (2zi�1) ;

dzi
dt

= 2 (zi�1 � zi) (2yi):

That is, for yi to increase, our choice on the left must have load i� 1, and
the choice on the right must have load at least i � 1. For zi to increase, our
choice on the right must have load i� 1, but now the choice on the left must
have load at least i.

It will be somewhat more convenient to generalize to the case of general d
if we write these equations all in terms of a single sequence xi. If we substitute
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x2i for yi and x2i+1 for zi, the equations above nicely simplify to the following
(for i � 2):

dxi
dt

= 2 (xi�2 � xi) (2xi�1)

= 4 (xi�2 � xi) xi�1: (3)

Our results follow from this family of di�erential equations. We �rst
demonstrate, in an admittedly somewhat non-rigorous fashion, how results
similar to those of [13] are easily derived from the previous equations, using
the 
uid limits. Again, we run the system until time t = 1. Then

xi(1) =

Z 1

t=0

dxi
dt

dt

=

Z 1

t=0
4 (xi�2(t)� xi(t)) xi�1(t)dt

�

Z 1

t=0
4xi�2(t)xi�1(t)dt

�

Z 1

t=0
4xi�2(1)xi�1(1)dt

� 4xi�1(1)xi�2(1)

From this recursion we can derive closed form upper bounds in terms of the
Fibonacci numbers. Let Fj represent the Fibonacci sequence, with F (0) = 0,
F (1) = 1, and F (k) = F (k�1)+F (k�2), for k � 2. Then a simple induction
yields that for i � 8,

xi(1) � 4Fi�5�1(x7(1))
Fi�6(x6(1))

Fi�7 :

At time t = 1, the number of bins with load at least 3 is at most n=3. Hence,
x7(1) + x6(1) �

1
3 . As x7(1) � x6(1), this implies that for i � 8

xi(1) � 4Fi�5�16�(Fi�6+Fi�7) =
1

4
�

�
2

3

�Fi�5

:

(Note that this bound can be tightened, in that the fast decrease in the tails
occurs before i = 8; the above is just a simple way to demonstrate how the
tails behave.)

For d � 2, an entirely similar argument applies, except that one must
use generalized Fibonacci numbers. That is, we may de�ne the generalized
Fibonacci number Fd(k) by Fd(k) = 0 for k � 0 and Fd(1) = 1. When k > 1,
Fd(k) =

Pd
i=1 Fd(k � i). For the d-left scheme, we may think of xjd+k as

representing the fraction of the bins that have load at least j in the kth group
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from the left (where the leftmost group is the 0th group from the left). Then
the 
uid limit model yields the following family of di�erential equations:

dxi
dt

= dd (xi�d � xi)
i�1Y

j=i�d+1

xj: (4)

By integrating the above from t = 0 to t = 1, we �nd

xi(1) � dd
i�1Y

j=i�d

xj(1):

From this recursion, we can derive an upper bound in a closed form as
follows. At time t = 1, the number of bins with load at least 3 is at most n=3.
Therefore,

P4d�1
i=3d xi(1) �

1
3 . Under this restriction, and the restriction that

xi(1) � 0 for all i, the values for the x0ks with k � 4d would be maximized
by setting x3d(1) = � � � = x4d�1(1) =

1
3d . (These are of course not the actual

values, but they su�ce for an upper bound.) Hence, for 4d � i � 5d� 1, we
have that

xi(1) � dd
�
1

3d

�d
�

�
1

3

�d

:

Then a simple induction yields that for i � 4d,

xi(1) � (3d)�Fd(i�5d)+1

Let w0i(1) denote the fraction of bins with load at least i in the d-left
system. Then

w0i(1) =
dX

j=0

xdi+j � d(3d)�Fd((i�5)d)+1

Hence for the tails in the d-left, the exponent of the fraction of bins with
load at least i grows like Fd(d � i). We say that the tails in this instance fall
Fibonacci exponentially, as opposed to exponentially or doubly exponentially.

To clarify this behavior, we de�ne �d = limk!1
k
p
Fd(k). For example,

the value �2 corresponds to the golden ratio, �2 = 1:61:::. The �d are an
increasing sequences, satisfying 2(d�1)=d < �d < 2. Hence, that the tails
fall Fibonacci exponentially for the d-left scheme implies that the tails w0i(1)
satisfy

w0i(1) � c�d
id

for a properly chosen c < 1 and su�cently large i. Note that this means the
tails fall in a much faster manner for the d-left scheme than for the d-random
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d = 2 d = 3 d = 4
i wi(1) w

0

i(1) wi(1) w
0

i(1) wi(1) w
0

i(1)

1 7.6e-1 7.7e-1 8.2e-1 8.4e-1 8.6e-1 8.8e-1
2 2.3e-1 2.2e-1 1.8e-1 1.6e-1 1.4e-1 1.2e-1
3 8.9e-3 4.4e-3 5.1e-4 1.1e-5 2.3e-5 7.8e-11
4 6.0e-6 5.2e-8 3.9e-12 4.5e-31 4.0e-21 2.3e-141

Table 1: Results for d-left (w0) vs. d-random (w) in the 
uid limit model.

scheme. (It is worth noting that one can derive similar lower bounds for
the d-left and d-random schemes, so their tail behaviors are really Fibonacci
exponential and doubly exponential, respectively.)

In order to get very exact numerical estimations on the fraction of bins with
a given number of balls after n balls have been thrown into n bins, it su�ces to
simulate equation 3 over 1 unit of time (using su�cient arithmetic precision).
We compare results for the d-left and d-random systems in Table 1, which was
generated from a C program (and checked via a separate Maple program).
Obviously, the d-left scheme has more rapidly decreasing tails, implying that
the maximum load tends to be less in the d-left scheme. From the results
in Table 1 we can conclude that using the 2-random scheme, approximately
six out of one million balls would have height at least four, whereas in the
d-left scheme, only �ve out of one hundred million balls would have height at
least four. Hence one would expect that when one million balls are thrown
into on million bins, the 2-random scheme would have some balls of height
four, whereas using the 2-left scheme this would happen much less often.
Simulations bear out these results. We simulated the process of throwing one
million balls into one millions bin three hundred times (three separate runs
of one hundred simulations). In every case, using the 2-random scheme, the
maximum load was four. Using the 2-left scheme, the maximum load was four
in only twenty of the three hundred runs.

In correspondence to our calculations above (and to the results in [13])
this e�ect becomes more obvious when d is increased. For example, one can
expect that the 4-random scheme produces a maximum load of three when
the number of balls and bins is in the hundreds of thousands, whereas the
4-left scheme does not place more than 2 balls in the same bin with very high
probability unless the number of bins is in the billions!

An interesting variation of the original scheme arises naturally from con-
sidering the di�erential equations. Consider again the speci�c case d = 2.
There is no reason that we necessarily have to break the left and right sides
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i wi(1) w
0

i(1) w
0

i(1)
� = 0:5 � = 0:585

1 0.7616 0.7717 0.7758
2 0.2295 0.2239 0.2201
3 0.0089 0.0045 0.0041
4 6.0e-6 5.2e-8 3.8e-8
5 1.3e-12 1.2e-21 6.1e-22
6 3.2e-26 5.3e-58 8.8e-59

Table 2: Results for 2-left (w0) vs. 2-random (w) in the 
uid limit model.

into equal parts. Although this variation was not considered in [13], it does
not a�ect the asymptotic bounds presented there. With the 
uid limit, we
show this variation can improve performance. Intuitively, the improvement
occurs because breaking ties toward the left also increases the average num-
ber of balls per bin on the left, raising the load on these bins; by skewing
the division, we can keep the structure we obtain from breaking ties regularly
while maintaining a more even load across all bins.

Suppose we split the bins so that the left contains � �n bins, and the right
contains (1 � �) � n bins. Then x0 = �, x1 = 1 � � for all time, and by the
same reasoning as for equation (3),

dxi
dt

=
1

�(1 � �)
(xi�2 � xi)xi�1 (5)

By simulating the di�erential equations to t = 1, we �nd that the tails decrease
faster as � increases up to about 0:585. The results for � = 0:585 are presented
for comparison in Table 2.

Experiments further suggest that as the number of balls placed in the
system increases (so that t grows larger than 1), the value of � that minimizes
the maximum load decreases to 1=2. Currently we do not know of any means
for comparing systems with the same number of choices but di�ering values
of � other than by simulating the underlying di�erential equations, or by
simulating the actual system for a speci�c value of n. We can determine the
proper choice of � only by experiment; �nding better approaches remains an
open question.

For general d, if the ith group from the left consists of a fraction �i of the
bins, then the equations become

dxi
dt

=

 
d�1Y
k=0

1

�k

!
(xi�d � xi)

i�1Y
j=i�d+1

xj: (6)
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3 Dynamic Models

We brie
y review the standard dynamic model; for further details, see [14] or
[9, 10]. In the standard dynamic model, we think of the bins as First In First
Out servers. We think of the balls as tasks that arrive as a Poisson process
with interarrival time 1

�n , for some � < 1. Each task has an exponentially dis-
tributed service time with mean 1. Suppose arriving tasks choose a processor
according to the d-random scheme. Again, we let wi represent the fraction of
the bins with at least i tasks in the queue (including the one being served).
Then the di�erential equations describing the 
uid limit are

dwi

dt
= �(wd

i�1 � wd
i )� (wi � wi+1): (7)

Of course w0(t) = 1 always. This equation arises from the following natural
intution: arrivals occur at a rate � per server, and an arrival is the ith task
at a queue when all of its choices have at least i � 1 tasks but not all have
at least i tasks. This occurs with probability wd

i�1 � wd
i . Departures from

servers with i tasks occur at rate 1, and the fraction of servers with i tasks is
wi � wi+1.

The key to understanding these systems generally revolves around their
�xed points, where all the derivatives are zero. Moreover, as we expect the
system to be stable, we seek �xed points where the wi fall to 0 as i grows and
the expected number of tasks in the system remains �nite. It has been shown
that the dynamic d-random system has a unique �xed point satisfying this

condition. Let us denote it by w�i ; then the �xed point is given by w
�

i = �
di�1
d�1 .

It has been shown that the the trajectories of the limiting system converge to
the �xed point over time [10, 14], and the stationary distribution for systems
with large n are concentrated around this �xed point [14]. Hence, we �nd that
even for d = 2, the tails of the queue lengths decrease doubly exponentially.
If instead each task chooses a random server, then each server behaves like
an M/M/1 queue, and the tails of the queue lengths decrease exponentially
as �i. Just two choices therefore yields dramatically better performance [9].

We now examine the improvements obtained using the d-left scheme. A
natural hypothesis is that there will be some gain over the d-random scheme,
but that it will be small, since the only di�erence is in case of ties. Again, we
�rst consider the case d = 2. We obtain the 
uid limit equations

dyi
dt

= 4� (yi�1 � yi) zi�1 � (yi � yi+1) ; (8)

dzi
dt

= 4� (zi�1 � zi) yi � (zi � zi+1) ; (9)
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where yi and zi represent the fraction of servers with queue length at least
i on the left and right, respectively. As before, we may simplify for general
d by using xjd+k to represent the fraction of servers that have queue length
at least j and lie in the kth group from the left. Then the 
uid limit model
yields the following family of di�erential equations:

dxi
dt

= dd� (xi�d � xi)

0
@ i�1Y
j=i�d+1

xj

1
A� (xi � xi+d): (10)

This system appears substantially more complex than the standard model,
even in the simplest case where d = 2. Indeed, we have not been able to prove
that there is a unique �xed point (satisfying xi ! 0 as i!1), although that
appears to be the case based on simulating the process determined by the
di�erential equations. We will from here on assume that there is indeed such
a unique �xed point for this system. (Note, however, that for any �xed number
of servers the process is clearly stable, by a simple stochastic comparison with
a system where each task simply chooses a random server. In this case, each
server behaves like a standard M/M/1 server.)

With this assumption, we can prove that the tails for this system at the
�xed point are term by term no greater than the tails at the �xed point of
the d-random system. Let ui =

Pd�1
k=0 xid+k. That is, ui is the total fraction

of servers with load at least i. Clearly u0 = 1. We represent the values at the
�xed point for the d-left scheme by u�i and x�i . Since all derivatives are zero
at the �xed point, we have

dd�
�
x�i�d � x�i

�0@ i�1Y
j=i�d+1

x�j

1
A� (x�i � x�i+d) = 0: (11)

Summing these expressions from i = jd to in�nity yields

u�j = dd�
jd�1Y

i=(j�1)d

x�i :

Hence, for instance, it follows at the �xed point that u�1 = �, which corre-
sponds to the obvious condition that the arrival rate must equal the departure
rate at the �xed point. But now by the arithmetic-geometric mean inequality

u�j = dd�
jd�1Y

i=(j�1)d

x�i � �

0
@ jd�1X
i=(j�1)d

x�i

1
A
d

= �
�
u�j�1

�d
:

A simple direct induction now yields that u�j � �
dj�1
d�1 , and hence in equi-

librium in the 
uid limit the d-random system has larger tails than a d-left
system.
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As in the static case, we �nd that the nature of the improvement comes
from the di�erent behavior of the tails. At the �xed point, by summing dxi=dt
from i = k to in�nity yields

k+d�1X
j=k

x�j � dd�
k�1Y

h=k�d

x�h (12)

and hence

x�k � dd�
k�1Y

h=k�d

x�h: (13)

By the same argument as we used for the balls and bins problem, this condition
is su�cient to show that at the �xed point for the dynamic d-left scenario, the
tails decrease Fibonacci exponentially according to the generalized Fibonacci
numbers.

We can again improve the situation by changing the ratio of left and right
bins. When d = 2 the equations become

dxi
dt

=
1

�(1� �)
� (xi�2 � xi)xi�1 � (xi � xi+2); (14)

with the conditions x0 = � and x1 = 1 � �. Naturally, in this situation, the
best � is a function of the arrival rate per server �.

We present results obtained from �nding the �xed point from the 
uid limit
model through simulating the di�erential equations. In Table 3, we show the
expected time a customer spends in the system, a quantity easily derived from
the calculation of the �xed point. We focus �rst on the expected time in the
system as it is a natural measure of overall performance. Comparing d-left
and d-random systems for the case d = 2, we �nd that d-left systems o�er
slightly better performance. We also searched for the best � value, �nding
it to the nearest thousandth. As can be seen, choosing the right value of
� also o�ers a marginal improvement, yielding gains of approximately 1%
over d-random systems. Although this gain is small, it should be emphasized
that the d-random scheme already performs vastly better than simple random
selection of queues; hence even this small improvement is interesting.

It is worthwhile to ask whether the gains apparent in the limiting analysis
manifests in systems of reasonable size. We explore a speci�c data point in
detail. Consider a system with 100 servers, and a Poisson arrival process with
an average of 90 arrivals per unit time. That is, � = 0:9. In simulations, we
ran such a system for 50,000 units of time, recording the time spend in the
system for every task. Results from the �rst 5,000 units of time are discarded
in order to allow the system to avoid bias from starting at an empty state. The
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� 2-random 2-left 2-left �

� = 0:5 best
0.5 1.26569 1.25325 1.24880 0.572
0.6 1.40744 1.39433 1.38934 0.561
0.7 1.61445 1.60054 1.59505 0.550
0.8 1.94736 1.93234 1.92627 0.540
0.9 2.61406 2.59727 2.59028 0.529

Table 3: Expected time in the system from the 
uid limit model for 2-left vs. 2-
random.

2-random 2-left 2-left
� = 0:5 � = 0:53

Average time 2:64626� 0:00148 2:63251� 0:00132 2:62485� 0:00160
Sample std. dev. 0.00756 0.00673 0.00817

Table 4: Improvements by using 2-left and an appropriate �, at � = 0:9 and 100
servers.

results based on simulating each system 100 times are presented in Table 4.
The average time in the system is given, along with 95% con�dence intervals,
from our simulations. Although the di�erences are, as expected, small (less
than 1%), they clearly appear statistically signi�cant. For smaller arrival
rates (down to � = 0:5), the di�erence between the best 2-left scheme and the
2-random scheme is approximately 1%, as suggested by the results in Table 3.

The improvement from using the d-left scheme becomes more pronounced
if we consider a di�erent measure of performance other than the expected
time in the system. As we have shown, the d-left scheme leads to a faster
decrease in the tails of the loads. Hence, the main bene�t of the d-left over
the d-random scheme is that the probability of joining a long queue, and
thereby spending a long time in the system, is much smaller under the d-left
scheme. Indeed, this is one would naturally expect from the static case. We
demonstrate this behavior in Table 5 by focusing on the case � = 0:9 and
comparing �xed point values for the d-left and d-random schemes. (Values
under 1.0e-100 are left blank.)

4 Related models

It is worthwhile to consider related models that have used the d-random strat-
egy and consider the e�ect of instead using the d-left strategy. For example,
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d = 2 d = 3 d = 4
i w

�

i u
�

i w
�

i u
�

i w
�

i u
�

i

1 9.0e-1 9.0e-1 9.0e-1 9.0e-1 9.0e-1 9.0e-1
2 7.3e-1 7.3e-1 6.5e-1 6.5e-1 5.9e-1 5.9e-1
3 4.8e-1 4.8e-1 2.5e-1 2.5e-1 1.1e-1 9.8e-2
4 2.1e-1 2.0e-1 1.4e-2 9.1e-3 1.3e-4 5.3e-7
5 3.8e-2 3.2e-2 2.9e-6 5.8e-10 2.5e-16 3.4e-77
6 1.3e-3 5.8e-4 2.9e-17 1.4e-54 3.5e-63
7 1.5e-6 2.5e-8 9.7e-51

Table 5: Results for d-left (u�) vs. d-random (w�) in the 
uid limit model when
� = 0:9.

recent work by Martin and Suhov [6] has extended the d-random approach to
Jackson-like networks consisting of banks of servers. The nodes of the Jack-
son networks are now banks of queues, and when an incoming task enters a
bank of queues, it adopts the d-random strategy. They call such a network
a Fast Jackson Network. (See also [7, 8].) Just as a Jackson network has a
simple product-form stationary distribution, so too does the limiting model
of the fast Jackson network, where the size of the server banks grows to in�n-
ity. Each server banks has a stationary distribution where the tails decrease
doubly exponentially.

If one could prove that the 
uid limit of a bank of servers using the d-left
strategy converges appropriately, it is likely that the analysis of Martin and
Suhov would immediately extend to Jackson-like networks of banks of servers
where incoming tasks use the d-left strategy. For such a network, the tails at
each server would decrease more rapidly (Fibonacci exponentially), and hence
the d-left strategy would yield a (slightly) Faster Jackson Network.

The d-random strategy has also been studied in cases where the load
information one obtains is out of date. For example, consider a bank of servers
where the queue length information is updated only at intervals of some time
T . In this setting, choosing the shortest of two random servers can perform
even better than the strategy of choosing a server with the apparently shortest
queue; when all incoming tasks try to choose the shortest queue, the delay
leads to repeated situations where only a few servers take tasks until an update
occurs. We argue that in this situation, the d-left strategy is similarly apt to
perform poorly, especially under long delays T . The problem is that breaking
ties in the same way again pushes the load toward a smaller set of servers.
Because the updates are delayed, this e�ect is not noticed immediately by
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new tasks, leading to higher loads. Experiments verify this intuition. Note,
however, that generally high arrival rates and long delays are required before
a substantial e�ect is seen, since the di�erence between the two strategies is
otherwise small.
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