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Abstract. Recently, several researchers have developed equations for modeling
TCP behaviors, such as the expected throughput or latency, based on Markov chains
derived from TCP with additional simplifying assumptions. In this paper, we suggest
new directions for Markov chain analyses of TCP. Our �rst contribution is to closely
examine not just the expectation but the entire cumulative distribution function of
transfer times under various models. Particularly for short or medium transfers, the
distribution is likely to be more useful than the expectation in terms of measuring
end-user satisfaction. We �nd that the shapes of TCP cumulative distribution func-
tions are remarkably robust to small changes in the model. Our results suggest that
simplifying Markov analyses can be extended to yield approximations for the entire
distribution as well as for the expectation.

Our second contribution is to consider correction procedures to enhance these
models. A correction procedure is a rule of thumb that allows equations from one
model to be used in other situations. As an example, several analyses use a Drop-
Tail loss model. We determine correction procedures for the deviation between this
model and other natural loss models based on simulations. The existence of a simple
correction procedure in this instance suggests that the high-level behavior of TCP
is robust against changes in the loss model.

1. Introduction

Understanding and predicting TCP behavior remains a challenging
problem, both because of the complexity of the protocol itself and the
inherent complexity of the interactions between the protocol and the
network.

Two important techniques have developed for understanding TCP
behavior. The �rst is to use an event-driven simulation tool, such as
ns (UCB/LBNL/VINT, 1998), to simulate TCP behavior under preset
conditions (e.g., (Fall and Floyd, 1996; Hoe, 1995)). The ns simulator
provides an infrastructure allowing realistic simulations of networks
using TCP and other protocols, including aspects such as bu�ers with
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various queueing and drop policies, random delays corresponding to
processing, and interaction among multiple 
ows. Data derived from
such simulations can be studied to gain high-level insight into TCP
behavior. The simulation-based approach, however, does not provide
an analytical and mathematical framework for studying TCP, making
it di�cult to extrapolate results or gauge the e�ect of changes.

Hence a second widely used approach is to study TCP by analyzing
the event-driven process as a Markov process (Cardwell et al., 2000;
Misra et al., 1999; Padhye et al., 1999; Padhye et al., 2000; Sikdar
et al., 2000; Yajnik et al., 1999). This approach begins by developing
a simpli�ed model of TCP, with the goal of generating equations that
describe the behavior of the model. For example, a natural goal is to
derive an equation describing the functional relationship between the
throughput rate, the round-trip time, and the loss probability; such
relationships have been proposed as key features in designing other
congestion control schemes that are fair to TCP tra�c (Byers et al.,
2000; Floyd et al., 2000). Because of the inherent complexity of TCP
and its environment, in order to derive a succinct equation, various
simplifying assumptions are generally made to make the mathematics
tractable. For example, a single stream is considered in isolation; all
acknowledgments are assumed to arrrive; losses or sequences of losses
occur independently and randomly with some �xed probability; and
packets are sent in groups over rounds.

In this paper, we suggest new directions for TCP analyses based
on Markov processes. At this point, the work is primarily exploratory
and based on simulations; we expect related mathematical analyses to
follow in future work.

Our �rst direction is to expand the information sought from the TCP
models. Thus far, the equation-based approach has primarily focused
on �nding expected throughput rates or transfer times. The expected
transfer time may not be a reliable measure of important criteria such
as end-user satisfaction, however. As a recent Fortune article (citing a
Keynote systems study) states: \Everyone has a breaking point. For
most Web surfers these days, it's about eight seconds: If a page takes
longer than that to load, most users won't stick around." (Chen and
Lindsay, 2000) We therefore suggest that in order to compare properly
various TCP models, it is imperative to study the distribution of the
transfer time as well as the expectation, as di�erent models might
yield similar expectations but entirely di�erent distributions. Hence, in
our comparisons of various models, we primarily examine cumulative
distribution curves.

One of our �ndings is that TCP distribution curves have robust
shapes, in that in many cases varying the assumptions does not signif-
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icantly change the overall shape of the distribution curve. We attempt
to o�er insight into why this is the case. We believe these results suggest
that the equation-based models derived thus far will, with further work,
extend to provide reasonable approximations of the entire distribution
curve.

Our second related direction is to consider correction procedures that
allow us to better understand the e�ect of various simplifying assump-
tions made for analysis. A potential problem with previous work based
on the equation-based approach is that several simplifying assumptions
are made, but their individual e�ects are not examined. Instead, the
results of the end equation are tested against simulations. In this frame-
work it is di�cult to tell whether all the simplifying assumptions have
a small e�ect, or whether the e�ects of various simpli�cations tend to
cancel each other out.

Our goal is to consider the deviations introduced by the various
simpli�cations in isolation to quantify what sort of errors they may
cause. We emphasize that the purpose of this exercise is not to diminish
the validity of the approach of determining TCP equations. Rather,
we hope to enhance the TCP equations by recognizing what kinds
of corrections may apply. Correction procedures can help us in several
ways. For example, if we know that one simplifying assumption tends to
increase the transfer time, while another tends to decrease the transfer
time, we can take advantage of the fact that the e�ects tend to cancel
each other. As a more speci�c example, we consider how the transfer
time varies with the percentage of lost acknowledgments. This insight
may allow us to use more faithfully a model where acknowledgments
are not lost to predict behavior when acknowledgments are lost. In
general, we �nd that there can be non-trivial di�erences between trans-
fer rates for di�erent models, suggesting that correction procedures or
some other mechanism is necessary to have accurate estimates of TCP
behavior.

The idea of a correction procedure is also useful in understanding the
complexity of TCP behavior. A simple correction procedure suggests
that there is a feature of TCP that is robust to changes in the model.
For example, we show that that there appears to be a natural correction
procedure among di�erent loss models. We believe this should direct
future equation-based work toward a universal analysis that holds for a
variety of loss models. In contrast, the lack of a simple correction pro-
cedure between models would suggest a complex interaction between
the TCP protocol and the underlying model that would need to be
understood.

The remainder of this paper is organized as follows. Section 2 reviews
previous work on TCP dynamics. Sections 3 describes the loss models
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that we evaluate in our simulations. Section 4 presents the simulation
environments used in our study. Section 5 presents our main results
concerning the impact of di�erent loss models on TCP performance.
Section 6 considers the e�ect of lost acknowledgments. Section 7 studies
the variance of transfer times for large bulk transfers. Finally, Section 8
presents concluding remarks and directions for future research.

2. Previous Work

A signi�cant amount of the tra�c on the Internet currently uses TCP as
the transport protocol. Even for applications for which TCP is not the
transport protocol of choice, such as multicast and continuous media
delivery, there is an increasing trend toward designing TCP-friendly
transport protocols. Consequently, several simulation and analytical
studies have been conducted to understand the start-up dynamics and
the steady-state behavior of TCP bulk transfer and to quantify the
TCP-friendliness of other transport protocols.

Earlier studies of TCP include the analysis of the basic conges-
tion avoidance and control algorithms (Chiu and Jain, 1989; Jacobson,
1988) and simulations and trace-based analyses that detect phenom-
ena such as ACK-compression, out-of-packet delivery, synchronization
of losses, and pathological connections (Mendez, 1992; Mogul, 1992;
Zhang et al., 1991). Analytical models developed in (Mahdavi and
Floyd, 1997; Mathis et al., 1997) study the long-term behavior of a TCP
connection. Consequently, they do not attempt to capture the impact of
bursty losses, timeouts, slow start, and other TCP characteristics. The
start-up dynamics of TCP Reno are studied in (Hoe, 1995), which also
suggests changes to the implementation to improve its performance
during the start-up epoch. The simulation-based study of (Fall and
Floyd, 1996) compares a number of di�erent TCP implementations
with respect to their response to multiple packet drops in a single
window. One of the main results of the preceding study is that all of the
most common TCP implementations that use cumulative acknowledg-
ments react poorly to multiple packet drops in a single window since the
TCP sender frequently incurs a timeout even if as few as two packets
are dropped.

The signi�cant di�erence in the e�ects of the two loss indications
used by TCP, namely timeouts and triple duplicates, is a focus of (Pad-
hye et al., 2000; Padhye et al., 1999), which present a stochastic model
for TCP congestion control and derive formulae for the expected steady-
state throughput in terms of latency and packet loss. This model is
further extended in (Cardwell et al., 2000) and (Sikdar et al., 2000)
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to include startup e�ects such as connection establishment and slow
start, which have a signi�cant impact on the latencies of short TCP
transfers. All of these analytical studies (Cardwell et al., 2000; Padhye
et al., 1999; Padhye et al., 2000; Sikdar et al., 2000) adopt the Drop-Tail
packet loss model described in Section 3. Recently, di�erent models of
packet loss have been proposed. One such model is presented in (Misra
et al., 1999), which discards the \source-centric" model of parametriz-
ing the individual packet loss probabilities and instead model the loss
indications received by the source as a Poisson stream. More closely
related to our work is the recent study in (Yajnik et al., 1999), which
analyzes unicast and multicast packet loss measurements and evaluate
the accuracy of multiple state Markov chain models for packet loss.

Models for analyzing TCP throughput that consider correlated packet
losses have been recently studied in (Altman et al., 2000) and (Zorzi
et al., 2000). The correlated losses are represented by a Markovian
process in (Zorzi et al., 2000), while (Altman et al., 2000) adopts
a stationary ergodic random process. The emphasis of both studies,
however, is on bounding the average throughput in terms of param-
eters characterizing the packet loss process; in contrast, our focus is
on evaluating the impact of di�erent loss models on the distribution of
download times.

The assumptions in our model (and those made in earlier studies
of TCP) have been in
uenced by a number of studies based on large-
scale Internet measurements (Bolot, 1993; Paxson, 1999; Zhang et al.,
2000; Thompson et al., 1997). For example, a key observation made
in these studies is that packet losses are correlated. The Correlated
model, described in Section 3, is largely motivated by the observations
of (Paxson, 1999) and (Zhang et al., 2000). In (Zhang et al., 2000), it
is argued that packet losses can be modeled by a Bernoulli distribution
of loss episodes, in which each loss episode is a sequence of consecutive
losses, the length of which is drawn from a geometric distribution.

3. The Loss Model

The selection of a loss model is a key question in designing simpli�ed
models of TCP performance. In this section, we examine the most
common loss models.

In all of the loss models we study, we make the assumption that
packets and acknowledgments are sent in groups over rounds, and that
losses are independent from round to round. This assumption, which is
made in most analytical studies (Cardwell et al., 2000; Padhye et al.,
2000), is partially justi�able with the understanding that TCP tends
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to send packets in bursts in a manner similar to how our models send
packets in rounds, and the round-trip time between rounds may be
su�cient for most congestion to clear. The independence of packet
losses occurring in di�erent rounds is especially likely to hold for con-
nections with moderate to high round-trip times since the time needed
to send all the packets in a window is then much smaller than the
round-trip time (Altman et al., 2000; Paxson, 1997). We note that this
assumption is not essential for our modeling approach; we adopt it for
testing purposes in keeping with the main point of our study, which is
to examine variations from the simpli�ed Markov models studied thus
far.

We focus on the following models:

� Bernoulli: Each data packet is independently lost with a �xed
probability p.

� Drop-Tail: In each round, we consider the data packets sequen-
tially. The �rst packet in the round is lost with probability p; for
every other packet, if the previous packet was not lost, the packet
is lost with probability p; if a packet is lost, then all subsequent
packets in the round are lost.

� Correlated: In each round, we consider the data packets sequen-
tially. The �rst packet in the round is lost with probability p; for
every other packet, if the previous packet was not lost, the packet
is lost with probability p; otherwise, it is lost with probability q.

The Bernoulli model is arguably the most basic model for packet
loss. Owing to its simplicity, it lends to an easier analysis than the other
loss models. The Bernoulli model may be appropriate for modeling
congestion arising in queues that implement the random early detection
(RED) policy (Floyd and Jacobson, 1993), since such queues respond
to congestion by dropping packets uniformly at random. The Drop-
Tail model is an idealization of the packet loss dynamics associated
with a FIFO drop-tail queue. It is assumed in this model that dur-
ing congestion, queues drop packets in bursts (Bolot and Vega-Garcia,
1996; Paxson, 1999), thus causing packets in the \tail" of a round to be
lost. The Correlated model is somewhat less stringent. It characterizes
the loss pattern as a Bernoulli distribution of loss episodes, each episode
consisting of a group of consecutive packets, the length of which is
approximated by a geometric distribution. Recent evidence for such
correlated packet loss includes (Paxson, 1999; Zhang et al., 2000). We
note that the Correlated model actually includes both the Bernoulli
case (when q = p) and the Drop-Tail model (q = 1) as extreme cases.
For each of the above models, we refer to p as the loss episode parameter.
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4. Experimental Setup

We used two simulation environments for our study: one a round-based

TCP simulator that we have written, and the other the UCB/LBL/VINT
simulator ns. The notion of a round, which is intrinsic to the Markov
chain approach and is not captured in ns, de�nes the unit of time in
the round-based simulator. In our simulator, a round is broken into
sequential phases: the sender sends the round's worth of packets; pack-
ets are passed through a �lter that may introduce loss; the receiver
receives packets, and sends appropriate acknowledgments; acknowledg-
ments are passed through a �lter that may introduce loss; and the
sender receives acknowledgments. The round-based simulator faithfully
captures the analytic models proposed in (Cardwell et al., 2000; Padhye
et al., 1999; Padhye et al., 2000). Consequently, we are able to directly
compare the di�erent cumulative distribution functions obtained over
a wide range of loss models. Furthermore, the simplicity of the round-
based simulator allows us to vary parameters and models for testing
with relative ease.

We use the round-based simulator to study the dynamics of �le
transfers, primarily focusing on transfers of 64 and 1024 packets from
a TCP Reno source under various loss models. The two transfer sizes
chosen are representative of short-to-medium size downloads. In our
simulation, the receiver issues delayed acknowledgments; it sends an
acknowledgment for every other packet or in the next round, whichever
occurs earlier. We omit the e�ects of round-trip time smoothing calcu-
lations and the connection establishment phase. All experiments con-
ducted with the round-based simulator involved 10,000 trials for each
setting of the variables. In all our experiments, we assume that the
maximum window and the initial slow start threshold are 24 and 42
packets, respectively.

We validate our round-based simulator by comparing the distribu-
tions obtained for the Bernoulli loss model with those obtained in ns.
For this purpose, we modify the ns simulation to set the duration of
the �rst timeout in any sequence of consecutive timeouts to match the
corresponding value set in the round-based simulator, which is 4 times
the round-trip time. (We note that the exponential backo� protocol
used for setting the retransmission timers in the event of a sequence
of consecutive timeouts is the same in both round-based and ns TCP
simulations.) The ns experiments simulate a TCP Reno sender and
a DelAckSink receiver, which sends an ack for every other packet or
when a 100ms timer expires, whichever occurs earlier. Our data for the
ns simulations are based on 1,000 trials. Figures 1 and 2 compare the
cumulative distribution plots for the number of rounds needed to trans-
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Figure 1. Comparison between ns and round-based simulations for the Bernoulli
loss model with respect to rounds; 64 packets, packet loss 1-5%.

.

0

20

40

60

80

100

0 200 400 600 800 1000

P
er

ce
nt

 T
ria

ls

Round Trips

1024 packets

ns .01
ns .02
ns .03
ns .04
ns .05

round-based .01
round-based .02
round-based .03
round-based .04
round-based .05

Figure 2. Comparison between ns and round-based simulations for the Bernoulli
loss model with respect to rounds; 1024 packets, packet loss 1-5%.

fer 64 packets and 1024 packets, respectively, under di�erent Bernoulli
packet loss probabilities. For the data obtained from ns simulations,
the y-axis represents the ratio of the transfer time to the round-trip
time. We note that the relative error between the two plots is less than
3%. Figure 3 gives the cumulative distributions of timeouts for 1024
packet transfers, which also match very closely.

The small discrepancy between the round-based and ns distribu-
tions in the Bernoulli model is due to some subtle di�erences in the
two simulations. We discuss one such di�erence here. During the fast
recovery phase in TCP Reno, a sender arti�cially in
ates the congestion
window in response to duplicate acknowledgments to account for the
fact that packets have left the network. In the round-based simulator,
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Figure 3. Comparison between ns and round-based simulations for the Bernoulli
loss model with respect to timeouts; 1024 packets, packet loss 1-5%.

if the TCP sender is in fast recovery and incurs a timeout, then the
slow-start threshold (ssthresh) is set to half the in
ated congestion
window (cwnd); in this we have followed Wright and Stevens (Wright
and Stevens, 1995). On the other hand, in the ns version, the threshold
is set to half the unin
ated congestion window, which corresponds to
half of the congestion window at the instant that the fast recovery phase
was initiated. This appears to follow RFC 2581 (Allman et al., 1999).
Discrepancies also arise due to minor di�erences in the particular im-
plementation of delayed acknowledgments. (As an aside, we note that
seemingly minor di�erences can have a signi�cant impact. For example,
in RFC 2581 (Allman et al., 1999), it states that when deciding whether
to use slow start or congestion avoidance, the case where cwnd equals
ssthresh is an ambiguous case. We have found that the speci�c choice
makes a small but clearly noticeable di�erence.)

A similar validation for the Correlated and Drop-Tail models poses
problems. A plausible approach to implement these models in ns is to
use a variant of the two-state Markov chain, that is, the TwoState link
error model o�ered in ns. The two states in this model represent the er-
ror and error-free states. The parameters of the model are the duration
of time that a link spends in a particular state before switching to the
other state. A signi�cant drawback of the model thus described is that it
is oblivious to the notion of rounds, and consequently, introduces depen-
dencies between losses across rounds. Independence of packet loss across
rounds is an important assumption made in previous models (Cardwell
et al., 2000; Padhye et al., 2000; Padhye et al., 1999), and has also
been observed in measurement studies (Bolot and Vega-Garcia, 1996).
To address the above problem, we modi�ed the ns implementation
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Figure 5. Comparison between ns and round-based simulations for the Correlated
and Drop-Tail models with respect to rounds, 1024 packets.

to introduce the notion of a round by maintaining a round number
that is incremented whenever the time di�erence between the sending
of two consecutive packets exceeds the current smoothed round-trip
time value. With this we can approximately capture the behavior of
the Correlated and Drop-Tail models, although there is variance in the
round-trip time as measured by the TCP sender because of delayed
acknowledgments. A comparison of the cumulative distribution plots
of the number of rounds for transfers of 64 and 1024 packets is given
in Figures 4 and 5, respectively.

To summarize, we have developed our own round-based implemen-
tation of TCP, which we use in all further experiments. The primary
reason to prefer our implementation over ns is that our purpose is to
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study round-based Markov models. Our implementation is more faith-
ful to these Markov models, and o�ers us more control and 
exibility
in experimenting with variations of these models. Our implementations
di�er a small amount but not signi�cantly from ns. It is worth noting
that the resolution of seemingly small ambiguities in the TCP protocol
can lead to noticeable deviations in TCP performance, highlighting the
di�culty of accurately modeling TCP.

5. Analysis of the Loss Models

In this section we examine the impact of the loss models discussed in
Section 3 on the cumulative distributions of transfer times. In keeping
with our goal of isolating the e�ects of various assumptions, we assume
in this section that there are no losses of acknowledgment packets and
focus on the e�ect of lost data packets.

We begin by considering the graphs showing the behavior of the
cumulative distribution function when p = 0:05 for all three of the
models, namely, Bernoulli, Correlated, and Drop-Tail; this is repre-
sentative of the behavior of loss rates between 1 and 10%. (We focus
on this range of loss rates, as it is most likely to lead to interesting
behavior, and it appears representative in practice (Paxson, 1999).)
For the Correlated model, we show the behavior for q = 0:25; 0:5; and
0:75. To the �rst order (barring boundary e�ects), this equalizes the
number of loss episodes seen by all three models. As one might expect,
the greater the correlation, the greater the time; this seems natural
since the same number of loss episodes leads to more overall losses and
timeouts when there is correlation. (See Figures 6 and 7.) However, it
is interesting to note that although the expected transfer time changes
with the models, the distributions all have the same approximate shape.

We now consider a correction procedure for the relationship of the
expected transfer time among the various models over the range of
p from 1 to 10%. We have determined the ratio between the average
transfer time for each model with the Bernoulli model for these loss
probabilities. We call this ratio the correction factor. The correction
factor provides a way of translating the results from one loss model
for another. For example, using the equations determined in (Padhye
et al., 1999) for the expected goodput of the Drop-Tail model, we can
use the correction factors to estimate the expected goodput for other
models. The correction factors are charted in Figure 8. We note that the
di�erences between the models are fairly signi�cant, especially between
the Bernoulli and Drop-Tail models, where the di�erence ranges from
roughly 30% to 50% in this range of p. This fact suggests that un-
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Figure 6. Cumulative distribution function for various loss models; 64 packets.
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Figure 7. Cumulative distribution function for various loss models; 1024 packets.

derstanding which loss model is appropriate and relevant is important
for accurately predicting TCP behavior. Unfortunately, the correction
factor does not appear to have a simple functional form; currently we
can only estimate the correction factor through experimentation.

Interestingly, although we determined the correction factor simply
from the average transfer time, the correction factor appears closely tied
to the entire cumulative transfer distributions. Indeed, if we consider
the distribution curve for 1024 packets and loss episode parameter
p = 0:05 from Figure 7, but rescale all the transfer times downward
for all of the models (besides the Bernoulli model) according to the
appropriate correction factor, then the distributions themselves are
remarkably close, as seen in Figures 9, 10, and 11. Hence our initial
determination that the distribution curves have the same shape has
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now taken a concrete form: the di�erence between pairs of models can
be succinctly summarized by a single number, the correction factor.

We attempt to explain this observation. Our data suggest (not sur-
prisingly) that the transfer times are highly correlated with the number
of timeouts in a linear relationship for all of the loss models. For ex-
ample, we examined the correlation coe�cient between the number of
timeouts and the transfer time. For the Bernoulli model, the correlation
coe�cients for 1024 packets are 0.81, 0.94, and 0.90 with loss episode
parameters 0.2, 0.5, and 0.8, respectively. For the Drop-Tail model,
the corresponding numbers are 0.96, 0.94, and 0.81 respectively. These
numbers remain relatively constant as the number of packets varies.
Hence, for a �xed loss episode parameter, the transfer time is roughly
a linear function in the number of timeouts. In all of the models, the
number of timeouts has a nearly normal distribution, as seen in Fig-
ure 12, suggesting that each loss episode has some near-�xed probability
of leading to a timeout. Hence it is reasonable for all of the loss models
to have the same shape distribution, and for these distributions to scale.

An interesting line for future research is to try to approximate time-
out characteristics with an appropriate normal model; this would allow
a simpli�ed Markov model that be used not only to derive approximate
expected transfer times under TCP, but approximations for the full
distribution. Indeed, although we are working with simpli�ed models,
the utility of understanding the variance is highlighted by recent work
by Barford and Crovella, who suggest that for short and medium down-
loads, the variability of timeouts is the primary cause of variability in
transfer time (Barford and Crovella, 2000).

Also, we believe further understanding of the correction factors would
be very useful, as they relate the Drop-Tail model and the perhaps
more realistic Correlated model. We note some caveats. Our experi-
ments suggest that the correction factor must be increased for shorter
transfers, and slightly decreased for larger transfers. This behavior is
interesting, since it suggests that the convergence of the throughput
rate to its expectation may require signi�cantly long transfers; we
explore this further in Section 7 where we return to the question of
variance. Also, these correction factors depend on parameter choices in
the model; when delayed acknowledgments are not used, for instance,
the appropriate correction factors increase substantially.

Because starting with the same loss episode parameter p leads to
more losses when losses are correlated, it may seem more fair to attempt
to equalize the models for the same overall fraction of lost packets,
instead of equalizing for loss episodes. As shown in Figure 13, which
compares the Drop-Tail model with the Bernoulli model, such account-
ing dramatically punishes the Bernoulli model. When p = 0:02 for the
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Figure 9. The correction factor applied to the cumulative distribution; 1024 packets,
p = 0:05.

Drop-Tail model, for example, the total fraction of lost packets is 7.02%;
for the correlated model with p = 0:05 and q = 0:5, the total fraction
of lost packets is about 6.91%. Comparing the cumulative distribution
curves for transfer times for these two situations with the Bernoulli
model with p = 0:07, we see that the correlated models appear much
better when we equate the packet loss probability. The explanation is
that TCP Reno handles very well long sequences of losses such as those
that occur with the Drop-Tail model; a contiguous sequence of losses
occurring within a single window tends to cause a single retransmission
timeout, after which all the lost packets are resent. The same number of
randomly distributed losses, however, is likely to spread over multiple
windows and may cause multiple timeouts.
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Figure 10. The correction factor applied to the cumulative distribution; 1024
packets, p = 0:02.

.
0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

P
er

ce
nt

 T
ria

ls

(Scaled) Round Trips

1024 packets: p = 0.08

Bernoulli
Scaled Corr. 0.25
Scaled Corr. 0.50
Scaled Corr. 0.75
Scaled Drop-Tail

Figure 11. The correction factor applied to the cumulative distribution; 1024
packets, p = 0:08.

Our conclusion is that the choice of loss model has a signi�cant e�ect
on the expected transfer time and throughput rate. If we equalize the
models so that a loss episode begins at any point according to the same
loss episode parameter p, models with correlated losses have noticeably
longer transfer times. The shape of the corresponding cumulative dis-
tribution functions, however, are quite similar. In particular, we have
shown that a correction factor based on the expected transfer time ap-
pears to correct for the di�erences between the entire distribution. We
believe this suggests a richer model yielding approximate distributions
for certain loss models will be possible.
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6. Lost Acknowledgments

In most analyses of TCP based on Markov processes, acknowledgments
are assumed to arrive so that e�ects of lost acknowledgments can be
ignored in the analysis. In this section we attempt to determine the
e�ect of this assumption. We focus here on the model with Bernoulli
data packet and acknowledgment losses. More highly correlated losses
will have similar e�ects, depending on the loss parameters. (The same
loss episode parameter p will lead to more severe e�ects with more
correlated models, since a larger number of packets will be lost.)

We begin by examining the cumulative distribution curves for trans-
fers of 64 and 1024 packets and a 5% data packet loss rate with varying
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Figure 14. Cumulative distribution functions as lost acknowledgments increase: 64
packets.
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Figure 15. Cumulative distribution functions as lost acknowledgments increase: 1024
packets.

acknowledgment loss rates in Figures 14 and 15. Although the distribu-
tion curves keep the same overall shape, the e�ect of acknowledgment
losses is to noticeably slow the transfer. The di�erence between no
acknowledgment loss and a 5% acknowledgment loss is a 21% increase
in the average time for 64 packet transfers and a 19% increase in
the average time for 1024 packet transfers. Since smaller downloads
spend proportionally more time in slow start, it is reasonable that
acknowledgment losses would have a slightly larger e�ect.

It is interesting to determine how the lost acknowledgments a�ect
performance, since they a�ect the system in multiple ways. In some
cases, a lost acknowledgment can directly lead to a timeout in an
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Figure 16. The e�ects of lost acknowledgments versus pseudo-ack loss.

instance where the arrival of the acknowledgment might have led to
a normal continuation or a fast retransmit. For example, if the �rst
pair of packets sent are received but the acknowledgment is lost, the
sender will continue to wait for an acknowledgment until a timeout
occurs. Lost acknowledgments also slow down the overall rate at which
the sending window size increases. Note that this e�ect may indirectly
lead to additional timeouts, as a smaller window may preclude a fast
retransmit for a lost packet later on in the process. To see the impact
of each of these e�ects, we modi�ed our TCP simulation so that when
an acknowledgment was lost, the simulation would act as though the
acknowledgment arrived, except that it would not increase the cwnd
parameter. That is, we removed the possibility of a lost acknowledg-
ment directly causing a timeout, while keeping the failure to increase
the sending window. We call this a pseudo-ack loss.

In Figure 16, we compare the increase in the average transfer time
from no acknowledgment loss for lost acknowledgments and pseudo-ack
loss. We show results for data packet loss probabilities p = 0:02; 0:05;
and 0:08. As can be seen, pseudo-ack loss causes only a small increase
in the transfer time, suggesting that the important e�ect of lost ac-
knowledgments is to increase the number of timeouts. The relative
importance of this e�ect grows with the packet loss probability. Again,
this o�ers some corroboration of the suggestion of (Barford and Crov-
ella, 2000) that timeouts are the signi�cant cause of variability in short
and medium downloads.

We again attempt a correction procedure for varying acknowledg-
ment losses by using a correction factor. Consider a �xed loss event
parameter p = 0:05 and a �xed number of packets in the message,
1024. We determined the ratio between the average transfer times for
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Figure 17. The correction rule applied to the cumulative distribution; 1024 packets.

various acknowledgment loss probabilities, and then scaled the entire
distribution curve by this factor. The result appears in Figure 17.
Although the resulting distribution curves do not completely overlap,
they are very close; we see that larger acknowledgment losses lead to
more extreme tails than scaling would suggest. This suggests higher
acknowledgment loss probabilities have a greater than linear e�ect on
the overall transfer time. A suitable correction procedure would need
to take this into account. From a more theoretical standpoint, this
suggests that a richer equation-based model that accurately accounted
for lost acknowledgments would need to include a non-linear term in
the acknowledgement loss probability. However, as a �rst approxima-
tion, the cumulative distribution for no acknowledgment loss along with
a correction factor determined by the expectations appears su�cient
to approximate the cumulative distribution for various amounts of
acknowledgment loss.

Again, these results are dependent on the TCP variables used in
these experiments. We speci�cally note that the e�ects of lost acknowl-
edgments are less substantial when delayed acknowledgments are not
in use, as one would suspect. However, they are still quite noticeable,
as seen in Figure 18. At a 5% data packet loss rate, the di�erence in
average transfer time between no lost acknowledgments and a 5% loss
rate of acknowledgments is still almost 12%.

7. Variance and Convergence

In this section, we examine how the variance in the transfer times
changes as the size of the transfer increases. We are motivated by several
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Figure 18. Cumulative distribution functions as lost acknowledgments increase
without delayed acknowledgments.

works which use the round-by-round analysis approach to approximate
the average throughput and goodput of a connection. For example,
in (Padhye et al., 2000) the authors develop a simpli�ed Markov chain
for TCP and design an equation to approximate the long-term expected
throughput. In (Padhye et al., 1999) the limiting distribution of the
Markov chain is determined numerically in order to determine the
average throughput rate.

While over the long haul we expect convergence toward the steady
state rate, our results show that for short and medium transfers there
can be signi�cant variance, depending on the quantity and location of
losses encountered. Hence an interesting question is how the variance
of the transfer time changes with the size of the �le, so that we may
have some idea as to how good an approximation the steady state
average throughput rate is. For convenience here we again assume no
lost acknowledgments. We use the Drop-Tail model for packet loss,
although our results generally hold for all of the loss models we consider.

Figure 19 shows the probability density functions for the number of
rounds to transfer 1024 packets. As can be seen, when the transfer is
su�ciently long, the transfer time (like the number of timeouts) appears
normally distributed. (We note that for short downloads such as 64
packets with small loss probabilities, the distribution of loss episodes
appears more like a discrete Poisson distribution, and the transfer time
also has approximately that form.) For a �xed loss episode parameter
p, the standard deviation in the number of loss packet episodes when
n data packets are transmitted is approximately

p
np(1� p). (This is

exact, modulo retransmissions.) Hence we would expect for �xed p that
the standard deviation in the transfer time would grow proportionally
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to
p
n, and this is seen in our experiments, as shown in Figure 20. While

this means that as n grows large the standard deviation of the transfer
time becomes a vanishingly small fraction of the average, it also means
that for short and medium downloads the variation remains signi�cant.
For 1024 packets, one standard deviation in the transfer time is still
over 10% of the average; for 16384 packets, it is only 3%.

Noting the normal distribution of the download time allows us to
devise a useful correction mechanism. Given the average and the stan-
dard deviation, we expect about 1/3 of all trials to fall outside one
standard deviation, and about 5% of all trials to be within two stan-
dard deviations. (The exact numbers are actually 31.74% and 4.56%.)
Note that for a �xed loss episode parameter p we can approximately
determine the average and standard deviations using a small number
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of packets n and scale up, if desired. We see in Table I that this rule of
thumb is approximately true, when the download is su�ciently large.
It is also interesting to note that there is a skew toward tails with very
long download times that decreases with �le size.

Table I. Percentage of trials two standard deviations or more smaller
than the mean, one deviation or more smaller, one deviation or more
larger, and two deviations or more larger. Values converge to the
normal distribution for su�ciently many packets.

Number of packets p < 2 sd < 1 sd > 1 sd > 2 sd

0.02 0.00 28.4 16.5 3.7

64 0.05 0.00 14.5 12.9 2.8

0.08 0.00 8.0 10.0 3.0

0.02 2.1 15.6 15.8 2.7

1024 0.05 1.6 14.9 14.9 3.0

0.08 0.6 13.6 13.2 3.2

0.02 2.2 15.8 15.8 2.3

16384 0.05 2.0 15.7 15.2 2.6

0.08 1.5 16.1 15.8 2.8

The relationship as p changes is less clear, as the transfer rate and
the standard deviation in the transfer rate do not appear to have a
linear relationship with the loss episode parameter p. As losses increase,
timeouts become even more common in a superlinear way, because the
timeouts arise from the interaction of several losses. Understanding in
detail the loss patterns that can lead to a timeout, as described in part
in (Fall and Floyd, 1996), could shed light on this e�ect.

8. Conclusion

We have studied the impact of di�erent loss models on the cumulative
distribution of TCP transfer times by simulating associated Markov
processes. Our simulations show that while the choice of the loss model
(Bernoulli, Correlated, or Drop-Tail) has a signi�cant e�ect on the ac-
tual distribution function obtained, the shape of the function is robust
to changes in the model. We have quanti�ed the preceding observation
by showing that the di�erences among the entire distributions obtained
for two di�erent models can be characterized by a single scaling factor,
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which is dependent on the two models and their associated parameters.
The e�ectiveness of such a simple correction procedure suggests that a
simpli�ed Markov model can be used to derive approximations of the
full distributions under realistic loss models. We plan to explore this
line of research further.

A primary reason for the e�ectiveness of the correction procedure is
that the transfer times have an approximately linear relationship with
the number of timeouts in all the loss models, and the distributions of
timeouts in these models are approximately normal with di�erent mean
values. A promising direction for future research is to derive a better
characterization of timeouts during TCP transfers, both in terms of the
number of occurrences as well as the total duration of the timeouts.
In this vein, it will also be interesting to consider alternative models
for the duration of the �rst timeout in any sequence of consecutive
timeouts. Presently, this duration is assumed to be �xed both in our
simulations and in the Markov chain approaches, whereas in practice it
is a random variable depending on round-trip time measurements. The
di�erence will likely change the overall distribution of transfer time.

We have also considered how the distribution of transfer times are
a�ected by lost acknowledgments, which are often ignored in analyt-
ical approaches for simplicity. Simulations indicate that although the
distribution curves maintain the overall shape, lost acknowledgments
slow the transfer considerably. The increase in transfer times appears
directly traceable to a signi�cant increase in timeouts while waiting for
an acknowledgment. It would be interesting to use tools for studying
critical paths of TCP, such as those developed by Barford and Crovella
(Barford and Crovella, 2000), to examine these e�ects in more detail.

Finally, we have studied the relationship of transfer size to the stan-
dard deviation in the distribution of transfer times. We have observed
that for a �xed packet loss probability, the standard deviation is pro-
portional to

p
n for a transfer of n packets, and is signi�cant for small

to medium downloads. The growth rate of the standard deviation stems
from the fact that transfer times appear to be approximately normally
distributed for su�ciently long �les. An interesting open problem is to
characterize the standard deviation not only in terms of the �le size
but also in terms of the loss model parameters. Such a characterization
would provide another mechanism for deriving useful approximations
for full distributions of transfer times under diverse loss models.

At a higher level, we have argued that Markov models for TCP
should be subjected to more detailed scrutiny by determining the e�ects
of various simplifying assumptions. The choice of the loss model, for
example, can have a signi�cant e�ect on overall download time. While
the ultimate goal may be a general analysis that applies to all models,
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a useful practical alternative we suggest is to use a correction proce-
dure between models. In some cases, it appears that simple correction
procedures can be derived experimentally. The search for correction
procedures also provides insight into TCP behavior under di�erent
models that can guide the search for improved equation-based analysis.
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