
Analysis of Timing-Based Mutual Exclusion with Random Times

Eli Gafni
�

Michael Mitzenmacher
y

Abstract

Various timing-based mutual exclusion algorithms have been
proposed that guarantee mutual exclusion if certain timing
assumptions hold. In this paper, we examine how these al-
gorithms behave when the time for the basic operations is
governed by random distributions. In particular, we are con-
cerned with how often such algorithms succeed in allowing
a processor to obtain a critical section and how this success
rate depends on the random variables involved. We explore
this question in the case where operation times are governed
by exponential and gamma distributions, using both theo-
retical analysis and simulations.

1 Introduction

A good design methodology for developing distributed algo-
rithms, as advocated by Liskov [8], is to assume the worst
and hope for the best. In assuming the worst, one designs
an algorithm which is safe regardless of the amount of time
each operation takes. In hoping for the best, one designs
the algorithm to optimize some utility function under cer-
tain timing assumptions.

A nice example of such a design is the mutual exclusion
algorithm of Lynch and Shavit [9]. The algorithm relies on
Lamport's fast mutual exclusion algorithm [6] to guaran-
tee that the safety condition of exclusion is never violated.
(See Figure 1.) It relies on Fischer's timed mutual exclusion
algorithm [3] to provide Lamport's algorithm the environ-
ment it expects, namely a single contender. (See Figure 2.)
The algorithm is guaranteed to succeed if certain hard tim-
ing constraints are met. If Fischer's algorithm fails because
the appropriate hard timing constraints are violated, then
deadlock might occur, but two processors will never access
a critical section at the same time.

�UCLA Computer Science Department, E-mail: eli@cs.ucla.edu.
Part of this work was done while visiting Compaq Systems Research
Center.

yHarvard University, Computer Science Department,
E-mail: michaelm@eecs.harvard.edu. Most of this work was done
while employed at Compaq Systems Research Center.

In this paper, we consider how to design mutual exclusion
algorithms under probabilistic assumptions on the timing of
steps, rather than hard timing constraints. One motivation
for this direction lies in new storage area network (SAN)
architectures [1, 2, 7, 11]. The SAN architecture consists
of servers sharing a \disk farm" over a network. Concep-
tually, with regard to the design of distributed algorithms,
the physical model of this architecture is close to the ab-
stract model of shared memory, and consequently shared
memory solutions become practical. However, the timing
behavior of disks is not well understood, and making hard
timing assumptions which are guaranteed to hold may en-
tail prohibitively long time-outs or self-delays for practice.
Consequently, probabilistic analysis of mutual exclusion al-
gorithms appears called for.

Another motivation is to �nd better, more e�cient prob-
abilistic algorithms for mutual exclusion. Instead of having
algorithms introduce deterministic pauses designed for the
worst case in order to guarantee mutual exclusion, using
shorter pauses with random times may lead to better prac-
tical performance. This approach may allow tradeo�s be-
tween correctness properties (since the random pauses may
not give the same guarantees as deterministic ones) and ef-
�ciency.

A further motivation for introducing probabilistic models
into this area is simply to gain more insight into the features
of these algorithms. In particular, our analysis demonstrates
that an appropriate pause (even one that lasts a random
time) can dramatically change an algorithm's behavior.

We further note that the probabilistic framework we in-
troduce is reminiscent of similar work on contention reso-
lution in multi-access channels. The contention resolution
framework has proven highly successful. (See the notes at
[4], or references from [5] or [10].) We suspect that this direc-
tion may therefore prove worthwhile in the mutual exclusion
context as well.

In this paper, we focus on the case where step times have
the exponential distribution. This distribution has proper-
ties which prove handy for analysis. Moreover, although
the assumption of exponential distributions is not correct
in practice, algorithms that behave well under the exponen-
tial distribution are generally assumed (whether correctly
or not!) to behave well under \reasonable" distributions.
Thus they make an appropriate starting point for this anal-
ysis. We also examine the case where step times have a
gamma distribution, both to o�er more insight and to avoid
the problem of drawing conclusions speci�c to the exponen-
tial distribution.

We refer to the basic unit of much of our analysis as a

Lamport
x; y: shared registers, initially 0

% Entering ME-lock
L:
x := i;
if y 6= 0 then goto L;
y := 1;
if x 6= i then goto L;
enter critical region;
exit critical region;
y := 0; % Exiting ME-lock

Figure 1: Lamport style mutual exclusion.

lock. Loosely speaking, for our purposes a lock is a shared
variable that can be inspected (or read, to see if it is clear),
written (to attempt to take control), and read (to see if
control has been obtained). A processor successfully passes
through a lock if it �nds it clear on inspection, writes its
processor ID to it, and reads back its processor ID. Note that
a processor may pause, or self-delay, between any of these
steps. A lock is a basic unit in Fischer's mutual exclusion
algorithm.

We are interested in answers to questions such as:

1. How often do Fischer-style locks succeed, and how does
this depend on the underlying distributions?

2. Are we better o� with one Fischer-style lock with a
long pause, or two consecutive Fischer-style locks with
smaller pauses?

3. How should the Fischer-Lamport constructions be com-
bined in this setting?

In this paper, we focus on the analysis of the basic lock
construction, and explore the behavior of these locks and
some of our questions with simulations. As a by-product
of our work, we explore the behavior of several simple but
interesting Markov chains. We believe that further, more
detailed analysis of these Markov chains would be interest-
ing, not only because of their connection to timed mutual
exclusion algorithms, but also in and of themselves.

Because we focus on the simple lock mechanism, the
analysis in this version of the paper is essentially self-
contained. However, we encourage the interested reader to
peruse the work by Lynch and Shavit on timing-based mu-
tual exclusion [9] for more details on Lamport's algorithm,
Fischer's algorithm, and their combination, in order to put
this work in context.

2 The Exponential Distribution

2.1 Properties of the Exponential Distribution

The exponential distribution proves convenient for theoret-
ical study because of its special properties. We brie
y note
these properties here and make use of them without further
reference throughout this paper.

Fischer
x: shared registers, initially 0

% Entering ME-lock
L:
if x 6= 0 then goto L;
x := i;
pause
if x 6= i then goto L;
enter critical region;
exit critical region;
x := 0;
% Exiting ME-lock

Figure 2: Fischer's timed mutual exclusion algorithm.

� Memoryless property: Suppose the time until an event
is determined by an exponential random variable with
mean �. Given that the event has not yet happened,
the remaining time until the event happens is still an
exponential random variable with mean �.

� Minimum property: Suppose the times until each of
k events are determined by independent exponential
random variables with mean �. Then the time until the
�rst of these events occurs is exponential with mean �

k
.

� Fairness property: Suppose the times until events A
and B are determined by independent exponential ran-
dom variables with means �1 and �2, respectively.
Then event A occurs �rst with probability �2

�1+�2
.

2.2 How Many Pass Through?

Recall that the lock access protocol consists of an inspect
phase (which is an initial read of the shared variable that
comprises the lock), a write phase, and a �nal read phase. A
processor inspects the lock to see if it is clear; it attempts to
write its processor ID to the lock; and then it passes through
the lock successfully if it reads its own ID. A processor that
passes successfully through the lock eventually clears the
shared variable so that others may pass through; until this
occurs, the processor is said to own the lock. Mutual exclu-
sion is guaranteed as long as no two processors believe they
own the lock at the same time.

Fischer's mutual exclusion algorithm also allows for
pauses. In particular, it is useful for a processor P to pause
after the write phase, so that any other processor that might
have passed the inspect phase has a chance to overwrite the
shared lock variable before P reads back its own value. We
begin our analyses without considering the e�ect of a pause;
however, it will return later.

We denote the three phases by I, W, and R, respectively.
In this section, unless otherwise stated we assume that the
times for each of these actions are exponentially distributed,
with means i, w, and r respectively, where the values of i,
w and r are �xed constants (independent of the number of
processors in the system). For convenience we scale so that
w = 1 unless otherwise noted.

We begin by presenting some simple arguments regarding
how many processors complete successive stages of a lock in
the face of contention. These arguments do not answer our
main question, which is how often does just one processor
successfully obtain a lock in the face of contention. They do,
however, introduce the
avor of our arguments and provide
some initial insight.

Theorem 1 Consider a situation where n processors begin
inspecting a free lock at the same time. Then with constant

probability at least
(
p
n=i) processors complete the inspec-

tion stage before the �rst write completes.

Remark: The assumption that the processors begin at
the same time is for convenience; since all times are expo-
nentially distributed, as long as a write has not occurred, we
may take any instant when n processors are in the I stage
as the beginning.

Proof: We derive a recursive function pj describing the
probability that at least j processors successfully inspect the
lock before the �rst write. Suppose that jth inspection has
just completed, and no writes have yet occurred. Then the
time until the next inspection completes is exponentially
distributed with mean i=(n � j), as there are n � j pro-
cessors remaining. The time until the �rst write completes
is exponentially distributed with mean 1=j, as there are j
processors attempting a write. Hence the probability that
another inspection completes before the �rst write is n�j

ij+n�j .

Recursively, then, we have p1 = 1 and pj+1 = pj
n�j

ij+n�j .

Let z =
p
n=i. Then

pz+1 =
Y

1�j�z

n� j

ij + n� j

=
Y

1�j�z

�
1� ij

ij + n� j

�

�
Y

1�j�z

�
1� ij

(1� �)n

�
;

for an � that goes to 0 as n gets large. Hence

pz+1 �
Y

1�j�z

�
1� ij

(1� �)n

�
�
�
1� 1

(1� �)z

�z

;

which is arbitrarily close to e�1=(1��) for su�ciently large n.
This demonstrates that with constant probability, at least

�p

n=i
�
processors complete the I stage.

It is easy to extend the proof of Theorem 1 to show
that the expected number of processors that complete their

I stage before the �rst write is actually �(
p
n=i). In fact,

asymptotically exact formulae can be found with some work.
We demonstrate this for the case i = 1, which yields an
interesting result, although the same technique applies for
other cases. When i = 1, we have pk =

Q
1�j�k�1

n�j
n

,

and the expected number of processors that complete the I
stage before the �rst write is EI =

Pn

k=1
pk. Consider plot-

ting the points ((k � 1)=n; npk) in the �rst quadrant of the
Euclidean plane for k = 1; : : : ; n. The area under the succes-
sive axes-parallel rectangles de�ned by these points equals
the desired expectation EI . But the area of these rectan-
gles approximates the area under a curve passing through

these points. De�ning a curve that passes through these
points is di�cult, but we can �nd a curve that nearly passes
through these points quite easily. Consider moving from
(x; y) = ((k � 1)=n; npk) to (k=n; npk+1). Note that as we
move �x = 1=n on the x-axis, the corresponding y-value
drops by �y = �xy. Hence our points are well approx-
imated by the curve de�ned by the di�erential equation
dy=dx = �nxy and the boundary condition y(0) = n. This

curve is just y = ne�nx
2=2. The area under the curve isZ 1

0

ne�nx
2=2dx �

q
�n

2

for su�ciently large n. Hence, if n processors begin an I
stage, then (up to lower order terms) on average

p
�n
2

pro-
cessors complete their inspection before the �rst write oc-
curs.

Theorem 2 Consider a situation where n processors be-
gin to write to a lock at the same time. Then on average
�(ln(rn)=r) read their own value.

Proof: The time between the jth and (j + 1)st write
is exponentially distributed with mean 1=(n � j). Hence
the probability that the processor that makes the jth write
reads its own value is

1
n�j

r+ 1
n�j

=
1

r(n� j) + 1
:

The expected number of processors that read their own value
is therefore

nX
j=1

1

r(n� j) + 1
:

When r = 1, this is simply
Pn

j=1
1=j = H(n) � lnn. Oth-

erwise, up to lower order terms, we have

nX
j=1

1

r(n� j) + 1
�
Z n

x=0

1

xr+ 1
dx =

ln (rn) + 1

r
:

The argument of Theorem 2 can be easily modi�ed into a
result showing that, in the setting of the theorem, the num-
ber of processors that read their own value is �(lnn) with
high probability. The key is that the event that a processor
reads before the next write completes is independent of all
other such events. Hence, to obtain a bound on the num-
ber of reads that complete, standard Cherno�-type bounds
apply.

From Theorems 1 and 2 we immediately obtain as a
corollary that two locks are signi�cantly better than one,
in terms of the number of processors that can get through
(in the case of no pauses). Speci�cally, for a single lock with
all times having the same mean, �(

p
n) processors inspect

the free lock before a write occurs with constant probabil-
ity. Of these processors, �(ln

p
n) = �(lnn) then read their

own values and hence pass through the lock. For a double
lock, with high probability O(lnn) get through the �rst lock,
and hence on average at most O(ln lnn) pass through the
second. Note that changing the mean times for the I, W,
or R operations (while keeping them constant) only changes
these expressions by constant factors, and hence this remains

true even if the average time to pass through the lock is the
same in both scenarios. Hence, in the face of su�ciently
large contention, double locks are much better with regard
to the number of processors that pass through (on average,
with no pauses).

2.3 How Often Does One Pass Through?

Showing that on average fewer processors pass through a
double lock than a long single lock does not really answer
our question of which is better. The proper measure of per-
formance is how often a lock successfully allows only one
processor through. We now focus on this variable. First, we
show that for a single lock with exponentially distributed
read and write times (and no pause), a single lock can per-
form quite poorly under high contention.

Theorem 3 Consider a single lock with n processors begin-
ning a write at the same time. The probability that just a

single processor reads its own value is O(r

p
1=rn).

Proof: We begin with the case r = 1. Recall from The-
orem 2 that the jth processor to write reads its own value
with probability 1=(r(n � j) + 1), and that all such events
can be treated as independent. Clearly the last processor to
write will read its own value. The probability that it is the
only one to do so is�

1 � 1

2

��
1� 1

3

�
: : :
�
1� 1

n

�
=

1

2

2

3
: : :

n� 1

n
=

1

n
:

Thus, when r = 1, the probability that only one processor
believes it obtains the lock is 1=n. For a general r, this
probability is

nY
j=1

�
1� 1

r(n� j) + 1

�
�

nY
i=1

e�1=(r(n�1)+1)

= e
�
P

n

i=1
1=(r(n�1)+1)

� e� ln(rn)=r

= 1= r
p
rn;

where the approximations are correct up to lower order
terms.

The result of Theorem 3 demonstrates how the proba-
bility of success increases with r and decreases with n. Al-
though increasing r substantially increases the probability
of just one processor successfully obtaining the lock, as n
grows large, for any �xed r this probability falls to 0.

We now consider the probability of exactly one processor
taking control of a double lock. Under a reasonable assump-
tion, we �nd that in this case, the probability that a single
processor obtains the lock is bounded below by a constant,
regardless of how n grows. This result is somewhat surpris-
ing, given the previous result for a single lock.

In this setting, we adopt the following assumption: once
a processor passes through the second lock, it will hold that
lock for a reasonably long amount of time. Hence, if one
processor writes to the second lock before any others read
it, we assume that this processor does not clear the second
lock until well after all others read that it has possession.
This assumption simpli�es the problem, as now we need only
consider the problem of whether one processor writes to the
second lock before any others read it. It is also reasonable,
since a lock is held long enough so that the critical section
can be executed.

Theorem 4 Consider a double lock where all actions take
time exponentially distributed with mean 1 for each proces-
sor. Let n processors begin a write for a �rst lock of a double
lock at the same time. Then with constant probability, one
processor writes to obtain the second lock before any other
processors successfully pass through the �rst lock.

Proof: The intuition behind the theorem is relatively
simple. With some constant probability, one lucky processor
passes through the �rst lock quickly. It then writes to obtain
the second lock before any other lucky processors can pass
through the �rst lock. We now formalize this intuition. We
�rst consider the case where c = r = w = 1 for convenience.

The jth processor passes through the �rst lock with prob-
ability 1

n�j+1
. Hence the probability that none of the �rst

n=2 processors passes through the �rst lock is

n=2Y
j=1

�
1� 1

n� j + 1

�
=

n� 1

n

n� 2

n� 1
: : :

n=2

n=2 + 1
=

1

2
:

Similarly, the probability that exactly one such processor
passes through the �rst lock is

n=2X
j=1

"
1

n�j+1

1� 1
n�j+1

n=2Y
k=1

�
1� 1

n� k + 1

�#
=

1

2

n=2X
j=1

1

n� j
� ln 2

2
:

Now suppose exactly one processor from the �rst n=2
passes through the �rst lock; let it be the jth to write. We
now lower bound the probability this processor writes to
obtain the second lock before any other processor passes
through the �rst lock. To do so, this processor must com-
plete both an I and W operation. Since all operation times
are exponential, with constant probability both these oper-
ations complete before the (7n=8)th processor completes its
write. This is clear since with probability 1=2, the I opera-
tion occurs before 1=2 of the remaining n� j writes to the
�rst lock, and then with probability 1=2 again, the second
W operation completes before 1=2 the remaining at most
(n + j)=2 writes to the �rst lock. But now, by the same
argument as previously, the probability that no processors
from the (n=2)nd to the (7n=8)th �nish their �rst write and
pass through to the second lock is

7n=8Y
i=n=2+1

�
1� 1

n� i+ 1

�
=

1

4
:

Because of the memorylessness of the exponential distribu-
tion, all of these events can be treated as independent, and
hence with constant probability a single processor success-
fully writes to the second lock as in the statement of the
theorem.

When r and c are �xed constants other than 1, the same
argument su�ces; various constants in the argument must
be changed to re
ect the change in r and c.

The rather loose analysis of Theorem 4 greatly underes-
timates the probability that a single processor successfully
writes to the second lock before all others. The true prob-
abilities are best determined by simulations, and hence we
return to this question in Section 5.

We also note that another way to gain better insight
into the exact probability that a single processor successfully

passes through the double lock is to consider the underly-
ing Markov chain. For instance, this chain can easily be
represented as a six-dimensional Markov chain, where each
dimension tracks the number of processors in each state. Ex-
amining this Markov chain could lead to provable bounds on
various probabilities associated with the lock's behavior. Of
course, a complete analysis of this complex chain appears
rather di�cult. We therefore feel that our intuitive proof,
combined with simulation results, is a natural approach to
the problem.

3 The Gamma Distribution

While the previous section, in which we considered exponen-
tial random variables, showed that a double lock is better
than a single lock, the results must of course be taken in
context. Since we know that in the case that all times are
deterministic, a single lock is su�cient, it becomes inter-
esting to consider how strongly this behavior depends on
the underlying distribution. We o�er some insight into this
problem by considering the gamma distribution. Recall that
a gamma distribution is the sum of a number of exponen-
tial random variables (of the same mean). For example, a
gamma(2) distributed random variable with mean 1 is the
sum of two exponential random variables, each with mean
1/2.

We show that for a gamma(2) distribution, the proba-
bility that only a single processor obtains a single lock is
bounded below by a constant independent of k, the num-
ber of processors contending for the lock. Hence a single
lock behaves more like a double lock under the exponential
distribution in this case.

The intuition behind this performance is as follows. Con-
sider the case where n processors are initiating the write
stage for the lock at the same time. We may think of the
write phase for a processor as consisting of two subphases,
each corresponding to an exponentially distributed amount
of time. Let us say that a processor is half-done with the
write stage if it has completed its �rst subphase. Before
the �rst processor to complete a write �nishes the write,
several processors will be half-done. The number of proces-
sors half-done with their write are very likely to prevent this
�rst processor from �nishing reading its value, for it is very
likely that one of these half-done processors will complete
its write before this processor can �nish its read. This sit-
uation, where half-done writes overwrite completed writes
before the corresponding read �nishes, is likely to occur un-
til few processors remain to complete their writes. When
there are few processors remaining, it is possible for a read
to complete before the processor value is overwritten, but
this only happens with constant probability.

We present the above argument more formally in the the-
orem below, for the case where reads and writes execute with
the same average time. For convenience we take this mean
to be 2. We note that, in practice, one must consider the
proper initial state more carefully. For example, if instead
we begin by considering a set of processors in the inspect
phase, then the state when the �rst processor writes will in-
clude processors half-done with their writes. The argument
can be easily modi�ed to this case.

Theorem 5 Consider n processors beginning the write for
a single lock where the times for writes and reads have inde-
pendent gamma(2) distributions with mean 2. Then a single
processor reads its own value with constant probability.

Proof: We assume that n is su�ciently large through-
out. We �rst show that, with constant probability, by the
time the �rst few writes complete, with constant probabil-
ity there are at least 6

p
n processors that are half-done. We

then show (again with constant probability) that there con-
tinue to be at least 4

p
n processors half done with their write

until there are only 8
p
n processors that have not written.

This fact will allow us to conclude that with constant prob-
ability, all processors that write early fail to read their own
value. We then argue that the probability that more than
one of the last 8

p
n processors to write successfully reads its

own value is at most a constant. Putting all the constants
together leaves a constant probability of a single processor
obtaining the lock.

Consider the time until the �rst write completes. Let pj
be the probability that at least j processors are half done
by this point. By the same argument as Theorem 1, p1 =
1 and pj+1 = pj

n�j
n�j+1

. Again, by the same argument as

Theorem 1, one �nds that at least
p
n are half done when the

�rst write completes with constant probability. One could
use the same argument to show that at least 6

p
n writes

are half done with constant probability; alternatively, one
could show that in a similar manner that by the time some
constant number of writes complete, at least 6

p
n writes

are half done with (a higher) constant probability. In either
case, notice that it is a very low probability event that any of
these early writers successfully read their own value, since
the probability they complete the �nal read before any of
the processors that are half-done with their write is at most�

1p
n

�2
= 1

n
.

Once we reach the point where we have 6
p
n half-done

writes, we claim that there remain at least 4
p
n half-done

writes up until the point where there are at most 8
p
n pro-

cessors left that have not even reached half-done. This is
most easily seen by noting that the number of half-done
writes is dominated by a simple random walk with bound-
aries at 4

p
n and 8

p
n; at each step, the probability of gain-

ing a half-done write is at least as large as the probability
of losing one. A simple calculation then shows that with
at least constant probability, there are always at least 4

p
n

half-done writes. Hence, during the time when all these
processors attempt to read their own value, the probability

that each does so is at most
�

1
4
p
n

�2
= 1

16n
, and hence with

constant probability none of them read their own value.
We now need to consider the end of the process. To see

what happens toward the end of the process, consider what
would happen if the system began with all processors half-
done with their writes. The jth processor to complete its
write would then successfully read its own value with prob-

ability
�

1
n�j+1

�2
. Hence the probability than any processor

other than the last to write would read its own value would
be at most

Pn�1
j=1

�
1

n�j+1

�2
< 6

�2
. (We elaborate on this

below in Theorem 6.)
In the actual process, we have already seen that all be-

haves well up to the point when there are 8
p
n processors

that are not even half-done with their writes. After this
point, the system behaves similarly to one where all remain-
ing processors begin half-done with their writes. Speci�cally,
consider the point where there are k processors left that are
not even half-done with their writes. It is easy to show that
with high probability (on the order of 1=n2=3) that at this
point there are ck log n processors half done with their write

for some constant c. Hence, by the union bound, with high
probability this holds at all points when at most 8

p
n pro-

cessors are not even half-done with their writes.
This implies that the probability of failure at the end,

given that the system has behaved as predicted, is at mostPn�1
j=1

�
1

n�j+1

�2
+ o(1). The o(1) term is partly due to the

fact that we do not need to sum over all values of j up to
n � 1, but only the last 8c

p
n log n to account for the end

of the process. Also, however, it is due to the fact the jth
processor to complete its write would then successfully read

its own value with probability slightly higher than
�

1
n�j+1

�2
,

because some processors are not yet half done with their
writes. Note that the number of processors not yet half done
is always small (a O(log n) factor smaller) compared to the
number that are. This leads to only an o(1) di�erence.

To conclude, we �nd that in the beginning no processors
pass through the lock with high probability, and several pro-
cessors become half done with their writes; conditioned on
this, with constant probability the number of processors half
done with their writes remains high, and hence no processors
pass through the lock in the middle; and �nally, at the end,
conditioned on previous successful behavior, with constant
probability only the last processor to write passes through
the lock. This completes the argument.

Theorem 5 has an interesting implication. Because a
gamma(2) distribution is just the sum of two exponen-
tial distributions, we could easily turn a setting with ex-
ponentially distributed read and write times into one with
gamma(2) distributed read and write times. Each read and
write operation would simply be preceded by a \dummy"
read or write operation. If the operations are uncorrelated,
this e�ectively changes the distributions from exponential to
gamma(2). Although this doubles the average time to ob-
tain a lock, it changes the probability that a single processor
successfully accesses the lock from a diminishing function of
the number of processors n to something bounded below by
a constant.

In fact, the dummy read or write operations are equiv-
alent to a pause operation, where a pause takes a random
amount of time. In Fischer's algorithm, only the read and
not the write operation is delayed in this manner. It is
therefore natural to now consider the case of Fischer's algo-
rithm, where all operation times are exponential and there
is a pause before the �nal read.

Theorem 6 Consider n processors beginning the write for
a single lock where writes and reads have independent expo-
nential distributions with mean 1, and there is a pause before
each �nal read of time that is also independent and exponen-
tially distributed with mean 1. Then a single processor reads
its own value with probability n+1

2n
.

Proof: For the jth processor to complete its write to
read its own value, the corresponding pause and read opera-
tion must occur before any other writes occur. This happens

with probability
�

j
n�j+1

�2
. Hence all but the last processor

to write fail to pass through the lock with probability
nY

j=2

�
1 � 1

j2

�
=

nY
j=2

j2 � 1

j2

=

Qn

j=2
(j � 1)

Qn

j=2
(j + 1)Qn

j=2
j
Qn

j=2
j

=
n+ 1

2n
:

Theorem 6 demonstrates the importance of the pause
operation in the context of Fischer's algorithm in the case of
exponentially distributed operation times. The pause leads
to a completely di�erent type of behavior, avoiding con
ict
in the critical section over half of the time.

4 Two Protocols

We now apply some of the previous results in considering
the performance of two mutual exclusion algorithms. Both
provide mutual exclusion and weak deadlock-freedom.

The �rst protocol we consider, given in Figure 3, is
the combined Fischer-Lamport algorithm presented as Al-
gorithm 3 in [9]. It uses two registers. We also consider
an algorithm using three registers also discussed in [9] that
is obtained by directly replacing the critical section of Fis-
cher's algorithm with a Lamport sytle algorithm for mutual
exclusion, as shown in Figure 4.

The scheme using three registers (FL2) behaves similarly
to a double lock. The �rst lock is represented by the x reg-
ister, and the second \lock" consists of both the y and z
registers. Hence, with exponential service times, even with-
out a pause, we would expect a constant probability for some
processor to successfully execute the critical section on each
trial. The logic is the same as that of Theorem 4; one for-
tunate early processor passes through the lock represented
by register x, and then reaches the critical section before
another processor can block it.

The scheme using two registers behaves essentially like a
single lock on the register x, with the additional register y to
ensure that only a single processor enters the critical region.
It follows immediately from Theorem 6 that if the operation
times are independently and exponentially distributed (in-
cluding the pause), then a single processor passes through
the x lock and hence successfully executes the critical sec-
tion with constant probability. Similarly, it is easy to show
that the probability of a processor obtaining the critical re-
gion goes to 0 as the number of processors increases when
the pause is removed. We formalize this explicitly.

Theorem 7 Consider n processors beginning at L in the
algorithm FL1 of Figure 3. If writes and reads have inde-
pendent exponential distributions with mean 1, and the pause
takes time 0 (i.e., no pause), then a single processor success-
fully executes the critical section with probability o(1).

Proof: First, we note that with high probability, at least

(
p
n) of the n processors starting at L reach the write step,

as shown in Theorem 1. We therefore assume that we begin
with m =
(

p
n) processors at the write stage.

We derive two bounds. The �rst shows that processors
that complete the write to x early are unlikely to reach the
critical section, and the second shows that processors that
complete the write to x late are unlikely to reach the critical
section.

The jth processor to write its own value in register x
must read back its value, read register y, write register y,
and read its own value again before any other processor
writes to register x to obtain the critical section. By now
familiar reasoning, the probability of each of these events
is 1=(m � j + 1)4. Hence, summing over all but the �nal

writes, say when j � m�m1=3, the union bound gives that
the probability that any of these processors reach the critical
section is o(1).

FL1
x; y: shared registers, initially 0

% Entering ME-lock
L:
if x 6= 0 then goto L;
x := i;
pause
if x 6= i then goto L;
if y 6= 0 then goto L;
y := 1;
if x 6= i then goto L;
enter critical region;
exit critical region;
y := 0;
x := 0;
% Exiting ME-lock

Figure 3: A clever Fischer-Lamport combination.

For the second bound, we note that the jth processor
to write its own value in register x can reach the critical
section only if no processor writes the value 1 on register y
before this processor can read the register y. The argument
of Theorem 2 shows that the average number of processes
that read their own value in register x is
(logm); in fact,

it shows that on average
(logm) of the �rst m � m1=2

processors read their own value. Since each such event is
independent, a simple Cherno� argument demonstrates that
with probability o(1), at least some constant number, say

10, of all but the last m1=2 processors read their own value.
Assume that this is the case. All of these processors try to
read and write to register y. Hence consider the �nal writes,
say when j � m �m1=3. For such a write to pass through
the critical section, it must read the value for y before any
of the 10 writes to y complete.

But consider any one of these 10 possible writes to y.
For this write to occur after the jth write to x, either the
corresponding read of y must occur after the (m�m5=12)th
write to x, or the corresponding read of y occurs before the
(m � m5=12)th write to x and the write to y occurs after

the (m�m1=3)rd write to x. Since all operation times have
the same mean, the probability of each of these events is at
most 1=m1=12, and hence the probability of either is at most

2=m1=12. The probability register y still has value for any of

the last (m�m1=3) writes is thus only o(1). (Note that the
case of there being 10 possible writes to y just lowers the
probability that j reaches the critical section even further,
to at most 1024=m10=12 !)

Hence, considering all cases, a single processor success-
fully executes the critical section with probability only o(1).

We note that we have not attempted to optimize the
bounds of Theorem 7. A tight analysis would be interesting.

FL2
x; y; z: shared registers, initially 0

% Entering ME-lock
L:
if x 6= 0 then goto L;
x := i;
pause
if x 6= i then goto L;
y := i;
if z 6= 0 then goto L;
z := 1;
if y 6= i then goto L;
enter critical region;
exit critical region;
z := 0;
x := 0;
% Exiting ME-lock

Figure 4: A direct Fischer-Lamport combination.

5 Simulations

In this section, we present the results of simulations of locks
and double locks with varying service times, as well as ex-
amine the performance of some mutual exclusion algorithms
that use lock-like structures. The goal of this section is to
demonstrate that our previous theorems accurately describe
perceived performance, as well as gain more insight into the
actual performance of mutual exclusion algorithms under
these distributions.

We simulated single and double locks using operation
times with an exponential distribution, a gamma(2) distri-
bution, and a gamma(3) distribution. For the double lock,
all operations have the same mean time, which we scale
to be 1. For the single lock, we have simulated two cases:
one where all operations have the same mean time, and one
where the �nal read operation has mean 4, so that the to-
tal average time for a lock to try a processor is the same
as that for a double lock. We call this a long lock. Each
data point represents the fraction of 10,000 trials for which
a single processor successfully passed through the lock.

The results are presented in Figure 5. We point out some
features of interest. As expected, we �nd that a double lock
dramatically outperforms a single lock in the case of the
exponential distribution. Moreover, the poor performance
of a single lock as the contention grows is clear. For the
gamma distributions, however, the single lock performance
does not deteriorate with contention, as expected. With
a gamma(3) distribution, a single long lock outperforms a
double lock.

Interestingly, the behavior as the number of processors
increases is di�erent for the three distributions! For the ex-
ponential distribution, the probability of success appears to
decrease monotonically in the number of processors, while
for the gamma(3) distribution the probability appears to
increase monotonically in the number of processors. Mean-
while, for the gamma(2) distribution, the probability is non-
monotonic in the number of processors. This behavior may

One Long Lock

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

Processors

P
ro

b
ab

ili
ty Exp

G(2)

G(3)

Two Locks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

Processors

P
ro

b
ab

ili
ty Exp

G(2)

G(3)

One Lock

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

Processors

P
ro

b
ab

ili
ty Exp

G(2)

G(3)

Figure 5: Comparing the behavior of a single lock and a
double lock.

Fischer-Lamport Variations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

Processors

P
ro

b
ab

ili
ty FL1, no pause

FL1, pause

FL2, no pause

FL2, pause

Figure 6: Comparing combined mutual exclusion algo-
rithms.

be worthy of future study, if only as a mathematical curios-
ity.

We also present some results for the mutual exclusion
algorithms of Section 4 in Figure 6. For these results, the
distribution of the time for all operations is taken to be
exponential with mean 1.

Note the dramatic e�ect of the pause in the perfor-
mance of FL1. This is not surprising, given the analysis
of Section 4. Also, note that with the pause the FL1 al-
gorithm succeeds a little more than 1/2 of the time. A
rough approximation of this behavior is derivable from The-
orem 6. Slightly over 1/2 of the time, a single processor will
pass through the �rst lock. When multiple processors pass
through the �rst lock, sometimes one will reach the critical
section before any other processor can block it; this accounts
for the additional probability of success. The mutual exclu-
sion algorithm FL2 performs better, but of course it uses an
extra register and on average more time, since more reads
and writes are performed by each processor. Tighter analy-
ses or exhaustive simulations of the behavior of these algo-
rithms might lead to a better comparison. It seems di�cult
to develop a more general statement as to which algorithm
is preferable, as the decision may simply depend on the un-
derlying timing distributions.

6 Conclusions and Open Questions

We have examined the behavior of timed locks under sim-
ple distributions, including exponential and gamma distri-
butions, using both theoretical analysis and simulations. In
particular, we have focused on the question of whether two
locks are better than one, and shown how it may depend on
the distribution of the completion time of operations. We
have also considered how this e�ects the design of mutual
exclusion algorithms.

We believe there are several ways to extend this work.
A better understanding of the Markov chains underlying
double or more extensive sequences of locks would be in-
teresting. For example, it would be appealing to determine
with some accuracy the probability that only one proces-
sor passes through a double lock (even if only in the lim-
iting case) by analyzing the underlying Markov chain in a
more careful manner. Also, it would be worthwhile to un-
derstand the behavior of timed locks under more general
distributions. In particular, truncated distributions where

events occur within some bounded period of time may pro-
vide a more realistic description of actual behavior. Finally,
we suggest that trying to further connect mutual exclusion
analysis with previous work on contention resolution may
be a fruitful approach.

References

[1] D. Attanasio, M. Butrico, J. Peterson, C. Polyzois, and
S. Smith. Design and Implementation of a Recoverable
Virtual Shared Disk, IBM Research Report, in prepa-
ration.

[2] P. Cao, S. B. Lim, S. Venkatarman, and J. Wilkes. The
TickerTAIP Parallel RAID Architecture. ACM Trans-
actions on Computer Systems, 12(3):236-267, Aug.
1994.

[3] M. Fischer. Personal communication from [9].

[4] L. Goldberg. Contention resolution notes. Available at
http://www.dcs.warwick.ac.uk/�leslie/contention.html.

[5] L. Goldberg and P. MacKenzie. Analysis of Back-
o� Protocols for Contention Resolution with Multiple
Servers. In Proceedings of the 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 554-563, At-
lanta, 1996.

[6] L. Lamport. A fast mutual exclusion algorithm. ACM
Transactions on Computer Systems, 5(1):1-11, Feb.
1987.

[7] E. K. Lee and C. A. Thekkath. Petal: Distributed Vir-
tual Disks. Proceedings of the International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 84-92, Oct. 1996.

[8] B. Liskov. Practical Uses of Synchronized Clocks in
Distributed Systems. Distributed Computing, 6: 211-
219, 1993.

[9] N. Lynch and N. Shavit. Timing Based Mutual Exclu-
sion. In Proceedings of the Annual Real-Time Sympo-
sium (RTSS), Phoenix, pages 2-11, December 1992.

[10] P. Raghavan and E. Upfal. Stochastic Contention Res-
olution with Short Delays. In Proceedings of the 27th
ACM Symposium on the Theory of Computing, pages
229-237, 1995.

[11] C. A. Thekkath, T. Mann, and E. K. Lee. Frangi-
pani: A Scalable Distributed File System. Proceedings
of the ACM Symposium on Operating Systems Princi-
ples, pages 224-237, Dec. 1997.

