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Abstract

This paper analyzes and improves the recently proposed bins and balls signature (BiBa [23]),

a new approach for designing signatures from one-way functions without trapdoors.

We �rst construct a general framework for signature schemes based on the balls and bins

paradigm and propose several new related signature algorithms. The framework also allows us

to obtain upper bounds on the security of such signatures. Several of our signature algorithms

approach the upper bound. We then show that by changing the framework in a novel manner we

can boost the eÆciency and security of our signature schemes. We call the resulting mechanism

Powerball signatures. Powerball signatures o�er greater security and eÆciency than previous

signature schemes based on one-way functions without trapdoors.

Keywords: One-time signature, signature based on one-way function without trapdoor, Power-

ball signature.

1 Introduction

Although the speed of high-end processors continues to steadily increase, we simultaneously witness

the proliferation of low-powered, resource-starved handheld devices (e.g. cell phone, pager, Palm

pilot). These handheld devices are designed for mobility and convenience, and their computation

power is limited by minimal microprocessors and energy resources.1 Similarly, low powered com-

putation devices have been proposed to build sensor networks for measuring the weather or other

geographically distributed phenomena. We collectively call handheld devices and sensor network

nodes with constrained computation and energy resources small devices. The widespread deploy-

ment of small devices with severe resource constraints motivates the need for faster and simpler

signature mechanisms, even though microprocessors continue to dramatically increase in speed. On

these small devices, even the most eÆcient asymmetric signature algorithms typically require on

the order of seconds to generate or verify a signature (assuming that the signature code even �ts

into memory). Section 7 reviews related work in eÆcient signature schemes.

Signatures based on one-way functions without trapdoors (sometimes called one-time signature

schemes) are an interesting alternative to signatures based on asymmetric cryptography [4, 5, 14,

18, 19, 28]. One of their main advantages is that these signatures only rely on a one-way function,

which we can implement with a fast hash function (e.g. SHA-1 [22] or MD5 [29]), or from a block

cipher [16, 20, 26, 27].

These one-time signature schemes are orders of magnitude faster than traditional signatures, so

they may be an attractive alternative for small devices. However, some of these schemes have large

1To save production costs, manufacturer deploy minimal microprocessors for the required task. Even in the year

2000, 80% of all microprocessors shipped are 4-bit and 8-bit processors [35].
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signatures, and can only sign a �xed number of messages per public key. We review the merits and

drawbacks of one-time signature schemes in Section 7.

The recently proposed bins and balls (BiBa) signature is a promising new approach to mitigate

some of the drawbacks of one-time signatures [23]. We review BiBa in Section 2. In Section 3

we present an abstract framework for these types of signatures, which allows us to present new

approaches in Section 4 that are more secure. Our framework also allows us to analyze the security

of these signature schemes (see Section 5); we �nd that the security of the basic BiBa signature as

well as several of our variations is close to the theoretical bound.

In Section 6 we extend our abstract framework and �nd an opportunity for a new signature

scheme that improves the security of the previous approach (given a certain signature overhead).

From this framework, we derive the Powerball signature, a new one-time signature scheme with low

overhead and high security. We �nd that Powerball schemes are viable alternatives for signatures

in small devices.

2 Review of the BiBa Signature

This section presents a brief review of the BiBa (bins and balls) signature algorithm [23]. The

set of t secret balls constitutes the private key PK�1 = fB1 : : : Btg. The public key commits

to all balls in the private key.2 The public key may be the concatenation of t commitments

PK = F (B1) jj : : : jj F (Bt) = c1 jj : : : jj ct, or the public key may be the root of a Merkle hash

tree computed over the secret balls [17]. For simplicity of the following description, we assume that

the public key is the concatenation of commitments.

To sign message M , the signer computes the hash of the message h = H(M) and uses h to

select a one-way function gh from a family of hash functions G (in the random oracle model [2]).

The hash function gh maps each ball to one of the n bins. The signature is a collection of balls

that produce a special pattern in the bins. A BiBa signature is a collection of k balls that form a

k-way collision under gh in one bin: hB�1 ; : : : ; B�k
i where �i is the index in the public key of the

ith ball in the signature.

To verify the signature hB�1 ; : : : ; B�k
i on message M , the veri�er performs the steps: (1) check

that all balls of the signature are distinct (B�i
6= B�j

for i 6= j); (2) verify the authenticity of the

balls using the public key (check that F (B�i
) = c�i

3); (3) compute h = H(M) and select gh from

the one-way function family; (4) verify the k-way collision (gh(B�1) = : : : = gh(B�k
)).

Note that the probability Ps that the signer can successfully sign a message is less than 1. To

deal with this problem, the signer can use a counter value c as follows. The signer computes the

hash of the message h = H(M jj c) and uses h to select the one-way function gh. If this does not

lead to a successful signature the signer can increment the counter and try again. The signature

is then hB�1 ; : : : ; B�k
; ci. In this setting we may de�ne Ps to be the probability that the signer

can successfully sign for a given value of c. In the original BiBa paper a design goal was to have

Ps � 1=2, so that on average only two values of c need to be tried.

2A commitment locks in a secret s without revealing s. We use a one-way and weak collision resistant function F

to commit to a secret s: the commitment is c = F (s). To open the commitment, one publishes s and anybody can

verify that s really corresponds to c: compute F (s) and verify the equality c = F (s).
3In practice the singer could help the veri�er by also sending the indices �i; this does not change the security of

the system since the the forger could easily change these uncommitted values.
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k n Pf k n Pf

2 762460 2�19:5403 13 192 2�91:0196

3 15616 2�27:8615 14 168 2�96:1001

4 3742 2�35:6088 15 151 2�101:3377

5 1690 2�42:8912 16 136 2�106:3119

6 994 2�49:7855 17 123 2�111:0802

7 672 2�56:3539 18 112 2�115:7250

8 494 2�62:6386 19 104 2�120:6079

9 384 2�68:6797 20 96 2�125:1143

10 310 2�74:4851 21 89 2�129:5147

11 260 2�80:2237 22 83 2�133:8758

12 222 2�85:7386 23 78 2�138:2788

Table 1: The security of some BiBa instances. The signer knows t = 1024 balls and the adversary

has r = k balls. The table shows the probability of forgery Pf to �nd a k-way collision when

throwing k balls into n bins.

We de�ne Pf as the probability that an attacker forges a signature after one attempt. We list

Table 1 from [23], which lists Pf for di�erent BiBa instances, where in each case the number of

bins n is chosen so Ps � 1=2. To compute the Pf listed in the table, we assume that the attacker

knows the balls from one disclosed signature, so Pf =
1

nk�1
.

3 A generalized setting

We may abstract the BiBa setting into a combinatorial balls and bins setting as follows. The signer

has t balls, B1; B2; : : : ; Bt, from a universe U1. The signer can construct functions ghi , for i =

1; 2; : : :, so that the functions ghi map balls into bins, where the bins lie in a universe U2. We assume

that the functions ghi look random, so that we model the bin ghi(Bj) as a bin chosen independently

and uniformly at random from U2. A signature consists of a function index i along with a set of k or-

dered pairs of balls and their corresponding bins, f(B�1 ; ghi(B�1)); (B�2 ; ghi(B�2)); : : : ; (B�k
; ghi(B�k

))g.

For a signature to be valid, it must be a member of the set of valid signature patterns P , where

P � (U1 � U2)
k.

A forger can construct functions gfi , for i = 1; 2; : : :, that also appear to map balls to bins

independently and uniformly at random. The forger, however, does not have access to all t

balls, but only to balls used by the sender in a sent signature. In the case where a set of

t balls is only used to construct a single valid signature, the forger will only have access to k

balls; this is the case we consider in detail here. The forger creates a successful signature forgery

f(B�1 ; gfi(B�1)); (B�2 ; gfi(B�2)); : : : ; (B�k
; gfi(B�k

))g if this signature lies in the set of valid signa-

ture patterns P .

In the original BiBa paper, the set of valid signature patterns P consisted of any set of k balls

that all fell in the same bin. The design goal that the successful signature probability Ps be at least

1/2 determines the number of bins n that can be used. While this choice is somewhat arbitrary, as

we shall see in our analysis in Section 5, it is useful for comparison purposes and we will adopt it

hereon as well.
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4 Variations

In this section we consider other possible schemes based on our general framework. Some of our

examples prove better than the original BiBa scheme in some cases; others are given simply as

instructional examples of what is possible. The variations listed are by no means exhaustive.

We provide limited numerical results, comparing our scheme against the BiBa scheme for the

range of Pf values that are interesting for practical applications (roughly 2�70 to 2�90).

� The bins correspond to the range [0; n � 1] and a valid signature pattern consists of k balls

that lie in distinct bins a1; a2; : : : aj with ki balls in bin ai. As a speci�c example, the k balls

could lie in two distinct bins each with exactly k=2 balls. This is a natural generalization of

the BiBa scheme that performs better for some parameter settings.

For example, let us consider the case where a valid signature pattern consists of k balls with

k=2 balls in each of two distinct bins. The probability the forger succeeds is
�n
2

�� k
k=2

� �
1
n

�k
;

this is easily seen by multiplying the number of ways of choosing two bins, the number of ways

of splitting the k balls between the bins, and the probability the balls land in the appropriate

bins.

In Table 2 below, we consider some speci�c examples where at least x balls are required to

land in each of y distinct bins, so that k = x � y. In all of these simulation results, we check

that Ps � 1=2 over a series of 1; 000; 000 trials.4 In all cases using two bins with k=2 balls a

signature performs better than the original BiBa scheme by at least a factor of 2.

k x y n Pf

10 5 2 1308 2�75:85

12 6 2 796 2�87:52

14 7 2 551 2�98:53

12 4 3 2290 2�87:96

12 3 4 6856 2�87:57

Table 2: Results when a signature requires throwing k balls into y bins with x balls in each bin.

� The bins correspond to the range [0; n � 1] and a valid signature consists of k balls falling

in sequential bins modulo n. For the forger, the probability that k balls form a signature

is just (1=n)k�1k!; there are n possible starting positions, and for each starting position the

probability the k balls land in the appropriate k consecutive bins in some order is (1=n)kk!.

This scheme appears to perform slightly worse than the original BiBa scheme, as shown in

Table 3, which is also based on having Ps � 1=2 over 1; 000; 000 trials.

� The balls lie in a universe [0; 2z), the bins correspond to the range [0; n � 1], and a valid

signature pattern consists of k balls B�1 < B�2 < : : : < B�k
falling in sequential bins in

order. That is, B�1 falls in the �rst bin in the sequence, B�2 in the second, etc. This extends

4Technically, ensuring Ps � 1=2 requires some statistical care; in practice, we simply tested that if Ps � 1=2, we

were obtaining results at least one standard deviation from the mean. Small variations in n yield minor variations in

Pf , so we feel our results are accurate enough for demonstrative purposes.
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k n Pf

10 1489 2�73:07

11 1318 2�78:39

12 1188 2�83:52

13 1087 2�88:50

Table 3: Results when a signature requires k consecutive non-empty bins.

k n Pf

10 290 2�73:62

11 241 2�79:13

12 205 2�84:47

13 177 2�89:61

Table 4: Results when a signature requires k consecutive bins with balls in temporal order.

the previous example to include a natural temporal ordering on the balls. One might think

the signer would have an advantage in this case since the sender can have several balls in a

bin, and therefore the e�ect of the temporal ordering may be harsher for the forger than the

signer. Note the probability of a forgery is now just (1=n)k�1, matching the original scheme.

This modi�cation improves over the previous scheme slightly but the resulting numbers are

still not better than BiBa, as shown in Table 4. Again, the results are based on 1; 000; 000

trials.

� The n bins correspond to
�v
2

�
edges on a graph with v vertices, and a valid signature pattern

consists of k edges that form a cycle. While this scheme sounds simple, in practice it would

prove hard to implement. While algorithms for �nding k-cycles in graphs exist, the best

known general algorithms are exponential in k [1, 39]. (Since these are random and fairly

sparse graphs, better algorithms may exist; still, this is a non-trivial problem.) Since cycles

of length 4 are easier to �nd, we suggest the following variation.

� The n bins correspond to
�v
2

�
edges on a graph with v vertices, and a valid signature pattern

consists of k = 4k1 edges that form k1 vertex-disjoint cycles of length 4. Finding cycles

of length four can be done using matrix multiplication on the adjacency graph, and faster

algorithms are known [10]. This approach still requires signi�cant computation for �nding a

signature, unlike the original BiBa scheme; however, verifying a signature can still be done

quickly.

We consider the speci�c case of k = 12 and compute the probability of a successful forgery.

There are 1
6

�v
4

��v�4
4

��v�8
4

�
possible ways of choosing the sets of vertices that constitute the three

cycles, and then three ways of orienting the vertices within a cycle. Hence the probability of

a successful forgery is
27
6

�v
4

��v�4
4

��v�8
4

�
12!

�v
2

�12
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In simulations we �nd that 936 vertices yields Ps � 1=2. We did only simulations of 10,000

trials here, as we used simple matrix multiplication techniques to check for cycles of length

four. In this case Pf = 2�89:28. This is more than a factor of eight smaller than for the

original BiBa scheme.

� The balls lie in a universe [0; 2z), and the bins correspond to the range [0; n� 1] for an even

number n. We assume the balls are thrown in sequential order, according to a load balancing

scheme as described by V�ocking [37]. Each ball has two possible hash locations, one chosen

independently and uniformly at random from the range [0; n=2 � 1] (which we call the left)

and the other chosen independently and uniformly at random from the range [n=2; n � 1]

(which we call the right); it is placed in the bin with fewer balls, with ties being broken in

favor of the smaller numbered bin (toward the left). A signature in this scheme corresponds

to a witness tree, which proves that a bin with a certain number of balls exists. For example,

to show that a bin on the left holds three balls, we must not only show the three balls in that

bin, but we must show for the third ball on the left that the corresponding bin on the right

had two balls there previously. Further discussion of the witness trees can be found in [37],

and of course this approach can be generalized to other similar hashing schemes.

The speci�c case of k = 12 corresponds to a witness tree for a bin with three balls on the

left, where there are no repeated balls in the tree. We tested this case, �nding that 1316 bins

allow for Ps � 1=2. The probability of a false positive is somewhat more diÆcult to compute;

we simply note that with these parameters Pf = 2�87:68, which is almost a factor of 4 better

than the corresponding BiBa scheme.

5 A Unifying Analysis

It should be apparent from our results in the previous section that many of the schemes we suggest

appear to perform nearly the same. This may seem somewhat unusual, given the variety in the

descriptions of the schemes and the variety in the number of balls necessary to achieve Ps � 1=2. In

this section we provide an analysis that explains this behavior. Our analysis yields both an upper

bound on and an approximation for the performance of BiBa schemes and the variations we have

considered in Section 4.

We will say that a bin is covered if a ball lands in the bin. Let us �rst consider any balls and

bins setting where each successful signature corresponds to one of N distinct patterns, where each

pattern consists of a list of k distinct bins to be covered.

Theorem 1 In the setting where a valid signature corresponds to one of N distinct patterns, where

each pattern consists of a list of k distinct bins to be covered,

Ps

Pf
�

tk

k!

Proof: We �rst note that the probability of success for the forger is Pf = Nk!
nk

. Now consider the

probability of success for the signer. As an upper bound (and rough estimate) for the success of

the signer, we may consider the expected number of successful patterns matched by the signer. To

6



see this, let pi be the probability that the signer matches at least i patterns, and let X be a random

variable representing the number of patterns matched. Then

E[X] = p1 + p2 + p3 + : : :

Hence E[X] � p1 (and in fact E[X] � p1 when pi is small for i � 2).

Now consider the event that for a speci�c pattern all k bins are covered. The probability

that any single bin is covered is at most t=n by a union bound. Moreover, for any two bins,

the events corresponding to each being covered are negatively correlated. It follows easily that

(t=n)k is an upper bound on the probability that all bins in the pattern are covered. Hence

N(t=n)k � E[X] � p1 = Ps.

It follows that Ps

Pf
� tk

k! , proving the theorem.

Interestingly, this upper bound is independent of the number of bins n and the number of

patterns N .

Looking at the argument more closely, we see that the upper bound should be a fairly good

approximation of the ratio. There is an error introduced because E[X] � p1, but when pi is small

for i � 2, this error is not large. Also, in bounding E[X] we used a union bound of t=n for the

probability that a bin is covered. In fact the probability that any speci�c bin remains uncovered

(1 � 1=n)t � e�t=n. Now if n is large, the events corresponding to bins being covered are nearly

independent. Hence for suÆciently large n, the probability that k bins that constitute a pattern

are covered is approximately (1 � e�t=n)k. If n is large compared to t, then this is approximately

(t=n)k, the quantity used in the theorem.

Hence we conclude this upper bound is a good approximation when n is large compared to t

and when pi is small for i � 2. These properties are approximately true for many of our variations,

explaining their similar performance despite the varying nature of the patterns and the number

of bins required to achieve a success probability Ps � 1=2. This argument also explains why the

variations that have more bins generally appear to do better than the original BiBa scheme. The

poorer performance of schemes involving covering several consecutive bins is also clari�ed, as with

these schemes it is clear that p2 and higher values of pi are comparatively large.

While technically the above argument assumed that a pattern consisted solely of a set of bins to

be covered, entirely similar results can be shown to hold for all of the variations we have considered.

For example, consider the original BiBa scheme, in which a bin is supposed to receive not just one

but many balls, which does not appear to �t this model. However, consider the relationship between

an original BiBa scheme with n bins and a modi�ed scheme with ng bins that are grouped into n

groups of size g. If we seek k balls in the same bin for the original BiBa scheme, then our patterns

in the modi�ed scheme will consist of all sets of k distinct bins that all lie in the same group. The

two schemes are nearly equivalent, and hence the performance ratio is essentially the same.

Similarly, requiring the balls to arrive in a speci�c order does not change the result. The

probability of success for the forger drops to to N
nk
, since ordering variations no longer help the

forger. But there is a corresponding drop in the bound for Ps by a 1=k! factor, since the sender

must also achieve a speci�c ordering on the balls.
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6 The Powerball Signature

This section introduces the Powerball signature, our improvement on the BiBa signature. Our new

signature is based on the following observation. The original BiBa scheme has a �xed number of

known signature patterns, i.e., a collision of k balls in one bin is a valid signature pattern. In BiBa,

these patterns are implicit; all the participants agree on them. In our new approach, the signature

patterns are explicit. In the same way the signer commits to t balls in the public key, the signer

also commits to t0 patterns Pi (1 � i � t0). Each pattern speci�es k bins, so Pi = hb1; : : : ; bki.

As in BiBa, to sign message M , the signer computes the hash of the message h = H(M jj c) (c

is a counter that the sender increments if it didn't �nd a signature) and uses h to select a one-way

function gh from a family of hash functions G (in the random oracle model [2]). The hash function

gh maps each ball to one of the n bins. To �nd a valid signature, the signer searches for a complete

pattern Pi, where every bin in the pattern contains a ball. (If a bin appears � times in the pattern,

the corresponding bin contains at least � balls.) If the signer �nds a complete pattern Pi, it creates

the signature hB�1 ; : : : ; B�k
; Pi; ci (where �j are the indices of the balls that landed in the bins of

pattern Pi).

To verify the signature hB�1 ; : : : ; B�k
; Pi; ci on message M , the veri�er performs the steps: (1)

check that all balls of the signature are distinct (B�i
6= B�j

for i 6= j); (2) verify the authenticity of

the balls using the public key (check that the commitment F (B�i
) is in the public key); (3) verify

the authenticity of the pattern Pi using the public key (check that the commitment F (Pi) is in the

public key); (4) compute h = H(M jj c) and select gh from the one-way function family; (5) verify

that the k balls cover all k bins of pattern Pi = hb1; : : : ; bki, so gh(B�1) = b1; : : : ; gh(B�k
) = bk.

Let us consider the ratio of success between the sender and the forger in this model. The forger

knows k balls and a pattern. Recall that in the standard scheme with k + 1 balls sent, we found

an upper bound on this ratio tk+1

(k+1)! . The probability of success for the forger in our new scheme is

Pf =
k!
nk
.

For the signer, we approximate the expected number of matched patterns, which in turn ap-

proximates Ps. For simplicity we assume that the signer has t0 = t possible patterns; we further

assume that the system is arranged so that these patterns are distinct. As before, the probability

that each is covered is upper bounded by (t=n)k; this is a good approximation if n is much larger

than t. Hence our approximation for Ps is t
k+1=nk, and hence the ratio between the sender and

forger is tk+1

k! . Our new scheme therefore changes the bound of Theorem 1, doing better by a factor

of k + 1.

Adding t0 = t commitments of the patterns to the public key would double its size, a rather

severe additional cost. We introduce a method to add the patterns to the public key without

increasing its size. Imagine that the ball is the commitment of the pattern, so a commitment

in the public key commits to both the ball and the pattern. We call this structure a Powerball.

For a Powerball, we begin with a bit string that represents a pattern Pi. (For now we assume a

simple mapping from bit strings to patterns.) The ball Bi is derived from the pattern Pi using the

one-way function F : Bi = F (Pi). The commitment Ci is then a further application of F on Bi:

Ci = F (Bi) = F (F (Pi)). This requires the additional assumption that F is not only one-way, but

that as a function it appears random, so that we may assume the balls are distributed independently

and uniformly at random. Hash functions in the random oracle model have this property [2].

Note that the forger can obtain a (k + 1)st ball from Pi by computing Bi = F (Pi). We solve

8



k n Pf

9 1734 2�78:37

10 1548 2�84:17

11 1407 2�89:79

12 1295 2�95:23

13 1204 2�100:50

Table 5: Results with the Powerball scheme when a signature pattern uses k bins, and therefore

k + 1 Powerball are used.

this problem by requiring that the ball Bi does not occur as a ball in the signature. If the forger

does not have another pattern, it cannot use Bi because it has to use the only pattern it knows.

Results from simulations of the Powerball scheme are presented in Table 6. Comparing with

Table 1, we see that the Powerball scheme does improve performance, as the theoretical framework

suggests. A Powerball is worth almost another ball; that is, using k + 1 = 11 Powerballs is almost

as good as requiring 12 balls to fall into a bin using the original BiBa scheme.

We can slightly enhance the advantage for the signer by further changing the meaning of a

Powerball. For example, suppose we require that two Powerballs must be combined in some order

to represent a pattern. For example, we may take the exclusive-or of bits in the Pi in order to

obtain a pattern. In this case we use k + 2 Powerballs to represent a signature; k correspond to

balls, and two correspond to a pattern. In this case we still have Pf =
k!
nk
. On the other hand, for

the signer we have E[X] � tk+2

2nk
. Note the introduction of the factor of two in the denominator,

since there are
�t
2

�
possible patterns for the signer. Hence the upper bound on the ratio Ps=Pf is

about tk+2=2k!. This is a factor
�k
2

�
better than the scheme without Powerballs. Again, there are

tradeo�s to using such mechanisms, including the diÆculty for the signer to �nd a matched pattern,

so these Powerball variations may be of theoretical interest only. However, this demonstrates how

small changes in the model can lead to di�erent analyses.

A similar idea can be used to reduce the size of the public key, which is very large in the standard

BiBa scheme. Suppose we require that two Powerballs be combined, say via an exclusive-or, in

order to construct a ball. In this case, a sender with t Powerballs has roughly
�t
2

�
balls to play with;

this number is not exact because we restrict each pair of Powerballs to be disjoint. Now a forger

with k non-pattern Powerballs has (k � 1) � (k � 3) � : : : 3 � 1 ways of pairing up the k Powerballs

into k=2 actual balls. Hence at the cost of increasing the power of the forger somewhat (by giving

the forger more than one set of balls to use), we can dramatically reduce the size of the public key.

Whether this tradeo� is useful may depend on the desired system parameters.

7 Related Work

We �rst review related work in eÆcient asymmetric signatures targeted towards resource-constrained

devices. We then review research related to signatures based on one-way functions without trap-

doors. We also point out that the idea of using the asymmetry between signers and forgers in balls

and bins scenarios has been used in other situations, such as the MicroMint payment scheme [30].
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EÆcient Signature Algorithms for Resource-constrained Devices

Previous studies show that computing asymmetric cryptographic operations (e.g. computing an

RSA signature [31], or a DiÆe-Hellman key agreement [9]) takes on the order of seconds and

sometimes even minutes on some handheld devices. Brown et al. analyze the computation time of

various digital signature algorithms on various platforms [7]: Elliptic Curve Cryptography (ECC)

signature algorithms require 1:0{2:2 seconds for one signature generation, and 1:8{5:3 seconds for

veri�cation (on a Palm Pilot or RIM pager). On the same architecture, a 512-bit RSA signature

requires 2:4{5:7 seconds for generation, and 0:1{0:6 seconds for veri�cation (depending on the public

exponent). The problem of performing cryptographic operations on minimal hardware is even more

pronounced on some sensor networks. For example, futuristic Smart Dust sensors present even more

stringent resource constraints [13, 38].

To speed up the slow signature generation, Even, Goldreich, and Micali propose on-line / o�-line

signatures [11]. The slow signing operation is performed o�-line, and the signer has subsequently a

low overhead to generate the �nal signature. They propose to use a traditional signature algorithm

to sign the public key of a one-time signature algorithm o�-line. The on-line signature with the

one-time signature algorithm is very eÆcient.

Schnorr proposes a signature algorithm that allows the signer to perform most of the work

o�-line and the remaining on-line work is eÆcient [33]. Shamir and Tauman propose a signature

based on chameleon hashing which allows o�-line precomputation and eÆcient on-line signing [34].

Other researchers propose to use computationally more powerful third parties to o�-load some

of the expensive operations. For example, Modadugu, Boneh, and Kim propose to use an untrusted

third party to speed up RSA key generation on a small device [21].

Smart cards also attracted attention for eÆcient signature algorithms. Poupard and Stern

design signature algorithms eÆcient on smart cards [24, 25]. Courtois, Goubin, and Patarin also

design new signature algorithms eÆcient for smart cards [8]. Lenstra and Verheul propose an

eÆcient signature based on XTR, which provides short signatures [15]. Ho�stein, Pipher, and

Silverman propose NSS, an eÆcient NTRU lattice-based signature algorithm [12]. To the best of

our knowledge, the signature veri�cation times of all of these algorithms are still slower than RSA.

Signatures based on One-way Functions without Trapdoors

Signatures based on one-way functions without trapdoors are sometimes also called one-time sig-

natures.

Rabin published the �rst one-time signature based on a symmetric encryption function [28].

The signature requires interaction between the signer and the veri�er, and the public key and

signature are on the order of 1 Kbyte.

Lamport shows how to construct a digital signature out of a one-way function [14]. His approach

does not require interaction between the signer and veri�er, however, the size of the validation

parameters and signature are still on the order of 1 Kbyte. Lamport's basic approach is that the

signer publishes two commitments for each bit (for 0 and 1, respectively) of the data to sign. To

sign the message, the signer reveals one of the values previously committed to, based on whether

the corresponding message bit was 0 or 1.

Merkle and Winternitz improved on Lamport's signature [18, 19]. Even, Goldreich, and Micali

[11] use the Merkle-Winternitz approach to construct their on-line / o�-line signature. Rohatgi
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Signature Generation Veri�cation Signature size Public key size

O�-line On-line (expected)

Lamport 160 1 80 80 160

Merkle-Winternitz 355 1 169 23 1

Bleichenbacher-Maurer 182 1 72 45 1

BiBa 1024 2048 23 11 1024

Powerball 2048 2048 20 10 1024

Table 6: Comparison of one-time signature algorithms. The table considers a signature of an 80-bit

hash. For the Merkle-Winternitz signature, we use the parameters that Rohatgi proposes to sign

80 bits [32].

further re�nes Merkle andWinternitz's approach and proposes k-times signatures [32], which feature

a small public key and allow signing k messages. The main drawback of this approach is the large

signature size, which is around 300 bytes per signature (for a 6-times key), which is more than twice

the size of the equivalent BiBa signature. Furthermore, the signer computes 350 o�-line one-way

function applications per signature, and the veri�er computes 184 one-way functions on average to

verify the signature.

Bleichenbacher and Maurer analyzed signature algorithms with a minimal number of nodes in

the graph [5, 4, 3].

Table 6 compares the various one-time signature algorithms. We consider the computation and

communication overhead as a basis for comparison. We choose the signature parameters such that

a forger has a probability of 2�80 to �nd a valid signature after one try. For the computation

overhead, we consider the number of one-way function computations the signer needs to perform to

compute the public key (o�-line), and the expected number of one-way function computations the

signer performs to actually generate the signature (on-line). For the veri�cation overhead we list

the expected number of one-way function computations the veri�er performs to check the signature.

For the computation overhead, we consider the size of the public key, and the size of a signature.

We express the signature and public key size in number of nodes. In practice, each node may be

on the order of 96{128 bits long.

8 Discussion and Conclusion

To the best of our knowledge, the Powerball signature is the fastest signature for veri�cation.

To achieve a probability of forgery of Pf � 2�80, the veri�er only needs to compute 20 one-way

functions. This veri�cation cost decreases further if we increase the number of balls of the signer.

In the most extreme case, the signature only contains a single ball, and the veri�er only computes

two hash functions to verify the signature.

The Powerball signature also features shorter signatures than previous one-time signature al-

gorithms. These improvements come at the cost of a larger public key and a higher signature

generation overhead. However, the signature generation in Powerball is highly parallelizable |

with enough processors Powerball only requires two sequential hash function computations.

Other features of Powerball include the small code size (as we can implement it based on
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a block cipher), that the security does not rely on any unproven number-theoretic assumptions

(the signature remains secure even if a fast factoring algorithm is invented), and the fact that

the signature algorithm cannot be used as an encryption algorithm (advantage for certain export

restrictions).

The Powerball signature has many applications. For example, the fast signature generation

(with parallel processors) and super-fast veri�cation may be useful in stock trading systems that

require non-repudiation and the lowest possible end-to-end delay.

Another application is in small devices that take seconds to generate or verify a traditional asym-

metric digital signature. Some embedded 8 bit microprocessors even lack a built-in multiplication

instruction. Thus, many traditional signature algorithms are ineÆcient on such devices. Fortu-

nately, many eÆcient block ciphers exist for these architectures, and we can implement Powerball

based on a single block cipher encryption function.

The Powerball signature may also solve another hard problem. Many applications that rely

on digital signatures are susceptible to a denial-of-service (DoS) attack: an attacker 
oods the

victim with a large number of bogus signatures. Because signature veri�cation is generally a slow

operation (a 1024-bit RSA verify takes on the order of 0:5 millisecond on a 800 MHz Pentium II

processor), the victim is computationally overwhelmed just checking all signatures. Powerball has

a nice property: even if a forger can �nd a signature where k � 1 balls land in the correct bin, a

veri�er that checks the balls of the signature in random order discovers the bad ball after checking

after checking an average of (k + 1)=2 balls. In practice, the forger can �nd even fewer matching

balls, so the veri�er can detect an invalid signature after a few hash function computations. The

Powerball scheme is thus ideal to defend against these DoS attacks.
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