The Asymptotics of Selecting the Shortest of Two, Improved
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We investigate variations of a novel, recently
proposed load balancing scheme based on small
amounts of choice. To motivate this work, we
first provide the relevant background. When
n balls are thrown into n bins, the maximum
load, or balls in a bin, is {22 (1 + o(1)) with
high probability. Suppose instead that n balls
are sequentially placed into n bins so that for
each ball, d > 2 bins are chosen independently
and uniformly at random from the n bins, and
the ball is placed in the bin with the fewest
balls, ties being broken arbitrarily. Then in
this case the maximum load is only lrirllnd” +0O(1)
with high probability [1].

This result was generalized to natural queue-
ing models independently in [6] and [2, 3]. Sup-
pose that tasks arrive at a bank of n First In
First Out processors as a Poisson process of
rate An, where A < 1; tasks require an ex-
ponentially distributed amount of service with
mean 1. If each task queues at a random pro-
cessor, then in the stationary distribution the
probability that a server has at least k tasks
is simply A¥. If instead each task chooses
two processors at random and queues at the
shorter, then in the fluid limit process repre-
senting the limiting behavior as n grows, the
probability that a server has at least & tasks

dk—1
converges to A d-1 . That is, the tails of the

processor queue lengths decrease doubly ez-
ponentially, rather than exponentially, when
d > 1. The effect is clear in simulations even
for relatively small values of n.

In this paper, we consider a variation based
on the work by Vocking [5]. In his basic model,
n bins are split into d groups of size n/d. We
think of these groups as being laid out linearly,
with the first group (bins 1 to n/d) being the
leftmost, and so on. A ball is placed by choos-
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ing a bin independently and uniformly at ran-
dom from each of the d groups and placing
the ball into the least loaded of the d bins;
ties are broken by placing the ball in the left-
most (tied) bin. Vocking showed that the max-
imum number of balls in a bin in this case is
i £+ ©(1) with high probability, where here
¢q corresponds to the exponent of growth for
a generalized Fibonacci sequence. (For refer-
ence, ¢o = 1.61 < ¢p3 < ¢py... < 2.) Surpris-
ingly, coordinating ties improves performance!
These results also hold for certain dynamic
models; see [5] for more details. To differenti-
ate the approaches, we call Vocking’s the d-left
scheme and the original the d-random scheme.

Here, following the work of [2], we examine
the d-left scheme using fluid limit models cor-
responding to a family of differential equations.
Because of limited space we consider only the
queueing variation. For more details and re-
sults, see the extended draft of this paper [4].

Suppose arriving tasks choose a processor
according to the d-random scheme. We let
w; represent the fraction of the bins with at
least 4 tasks in the queue (including the one
being served). Then the differential equations
describing the fluid limit are

dw;
dt

Of course wy(t) = 1 always.

The key to understanding these systems gen-
erally revolves around their fized points, where
all the derivatives are zero. Moreover, as we
expect the system to be stable, we seek fixed
points where the w; fall to 0 as i grows. It
can be checked [3, 6] that the unique such fixed

point for the d-random queueing system, which
d =1
we denote by wj; is given by w; = Ad-T.

Hence, we find that even for d = 2, the tails
of the queue lengths decrease doubly exponen-
tially.

We now examine the d-left scheme. We first
consider the case d = 2, for which the fluid
limit equations are

dyi
dt

= Awf ; —w) — (w; — wiy1).

(1)

= 4N (yic1 — i) zie1 — (yi — vit1) 5 (2)



dz;

i AN (zi—1 — 2i) yi —

(zi —2zit1),  (3)
where y; and z; represent the fraction of servers
with queue length at least ¢ on the left and
right, respectively. We may simplify for gen-
eral d by using x4 to represent the fraction
of servers that have queue length at least 7 and
lie in the kth group from the left. Then the
fluid limit model yields the following family of
differential equations:

7 =dA(ziq—z) | ] =z |- (@i—2ita)
jmisdt1

This system appears substantially more
complex than (1), even in the simplest case
where d = 2. Indeed, we have not been able to
prove that there is a unique fixed point (satis-
fying x; — 0 as i — c0), although that appears
to be the case based on simulating the process
determined by the differential equations. We
will from here on assume that there is indeed
such a unique fixed point for this system. With
this assumption, we can prove that the tails for
this system at the fixed point are term by term
no greater than the tails at the fixed point of
the d-random system. Let u; = Eg;é Tidtk-
That is, u; is the total fraction of servers with
load at least ¢. Clearly ug = 1. We repre-
sent the values at the fixed point for the d-left
scheme by u; and z;. Since all derivatives are
zero at the fixed point, we have

i—1

Il 7

j=i—d+1

NCAES) — (&7 —2i14) =0.

Summing these expressions from ¢ = jd to in-
finity yields uf = d%\ Hgi@.{l) x5 Hence, for
instance, it follows that u] = A, verifying that
the arrival rate equals the departure rate at
the fixed point. But now by the arithmetic-
geometric mean inequality

jd—1 jd—1 d 4
u; = dix H z; <A Z z; | = (u;_l) .
i=(j—1)d i=(j—1)d

A simple direct induction now yields that uj <

A%, and hence in equilibrium in the fluid
limit the d-random system has larger tails than
a d-left system. In fact, as explained in [4], the
tails decrease Fibonacci exponentially, which is

d=2 d=3

11 9.0e-1 | 9.0e-1 9.0e-1 | 9.0e-1
2 || 7.3e-1 | 7.3e-1 6.5e-1 | 6.5e-1
3 || 4.8e-1 | 4.8e-1 2.5e-1 | 2.5e-1
4 || 2.1e-1 | 2.0e-1 1.4e-2 | 9.1e-3
5| 3.8e-2 | 3.2e-2 2.9e-6 | 5.8e-10
6 || 1.3e-3 | 5.8e-4 || 2.9e-17 | 1.4e-54
7 || 1.5e-6 | 2.5e-8 || 9.7e-51

Table 1: Results for d-left (u*) vs. d-random
(w*) in the fluid limit model when A = 0.9.

faster than the double exponetial decrease of
the d-random system.

We present results obtained from finding
the fixed point from the fluid limit model
through simulating the differential equations.
We demonstrate the behavior in Table 1 by
focusing on the case A = 0.9 and comparing
fixed point values for the d-left and d-random
schemes. The improvement from using the d-
left scheme on measures such as the expected
time is small, but real. The improvement is
more pronounced if we consider a different
measure of performance. As we have shown,
the d-left scheme leads to a faster decrease in
the tails of the loads. Hence, the main benefit
of the d-left over the d-random scheme is that
the probability of joining a long queue, and
thereby spending a long time in the system, is
much smaller under the d-left scheme.
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