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Abstract

It is well known that after placing n balls independently and uniformly at random into n bins, the
fullest bin holds Θ(logn/ log logn) balls with high probability. More recently, Azar et al. analyzed
the following process: randomly choose d bins for each ball, and then place the balls, one by one,
into the least full bin from its d choices [2]. They show that after all n balls have been placed, the
fullest bin contains only log logn/ log d + Θ(1) balls with high probability. We explore extensions
of this result to parallel and distributed settings.

Our results focus on the tradeoff between the amount of communication and the final load. Given
r rounds of communication, we provide lower bounds on the maximum load of Ω( r

√
logn/ log logn)

for a wide class of strategies. Our results extend to the case where the number of rounds is allowed
to grow with n.

We then demonstrate parallelizations of the sequential strategy presented in Azar et al. that
achieve loads within a constant factor of the lower bound for two communication rounds and almost
match the sequential strategy given log logn/ log d + O(d) rounds of communication. We also
examine a parallel threshold strategy based on rethrowing balls placed in heavily loaded bins. This
strategy achieves loads within a constant factor of the lower bound for a constant number of rounds,
and it achieves a final load of at most O(log logn) given Ω(log logn) rounds of communication. The
algorithm also works well in asynchronous environments.

1 Introduction

When n balls are thrown independently and uniformly at random into n bins, it is known that with
high probability (by which we shall mean 1 − O(1/n)) the maximum number of balls received by
any bin is Θ( logn

log logn). (In this paper log is used for log2.) Occupancy results such as this have a long
history in the mathematical literature [12, 15] with numerous applications in hashing [2, 7, 14], PRAM
simulation [17, 9, 14, 16, 20] and load balancing [2, 7].
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Azar et al. proved an important extension of this result [2]. Suppose we place the balls sequentially,
one at a time. For each ball, we choose d bins independently and uniformly at random, and place the
ball in the least full bin (ties are broken arbitrarily). When all the balls have been placed, the fullest
bin contains only log logn

log d +O(1) balls with high probability [2]. A similar result (in a slightly different
model) was also proven in [14].

Unfortunately, this extension requires the resting place of the balls to be determined sequentially.
This limits its applicability in parallel and distributed settings, a major drawback when compared to
the simple randomized approach. In this paper, we examine the potential of parallelizing the above
procedure, as well as other possible strategies for reaching a small maximum load in a distributed
environment. We focus on the tradeoff between the number of communication rounds and the final
load one can achieve using simple, randomized strategies.

We first show lower bounds that hold for a wide class of load balancing strategies, including natural
parallelizations of the method of Azar et al. (Following [2], we shall hereafter refer to their algorithm
as greedy.) We demonstrate a parallelization of greedy for two communication rounds that matches
the lower bounds to within a constant factor, and we examine alternative parallelizations of greedy

that are effective when the number of communication rounds is approximately equal to the maximum
load. We also examine an idea similar to those used in [14] and [16] based on setting a threshold
at each bin: balls that attempt to enter a bin that is already above its threshold for that round
must be rethrown. This strategy matches the lower bounds up to a constant factor for any constant
number of rounds. Our results show that thresholding strategies can achieve a useful tradeoff between
communication cost and the maximum load achieved.

1.1 The balls and bins model

We first describe our model in terms of balls and bins. Each of m balls is to be placed in one of n bins.
Each ball begins by choosing d bins as prospective destinations, each choice being made independently
and uniformly at random (with replacement) from all possible bins. The balls decide on their final
destinations using r rounds of communication, where each round consists of two stages. In the first
stage each ball is able to send messages in parallel to any prospective bin, and in the second stage
each bin is able to send messages in parallel to any ball from which it has ever received a message. In
the final round, the balls commit to one of the prospective bins and the process terminates. Messages
are assumed to be of size polylog(n,m). The goal is to minimize the maximum load, which is defined
to be the maximum number of balls in any bin upon completion.

This model is motivated by the following realistic scenario: modern computer networks often have
decentralized compute-servers (bins) and client workstations issuing jobs (balls). A distributed load-
balancing strategy has to assign jobs to servers. Clients are ignorant of the intention of other clients to
submit jobs; contention is known only from server load. Servers are ignorant of jobs from clients that
have not communicated with them. It is also prohibitively expensive for clients to globally coordinate
job submissions. The primary objectives are to minimize the maximum load achieved as well as the
number of communication rounds required. Reducing the number of rounds is an important goal
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since, in a network setting, the time to complete a round is determined by network latency, which is
generally orders of magnitude higher than CPU cycle times.

We examine a class of simple strategies that includes many of the standard algorithms presented in the
literature. The strategies we restrict our attention to are non-adaptive, in that the possible destinations
are chosen before any communication takes place. We will also restrict our discussion to strategies
that are symmetric, in the sense that all balls and bins perform the same underlying algorithm and
all possible destinations are chosen independently and uniformly at random. We believe that these
restrictions have practical merit, as an algorithm with these properties would be easier to implement
and modify even as the underlying system changes.

Informally, we shall say that an algorithm functions asynchronously if a ball (or bin) has to wait only for
messages addressed to it (as opposed to messages destined elsewhere). That is, balls and bins are not
required to wait for a round to complete before continuing. An algorithm requires synchronous rounds
if there must exist a synchronization barrier between some pair of rounds; that is, a ball or bin must
explicitly wait for an entire previous round to complete before sending a message. In many distributed
settings, the ability of an algorithm to function asynchronously can be a significant advantage; an
algorithm with synchronous rounds needs some notion of global time to maintain coordination. Note
that the algorithm of Azar et al. achieves final load no worse than O(log log n), but requires Ω(n)
synchronous rounds.

We remark that many of our algorithms can perform asynchronously. In these versions of our algo-
rithms any ball sends or receives at most d messages per round, whereas a bin may receive or send up
to O( logn

log logn) messages per round. It seems unlikely that this latter number could be made smaller
while insisting on a small (O(log n)) number of rounds, for the following reason. During some round
there are at least Ω( n

logn) messages from balls that have not previously communicated. If these mes-
sages are distributed randomly, some bin will receive at least Ω( logn

log logn) of them. We can avoid this
complication if we modify the algorithms to use synchronous rounds and assume a time limit for each
round. In most of our algorithms, a bin must explicitly acknowledge each message and send a negative
response to all but a constant number of balls in each round. If these negative responses need not be
sent explicitly, and instead a lack of response is interpreted as a negative reply, then the bins need
only acknowledge and respond to a constant number of messages per round. The remaining messages
can be discarded.

1.2 Summary of our results

In Section 2, we provide a lower bound for a general class non-adaptive and symmetric strategies that
include parallel variations of greedy [2] and threshold methods [14, 16]. For any fixed number r of
rounds of communication and any fixed number d of choices for each ball, we show that with constant
probability the maximum load is at least Ω

(
r

√
logn
log logn

)
. This lower bound is proved by reducing the

balls and bins scenario to an edge orientation problem on random graphs.

The rest of the paper deals with upper bounds. Our analysis exploits a basic, general tool that we
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derive, based on results of Gonnet [10], relating the distribution of the number of balls that land in
a bin when balls are thrown independently and uniformly at random and the distribution of Poisson
random variables. We note that the close relationship between these two models has been observed
and made use of previously, and tighter bounds on specific problems can often be obtained with more
detailed analyses; see, for example [3, Chapter 6],[6], or [13]. Apart from enabling us to prove our
bounds, the tool may be of independent interest.

In Section 4 we describe an asynchronous parallelization of greedy for two rounds that matches
the lower bound to within a constant factor for any fixed d. We also describe a more complicated
extension of greedy in which the number of rounds is allowed to grow with n. We show that this
extension achieves a final load no worse than log logn

log d + 2d + O(1) with high probability if we allow
log logn
log d + 2d+O(1) synchronous rounds.

In Section 5 we explore an entirely different paradigm based on thresholds, which were also used in [7,
14, 16]. We demonstrate algorithms based on thresholds that asymptotically match the lower bounds
for any fixed number of rounds r; that is, the final load isO

(
r

√
logn
log logn

)
with high probability. However,

if r and d are allowed to grow with n, we show that the thresholding method (with threshold one) is
inferior to the parallel greedy approach: while the latter achieves a maximum load of O( log logn

log log logn)
with O( log logn

log log logn) rounds, thresholding achieves a maximum load of Ω(log log n) with log log n+O(1)
rounds. Nevertheless, thresholding has the advantage of functioning asynchronously and offering a
continuous trade-off between rounds used and final load achieved.

Finally, we also present results obtained by simulating our algorithms. As one might expect, our
parallel strategies lead to a final load close to that obtained by greedy, and much better than that
achieved by choosing one bin randomly for each ball.

We note that since the writing of this paper a great deal of further work has been done in this area.
Stemann [21] extends our work by analyzing an algorithm that asymptotically matches our lower bound
in the case of n balls and n bins for any r (although his algorithm does not function asynchronously);
he also analyzes the case where the number of balls m differs from the number of bins n for his
algorithm, as well as considers other similar load balancing problems. Mitzenmacher [18, 19] studies
load balancing using multiple choices in dynamic settings related to queueing networks. Czumaj and
Stemann [8] provide a general framework that extends the model and the results of Azar, Broder,
Karlin and Upfal [2]; for example, they also consider the average allocation time in a threshold-based
scheme similar in spirit to the one we analyze here. Berenbrink, Meyer auf der Heide, and Schröder
develop algorithms for dealing with weighted balls [4]. We note that these papers also contain many
other results for further variations on the original model; because of the many interesting and useful
variations of the basic balls and bins problem, we expect it will continue to be a fruitful area of
research.
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1.3 Basic Lemmas

In preparation for our proofs, we make note of two useful lemmas. Let B(n, p) is a Bernoulli random
variable with parameters n and p. The first statement can be proven by standard coupling methods:

Lemma 1 Let X1,X2, . . . ,Xn be a sequence of random variables in an arbitrary domain, and let
Y1, Y2, . . . , Yn be a sequence of binary random variables, with the property that Yi = Yi(X1, . . . ,Xi−1).
If

Pr(Yi = 1 |X1, . . . ,Xi−1) ≤ p,

then

Pr(
n∑

i=1

Yi ≥ k) ≤ Pr(B(n, p) ≥ k);

and similarly, if
Pr(Yi = 1 |X1, . . . ,Xi−1) ≥ p,

then

Pr(
n∑

i=1

Yi ≤ k) ≤ Pr(B(n, p) ≤ k).

The second lemma presents some useful Chernoff-type bounds that will be used frequently throughout
the paper; proofs may be found in [11].

Lemma 2 If Xi (1 ≤ i ≤ n) are independent binary random variables such that Pr[Xi = 1] = p, then
the following hold:

For t ≥ np, Pr

(
n∑

i=1

Xi ≥ t
)

≤
(
np

t

)t

et−np. (1)

For t ≤ np, Pr

(
n∑

i=1

Xi ≤ t
)

≤
(
np

t

)t

et−np. (2)

In particular, we have

Pr

(∑
i

Xn
i=1 ≥ enp

)
≤ e−np, and (3)

Pr

(∑
i

Xn
i=1 ≤ np/e

)
≤ e(2/e−1)np. (4)
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2 Lower bounds

2.1 The random graph model

We first develop a general model for lower bounds that captures a class of non-adaptive, symmetric
load balancing strategies. Our lower bounds are expressed in terms of the number of rounds of
communication, r, and the number of choices available to each ball, d. In Section 2.2, we will focus
on the case where d = 2 and r = 2, extending the results to arbitrary values of r and d in Section 2.3.

For our bounds, we will rephrase the balls and bins problem in terms of a random graph orientation
problem. The relationship between balls and bins problems and random graphs has been noted
previously [1, 14, 16]. Here, we show that proving a lower bound for the balls and bins problem is
equivalent to showing that, with sufficiently high probability, a specific subgraph appears in a random
graph. These results on random graphs may be of independent interest.

We temporarily restrict ourselves to the case of d = 2. Associate with each bin a vertex of a graph
with n vertices. Each ball can be represented by an undirected edge in this graph, where the vertices
of the edge correspond to the two bins chosen by the ball. (For convenience, in this section, we assume
that each ball chooses two bins without replacement. This has the effect of ensuring that no self-loops
arise in the graph. Multiple edges, however, may arise: these correspond to two balls that have chosen
the same pair of bins. Our proofs may be modified to allow self-loops, and our restriction does not
change our asymptotic results.) With each edge we shall associate an orientation. An edge, or ball,
shall be oriented toward the vertex, or bin, that it chooses as its final destination. The goal of the
algorithm is thus to minimize the maximum indegree over all vertices of the graph. In the case where
there are m balls and n bins, the corresponding graph is a random graph chosen uniformly from the
set of all graphs with n vertices and m edges, where an edge may occur with multiplicity greater than
one. Abusing standard notation slightly, we call this class of graphs Gm,n. We shall focus on the case
m = n, since this is the most interesting case in terms of behavior.

We now characterize communication in this model. For each round of communication, every ball and
bin will determine a larger portion of the graph around it. Following standard terminology, we define
the neighborhood of an edge e, denoted by N(e), to be the set of all edges incident to an endpoint of e.
For a set S of edges, we write N(S) for ∪e∈SN(e). The neighborhood of a vertex v, denoted by N(v),
is the set of all edges incident to v. To model the increasing knowledge gained by communication, we
introduce more general related definitions.

Definition 3 The l-neighborhood of an edge e, denoted by Nl(e), is defined inductively by: N1(e) =
N(e), Nl(e) = N(Nl−1(e)).

Definition 4 The (l, x)-neighborhood of an edge e = (x, y), denoted by Nl,x(e), is defined inductively
by: N1,x(e) = N(x) − {e}, Nl,x(e) = N(Nl−1,x(e)) − {e}.

Intuitively, for each round of communication, a ball learns about a larger neighborhood in the graph.
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Specifically, since we are working towards lower bounds, we may assume that the messages sent by
the bins contain all available information whenever possible. Consider an r round protocol for the
balls and bins problem where balls commit to their final choice in the rth round. In this case, we may
assume a ball knows everything about the balls in its (r − 1)-neighborhood, and no more, before it
must commit to a bin in the rth round; this may be verified formally by a simple induction argument.
(Note that our model does not allow for “pointer jumping”; the neighborhood expands by just one
level each round.)

We now describe an assumption that we use to show that the final load is high with constant prob-
ability; that is, with probability greater than some fixed constant γ > 0. The l-neighborhood of a
ball e = (x, y) splits into two subgraphs corresponding to Nl,x(e) and Nl,y(e); these are the parts
of the neighborhood the ball learns about from each bin. Suppose that these two subgraphs of the
ball’s l-neighborhood are isomorphic rooted trees, with the roots being x and y. In this case we say
that the ball has a symmetric l-neighborhood, or, more graphically, we say that the ball is confused
(see Figure 1). The ball has no reason to prefer one bin over another, and must essentially choose
randomly. For the moment, we explicitly assume that in this situation the ball chooses a bin randomly
with probability 1

2 ; we shall expand on this shortly.

e

Confused Ball

x y

Figure 1: The central edge e corresponds to a confused ball: its left and right neighborhoods (N2,x(e)
and N2,y(e)) appear the same.

Assumption 5 If a ball has a symmetric (r − 1)-neighborhood, then in any protocol of r rounds it
chooses a destination bin with a fair coin flip.

We further justify this assumption at the end of Section 2.2.

2.2 The d = 2, r = 2 case

By Assumption 5, if many confused balls are incident on one bin, then with constant probability over
half of them will opt for the bin, which will become overloaded. We show that for r and T suitably
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related to n, a random graph G with n vertices and n edges has, with high probability, an isolated
(T, r)-tree, defined as follows:

Definition 6 A (T, r) tree is a rooted, balanced tree of depth r, such that the root has degree T and
each internal node has T − 1 children. A (T, r) tree is isolated in a graph G if it is a connected
component of G with no edges of multiplicity greater than one.

Note that a (T, r) tree is slightly different from a (T − 1)-ary tree of depth r, in that the root has
degree T . (See Figure 2.)

B4B1 B2 B3

Figure 2: A (4,2) tree. Each vertex has degree 4, and the depth of the tree is 2. Balls B1-B4 will be
confused after one round of communication, and hence each orients itself to the root with probability
1/2.

We shall show that a random graph from Gn,n contains a (T, r) tree of a suitable size. For convenience,
we begin with the simple case of d = 2 and r = 2.

Theorem 7 With constant probability, a random graph from Gn,n contains an isolated (T, 2) tree with
T = (

√
2 − o(1))

√
logn
log logn .

Since, with constant probability, half of the confused edges in an isolated (T, 2) tree adjacent to the
root will orient themselves toward it (by Assumption 5), the above theorem immediately yields the
following corollary:

Corollary 8 Any non-adaptive, symmetric load distribution strategy for the balls and bins problem
with n balls and n bins satisfying Assumption 5, where d = 2 and r = 2, has a final load at least(√

2
2 − o(1)

)√
logn
log logn with at least constant probability.

Corollary 8 demonstrates that the O(log log n) bounds achieved by Azar et al. using the greedy

strategy cannot be achieved by any two round strategy where each ball has two choices.
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Although Theorem 7 is stated for the case where m, the number of edges, and n, the number of bins,
are equal, it will be useful to write the number of edges as m throughout the proof. Besides making
the proof clearer, this will allow us to extend the theorem easily to a broader range of m; this is
discussed after the proof.

Proof of Theorem 7: Let �v = (v0, v1, . . . , vT 2) be a vector of T 2+1 vertices. Let X�v be an indicator
random variable that is 1 if v0 is the root of an isolated (T, 2) tree, v1, . . . , vT are the nodes of depth
1, vT+1, . . . , v2T−1 are the children of v1, and so on, and let X =

∑
�v X�v. We show that X > 0 with at

least constant probability by determining the expectation and variance of X and applying the simple
bound (from [5], equation (3) of I.1):

Pr(X = 0) ≤ 1 − E[X]2

E[X2]
.

We first compute E[X]. The multinomial coefficient
( n
1;T ;T−1;...;T−1

)
, where (T −1) occurs T times and

the sum of the terms on the second level is 1 + T + T (T − 1) = T 2 + 1, gives the number of possible
choices for �v; we must first choose the root, and then the T children of the root, and then the T − 1
children for each of T children. We now choose a specific �v and determine the probability p that X�v is
1. If X�v is 1, there must be T 2 edges corresponding to the (T, r) tree connecting the vertices of �v and
no other edges incident to these vertices. We must first choose T 2 of the m edges to make up the tree:
there are

(m
T 2

)
(T 2)! ways of doing this. The remaining edges must lie on the remaining n − (T 2 + 1)

vertices so that the tree is isolated. Hence

p =
(n−(T 2+1)

2

)m−T 2(m
T 2

)
(T 2)!(n

2

)m .

Using the linearity of expectations, we have

E[X] =

( n
1;T ;T−1;...;T−1

)(n−(T 2+1)
2

)m−T 2(m
T 2

)
(T 2)!(n

2

)m .

This unwieldy expression can be simplified by canceling appropriately and noting that we will choose
T small enough so that many terms are o(1) (in the case m = n). For instance, if T = o(log n), then
we have

(n−(T 2+1)
2

)m−T 2

(n
2

)m−T 2 = e−2(T
2+1)m/n(1 + o(1)) ; (5)

(m
T 2

)
(T 2)!
nT 2 =

(
m

n

)T 2

(1 + o(1)) ; (6)( n
1;T ;T−1;...;T−1

)
(n− 1)T 2 =

n

((T − 1)!)T+1T
(1 + o(1)) ; . (7)

We thus obtain

E[X] =
n
(
2m
n

)T 2

e2(T 2+1)m/n((T − 1)!)T+1T
(1 + o(1)). (8)
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We now examine how to compute E[X2]. Note that, because we are considering only isolated (T, 2)
trees, if �v �= �w then X�v and X�w can both equal 1 if and only if �v and �w consist of disjoint sets of
vertices or are equal. This simplifies the calculation of E[X2] considerably. Since

E[X2] = E[X] +
∑
�v �=�w

E[X�vX�w],

it suffices to compute the second term. The calculation is similar to that for E[X] and proceeds as
follows.

The number of possible disjoint pairs �v and �w is
( n
1;T ;T−1;...;T−1;1;T ;T−1;...;T−1

)
, and the probability q

that a given disjoint pair �v and �w yields two isolated (T, 2) trees is

q =
(n−(2T 2+2)

2

)m−2T 2( m
2T 2

)
(2T 2)!(n

2

)m .

From these terms we derive
∑

�v �=�w E[XvXw] = E[X]2(1 + o(1)), by simplifying with equations entirely
similar to equations (5), (6), and (7).

(n−(2T 2+2)
2

)m−2T 2

(n
2

)m−2T 2 = e−2(2T
2+2)m/n(1 + o(1)) ;

( m
2T 2

)
(2T 2)!
n2T 2 =

(
m

n

)2T 2

(1 + o(1)) ;( n
1;T ;T−1;...;T−1;1;T ;T−1;...;T−1

)
(n− 1)2T

2 =
n

((T − 1)!)2T+2T 2
(1 + o(1)) ; .

We thus have that E[X2] = E[X] + E[X]2(1 + o(1)). It now suffices to choose a T such that E[X] is
bounded below by a constant. Taking the logarithm of both sides of Equation 8, we find this will hold
as long as

T 2 log T +
2T 2m
n

− T 2 log
2m
n

≤ logn+ o(log n). (9)

Hence for m = n there exists a (T, 2) tree with T = (
√

2 − o(1))
√

logn
log logn with constant probability.

Remark: Although we have stated Theorem 7 only for the case m = n, it is clear that nearly the
same proof, and hence equation (9), applies for a range of m. For example, if m = n

logk n
for some fixed

k, then we again have Ω
(√

logn
log logn

)
bounds on the maximum load with at least constant probability.

The important points to check are where we have stated that some terms are o(1), as in equations
(5), (6), and (7), which places restrictions on the possible values of m and T . It is also worth noting
that equation (9) can be improved somewhat. We have insisted up to this point that our trees be
isolated, even though there is no reason that the leaf nodes cannot be adjacent to nodes outside the
tree. Taking advantage of this fact would reduce the 2T 2m

n terms of equation (9); this does affect the
bound in the case where m = n.
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We now justify Assumption 5. Although it may at first seem unreasonable to insist that balls with
symmetric r-neighborhoods choose a bin randomly, obvious tie-breaking schemes do not affect the
lower bound. For instance, if the balls are ordered at the bins, either by random I.D. numbers or by a
random permutation, and then choose a bin according to their rank, the balls are essentially choosing
a bin at random. The proof can also easily be modified for the case where the balls are ranked at the
bins by some fixed ordering by using the symmetry of the destination choices of the balls. Similarly, if
bins are numbered and given a preferred ordering in case of ties, then with constant probability there
is still a (T, 2) tree whose root has the given final load.

2.3 The general case

One can extend Theorem 7 to the case where d > 2 and/or r > 2; in fact, the extension also applies
if r and d grow sufficiently slowly with n.

When r > 2 and d = 2, the balls and bins scenario can again be reduced to a random graph problem;
instead of showing the existence of a (T, 2) tree, one needs to demonstrate the existence of a (T, r)
tree. When d > 2 we must consider hypergraphs instead of graphs. In this model, balls correspond to
hyperedges of d distinct vertices in the hypergraph. The degree of a vertex is the number of incident
hyperedges. A tree of hyperedges is simply a connected acyclic hypergraph; that is, there is no path
from a vertex back to itself along adjacent hyperedges. The depth of a tree is the number of hyperedges
in a longest path from the root to a leaf.

Figure 3 gives an example of a (3, 2, 3) tree.

Figure 3: A (3,2,3) tree. Each triangle corresponds to a hyperedge of three vertices.

The l-neighborhood and (l, x)-neighborhood of a ball can be defined for hypergraphs similar to Defini-
tions 3 and 4. As in Assumption 5, we will assume that if a ball has a symmetric (r−1)-neighborhood,
it chooses one of the d bins uniformly at random at the end of an r round algorithm; for convenience,
we still call this Assumption 5. Thus the root of an isolated (T, r, d) tree will end with T

d balls with
at least constant probability. As we shall see, whether an isolated (T, r, d) tree exists is essentially a
matter of its size, in terms of the number of edges it contains.
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In the remainder of this section, we shall prove the following theorem:

Theorem 9 For any fixed r and d, there exists a T = Ω
(

r

√
logn
log logn

)
such that with constant proba-

bility, a random graph with n vertices and n hyperedges of size d contains an isolated (T, r, d) tree.

The theorem immediately yields the following corollary:

Corollary 10 Any non-adaptive, symmetric load distribution strategy for the balls and bins problem
satisfying Assumption 5 where d and r are constants and m = n has a final load at least Ω

(
r

√
logn
log logn

)
with constant probability.

Corollary 10 generalizes Corollary 8 by demonstrating that the O(log log n) bounds achieved by Azar
et al. using the greedy strategy cannot be achieved by any strategy in which each ball has a fixed
constant number of choices and in which only a constant number of rounds are used.

The constant factor in the lower bound (for r and d fixed) is dependent on d. The proof of the theorem
also yields results when d grows with n. With constant probability the final load is T

d if there is a
(T, r, d) tree in the corresponding hypergraph. Similarly, if there is a (T, r, d) tree in the corresponding
hypergraph, then with probability d−T the final load is T ; this can be used to give negative results
by showing that no non-adaptive, symmetric load distribution strategy achieves load T with high
probability when dT = o(n). For example, we have the following corollary:

Corollary 11 Any non-adaptive, symmetric load distribution strategy for the balls and bins problem
satisfying Assumption 5 with m = n where d = O

(
log logn
log log logn

)
and r = O

(
log logn
log log logn

)
has a final load

at least Ω
(

log logn
log log logn

)
with probability at least O (1/ logc n) for some constant c (dependent on d and

r but independent of n).

Proof of Theorem 9: As in Theorem 7, although we are considering only the case m = n, we
continue to distinguish m and n when writing the proof, in the interests of enhancing clarity and
allowing generalizations to other values of m where suitable.

We begin by finding the expected number of isolated (T, r, d) trees. Let V denote the total number
of vertices in the desired (T, r, d) tree and let E denote the total number of hyperedges of the tree. A
given list of V vertices corresponds to a unique (T, r, d) tree in a canonical way. For a given list of V
vertices, the probability p that the corresponding tree component exists is

p =
(n−V

d

)m−E(m
E

)
E!(n

d

)m .

That is, we must choose from the m edges the E edges of the tree, and all other edges cannot be
incident to any vertex of the tree.

To compute the number of possible trees, we consider all lists of V vertices, where the first vertex
corresponds to the root, the next T (d − 1) vertices correspond to the first T edges, and so on. Each
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possible re-ordering of the vertices that make up an edge leads to the same tree; also, the subtrees at
each level can be permuted without changing the tree. Keeping these facts in mind, we find the total
possible number of vectors corresponding to distinct isolated trees, which we denote by N , is

N =

( n
1;T (d−1);(T−1)(d−1);...;(T−1)(d−1)

)( T (d−1)
d−1;...;d−1

)((T−1)(d−1)
d−1;...;d−1

)(E−T )/(T−1)

T ![(T − 1)!](E−T )/(T−1)

=
n!

(n− V )![(d− 1)!]ET [(T − 1)!](E−1)/(T−1) ,

where in the first multinomial coefficient, the sum of the terms on the second level, 1 + T (d − 1) +
(T − 1)(d− 1) + . . .+ (T − 1)(d − 1), is V .

Routine calculations yield that V = 1 + T (d − 1) [(T−1)(d−1)]r−1
(T−1)(d−1)−1 and E = V −1

d−1 . For suitable values of
T (and hence E and V ), after absorbing lower order terms the product Np reduces to:

Np =
n
(m

n

)E
dE(1 + o(1))

eV dm/nT ((T − 1)!)(E−1)/(T−1) .

Hence the expected number of (T, r, d) trees can be made at least a constant for suitable choices of T ,
r, and d; this requires

log n+E log
m

n
+E log d ≥ V dm

n
+ (E − 1) log(T − 1) + o((E − 1) log(T − 1)).

Noting that E ≈ (Td)r, we find that (up to lower order terms) we require logn ≥ (Td)r log T when
m = n and d is a fixed constant. In particular, we can find a T of size at least Ω

(
r

√
logn
log logn

)
such that

the expected number of (T, r, d) trees is at least a constant when m = n.

We must now also show that the variance is not too large. Recall that

E[X2] = E[X] +
∑
�v �=�w

E[X�vX�w].

Again, we make use of the fact that the trees are isolated. If �v and �w share no vertices, then the
probability q that X�v and X�w are both 1 is

q =
(n−2V

d

)m−2E(m
2E

)
2E!(n

d

)m .

The number of pairs of disjoint �v and �w is
n!

(n− 2V )![(d − 1)!]2ET 2[(T − 1)!]2(E−1)/(T−1) .

Again it is simple to check that

E[X2] = E[X] + E[X]2(1 + o(1)),

which is sufficient to prove the theorem.
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3 The Poisson approximation

We now switch from proving lower bounds to examining parallel algorithms for load balancing based
on the greedy idea. Before developing any particular algorithms, we derive a useful general tool. The
main difficulty in analyzing balls and bins problems is that it is often hard to handle the dependencies
that naturally arise in such systems. For example, if one bin is empty, then it is less likely that
another bin is empty; the loads of the various bins are correlated. It will be useful to have a general
way to circumvent these sorts of dependencies. We show here how to do so when we are examining
the probability of a rare event.

It is well known that after throwing m balls independently and uniformly at random into n bins, the
distribution of the number of balls in a given bin is approximately Poisson with mean m

n . We would
like to say that the joint distribution of the number of balls in all the bins is well approximated by
assuming the load at each bin is an independent Poisson random variable with mean m

n . This would
allow us to treat bin loads as independent random variables, and hence use standard techniques such
as Chernoff bounds.

Suppose m balls are thrown into n bins independently and uniformly at random, and let X(m)
i be the

number of balls in the i-th bin, where 1 ≤ i ≤ n. Let Y (m)1 , . . . , Y
(m)
n be independent Poisson random

variables with mean m
n . We will omit the superscript when it is clear from the context. We derive

a relation between these two sets of random variables, adapting an argument used by Gonnet [10] to
determine the expected maximum number of balls in a bin.

Theorem 12 Let f(x1, . . . , xn) be any non-negative function. Then

E[f(X1, . . . ,Xn)] ≤
√

2πemE[f(Y1, . . . , Yn)]. (10)

Further, if E[f(X1, . . . ,Xn)] is either monotonically increasing or monotonically decreasing with m,
then

E[f(X1, . . . ,Xn)] ≤ 4 E[f(Y1, . . . , Yn)]. (11)

Proof: We have that

E[f(Y1, . . . , Yn)] =
∞∑

k=0

E
[
f(Y1, . . . , Yn)

∣∣∣∑Yi = k
]
Pr(
∑
Yi = k)

≥ E
[
f(Y1, . . . , Yn)

∣∣∣∑Yi = m
]
Pr(
∑
Yi = m)

= E[f(X1, . . . ,Xn)] Pr(
∑
Yi = m)

where the last equality follows from the fact that the joint distribution of the Yi given
∑
Yi = m is

exactly that of the Xi, as can be checked by comparing the probabilities of any given set of bin loads
in both cases. As

∑
Yi is Poisson distributed with mean m, we now have

E[f(Y1, . . . , Yn)] ≥ E[f(X1, . . . ,Xn)]
mme−m

m!
,
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and using Stirling’s approximation now yields equation (10).

If E[f(X1, . . . ,Xn)] increases with m, then similarly

E[f(Y1, . . . , Yn)] ≥
∞∑

k=m

E
[
f(Y1, . . . , Yn)

∣∣∣∑Yi = k
]
Pr(
∑
Yi = k)

=
∞∑

k=m

E
[
f(X(k)1 , . . . ,X(k)n )

]
Pr(
∑
Yi = k)

≥
∞∑

k=m

E
[
f(X(m)1 , . . . ,X(m)n )

]
Pr(
∑
Yi = k)

= E [f(X1, . . . ,Xn)] Pr(
∑
Yi ≥ m)

It is easy to check that Pr(
∑
Yi ≥ m) can be bounded below by 1/4, and equation (11) follows. The

case where E [f(X1, . . . ,Xn)] decreases with m is similar.

From this theorem, we derive a corollary that will be central to most of our proofs. Let us call the
scenario in which bin loads are taken to be independent Poisson random variables with mean m

n the
Poisson case, and the scenario where m balls are thrown into n bins independently and uniformly at
random the exact case. Also, let a load based event be an event that depends solely on the loads of
the bins. More precisely, a load based event is determined by a 0/1 indicator function on the variables
X1, . . . ,Xn.

Corollary 13 A load based event that takes place with probability p in the Poisson case takes place
with probability at most p

√
2πem in the exact case. If the probability of the event is monotonically

increasing or decreasing with the total number of balls, then the probability of the event is at most 4p
in the exact case.

Proof: Let f be the indicator function of the load based event. In this case E[f ] is just the probability
that the event occurs, and the result follows immediately from Theorem 12.

To demonstrate the utility of this corollary, we provide a simple representative example that will prove
useful later.

Lemma 14 Suppose m < n
logn , and suppose m balls are thrown independently and uniformly at

random into n bins. Then, with high probability, the maximum load is Θ( logn
log n

m
).

Proof: By Corollary 13, since the maximum load is monotonically increasing with the number of
balls, it is sufficient to prove that the bounds hold in the Poisson case. Let pk be the probability that
any particular bin contains k or more balls.
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For the lower bound, note that

pk ≥
(m

n )ke−m/n

k!
,

as the right hand side is simply the probability that a bin has exactly k balls. The probability that
no bin has k or more balls is thus at most (1 − pk)n ≤ e−pkn, and we need to show that e−pkn ≤ 1

n

when k = Ω( logn
log n

m
). Taking logarithms twice yields the following sufficient condition:

log k! + k log( n
m) ≤ log n−O(log log n). (12)

It is now simple to check that choosing k = a logn
log n

m
for any constant a < 1

2 suffices as long as m < n
logn .

For the upper bound, note that

pk ≤ 2(m
n )ke−m/n

k!
, (13)

as can be found by bounding the probability that a bin has k or more balls by a geometric series (and
using just that m < n). It is easy to show that when k ≥ 3 logn

log n
m

, this probability is less than 1
n2 , and

thus no bin contains 3 logn
log n

m
or more balls with probability at least 1 −O(1/n) in the exact case.

We emphasize that Corollary 13 will prove useful to us because in the Poisson case all bin loads are
independent. This independence allows us to use various forms of Chernoff bounds in the Poisson
case, and then transfer the result to the exact case, greatly simplifying the analysis.

4 Parallel GREEDY

The lower bounds in Section 2 show that if the number of communication rounds and possible desti-
nations for a ball are fixed, the log logn

log d + O(1) maximum load bound of for greedy shown in [2] no
longer applies. We therefore seek ways to parallelize the greedy strategy, with the aim of matching
the lower bounds. We first deal with the case of two rounds in Section 4.1, and then consider multiple
rounds in Section 4.2. For these sections, we restrict ourselves to the case d ≥ 2.

4.1 A two round parallelization of GREEDY

We begin with a more formal description of greedy. Each ball a will at some point in the algorithm
independently and uniformly at random choose d destination bins i1(a), i2(a), . . . id(a) (with replace-
ment). We may assume that these choices are made in parallel as the first step in the algorithm; this
assumption makes it clear that greedy is non-adaptive. Next, each ball a decides, solely by commu-
nicating with i1(a), . . . , id(a), to which bin it shall commit. Once a ball has committed to a bin, its
decision cannot be reversed. We note that ties in this and other algorithms are broken arbitrarily and
the d bin choices are made with replacement unless stated otherwise.
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CHOOSE(d):
in parallel: each ball a

chooses u.a.r. d bins i1(a), . . . , id(a)

GREEDY(d):
call CHOOSE(d)
sequentially: each ball a

queries bins i1(a), . . . , id(a) for current load
commits to bin with smallest load

To parallelize the greedy algorithm, we let the balls choose between i1(a), . . . , id(a) according to the
load on a bin as computed using the number of balls that sent a request to it in CHOOSE(d), not
the number that has actually committed to occupy it. Let all the balls inform their d choices that they
have been chosen by sending them each a request. We shall refer to the d requests as siblings.

Each bin then creates a list of the requests it has received. The bins may order their lists arbitrarily.
However, if they handle requests in the order they arrive, the algorithm may function asynchronously.
Notice that we make no claim that the requests arrive at the bins in any particular order.

The height of a request is its position in the request list it belongs to. The bins now send back the
heights of their requests to the balls. Finally, each ball commits to the bin in which its request had the
smallest height. This allows the entire process, which we call pgreedy, to finish in only two rounds:

PGREEDY(d):
call CHOOSE(d)
in parallel: each ball a

sends requests to bins i1(a), . . . , id(a)
in parallel: each bin i

creates list of received requests
sends heights to requesting balls

in parallel: each ball a
commits to bin with smallest height

Note that Corollary 9 provides a lower bound for the pgreedy strategy, showing that the paralleliza-
tion cannot possibly maintain the load balance of greedy. We now prove a matching upper bound
on the maximum load achieved by pgreedy.

Theorem 15 For fixed d and m = n, the maximum load achieved by pgreedy(d) is at most O
(√

logn
log logn

)
with high probability.
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Proof: As in Theorems 7 and 9, although we are considering only the case m = n, we maintain the
distinction between m and n when writing the proof.

The outline of the proof is as follows: consider any bin i, and consider all balls with requests of height
larger than some T1 in bin i. For such a ball to choose bin i, all of its siblings’ requests must have
height at least T1, and hence they must all have landed in bins that received at least T1 requests. By
choosing T1 large enough, we can make the probability that a request at bin i of height at least T1
chooses bin i very small, and thereby bound the number of balls that choose bin i.

We begin with some technical details. First, there may be balls that have one or more siblings choose
bin i. The expected number of such balls is O

(
md2

n2

)
; as m = n and d is fixed, with high probability

the number of such balls is bounded by a constant. We can therefore absorb these balls in the O(1)
term and ignore them in the remainder of the proof. Second, we choose a bound M such that with
high probability, bin i receives no more than M requests. (For example, in this case, we may take
M = O(log n).) Conditioned on both these high probability events occurring, the set R of requests
sent to a bin other than i are distributed in the remaining n− 1 bins independently and uniformly.

Consider all requests in i of height at least T1, all of whose siblings lie outside i; call this set of requests
I. We now find a suitable T2 such that, with sufficiently high probability, fewer than T2 elements of I
have siblings whose heights are all T1 or more. This will show that (with high probability) at most T2
elements of I commit to bin i. Choosing T1 and T2 to be Θ

(√
logn
log logn

)
will then complete the proof.

Consider the subprocess of requests R arriving at the bins other than i. We can imagine these
requests arriving sequentially at the bins according to some arbitrary ordering. Let time t be the
instant immediately after the t’th such request arrives. Let Et be the event that, at time t, no more
than N bins have received more than T1 requests from R, for some N to be determined later. Also,
let the random variable Xt equal 1 if the height of the t’th request is greater than T1, and 0 otherwise.
Now, for r ∈ I, let S(r) be the set of arrival times for the siblings of r, and let the random variable
Yr equal 1 if, for every t ∈ S(r), Xt = 1 and Et occurs; Yr is 0 otherwise. That is, Yr = 1 if and only
if all the siblings of r are of height at least T1, but the number of bins of height T1 has not become
higher than N before all siblings of r arrive.

We define E to be the event that Et is true for all t. Conditioned on E , we have that
∑

r∈R Yr is an
upper bound on the number of balls with requests of height at least T1 at bin i that choose bin i as

their final destination. Note that Pr(Yr = 1) ≤
(

N
n

)d−1
. It follows that the sum of any subset of the

Yi is stochastically dominated by the sum of the same number of independent Bernoulli variables with

parameter
(

N
n

)d−1
by Lemma 1. Now we choose an N so that E is true with high probability. In the

Poisson case, the probability that a bin has T1 requests is e−md/n(md/n)T1

T1!
. As long as T1 > 2md/n,

then the probability that a bin has at least T1 requests is at most 2e−md/n(md/n)T1

T1!
. Applying Chernoff

bounds (Lemma 2, equation (1)), with high probability the number of bins with at least T1 requests is
at most N = 4ne−md/n(md/n)T1

T1!
in the Poisson case. Since the number of bins with at least T1 requests

is monotonically increasing in the number of requests, the same is true in the exact case as well by
Corollary 13.
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We use the bound on N to bound the number of balls with requests of height at least T1 in i whose
siblings all have height at least T1. Again, using Chernoff bounds (Lemma 2, equation (1)), we have

Pr

[∑
r∈R

Yr ≥ T2

]
≤

(
eM

(
N

n

)d−1)T2

.

We want the probability on the left to be at most, say, O( 1nc ) for some constant c ≥ 1. Hence we
require

[
eM

(
N

n

)d−1]T2

≤ 1
nc
.

We now take logarithms of both sides and remove lower order terms. Note that as M = O(log n) its
contribution is only a lower order term. Simplifying yields:

T2

(
T1 log T1 − T1 log

md

n

)
≥ c log n

d− 1
. (14)

For m = n, we may choose T1 = T2 = Θ
(√

logn
log logn

)
, and the result follows.

One would be inclined to believe that increasing d would decrease the final load. The equation (14)
indicates that this is true when m = n for very large n, as in this case the effect of d is to reduce the
required values of T1 and T2 by a constant factor. In practice, however, for reasonable values of n,
increasing d yields no improvement, and in fact increasing d can increase the final load. This can be
explained by the term −T1 log md

n in equation (14), which has a disproportionate effect when T1 and
T2 are small. Also, the constant factor is dictated by our attempt to have the probability of failure be
at most O

(
1
n

)
; if one is willing to accept slightly larger error probabilities one can improve it slightly.

4.2 Multiple round strategies

Our lower bounds suggest that with more rounds of communication, one might achieve a better load
distribution. We thus suggest an alternative parallelization of greedy called mpgreedy that makes
use of more rounds. Although this algorithm may not be useful in practical settings, its connection to
the greedy scheme appears interesting in its own right.

The algorithm proceeds in a number of rounds, until every ball has committed. In each round, each
bin will allow at most one of its requesting balls to commit to it. If a ball receives that privilege
from more than one bin, the ball commits to the bin with the smallest current load. Once a ball has
committed, the bins holding the other requests are informed that they may discard those requests:
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MPGREEDY(d):
call CHOOSE(d)
in parallel: each ball a

chooses a random I.D. number
sends requests with I.D. to bins i1(a), . . . , id(a)

in parallel: each bin i
sorts requests by I.D. number

sequentially: repeat until all balls have committed
in parallel: each bin i

sends current load to first uncommitted ball on request list
in parallel: each ball a

if received at least one message
commits to the bin with smallest current load
tells bins holding other requests to discard

One can imagine the algorithm by picturing a scanline moving level by level up the request lists of
the bins. When the scanline moves up to a new level, bins send messages to all the balls that the
scanline has just passed through. When bins receive responses, they delete the corresponding balls
in the request list above the scanline. The algorithm terminates when every request has either been
passed through or deleted.

A practical disadvantage of this algorithm is that it requires synchronous rounds; the discards for
each round must complete before the next round can begin. We also require a partial order on the
balls, given in this case by randomly chosen I.D. numbers (chosen from a suitably large set to ensure
uniqueness with high probability), to instill some notion of sequentiality.

Clearly, the maximum number of balls in any bin upon completion is bounded above by the number
of rounds taken to finish. We analyze the latter.

Theorem 16 With high probability mpgreedy(d) finishes in at most log logn
log d +2d+O(1) rounds, and

hence the maximum load is also log logn
log d + 2d+O(1).

In order to prove the above statement, we relate mpgreedy to the following variant of greedy (for
any d ≥ 2): if, when placing a ball, there is a tie for the least loaded bin, then a copy of the ball is
placed in each bin with the minimal load. We call this scheme greedy with ties.

Lemma 17 The number of communication rounds used by mpgreedy is one more than the maximum
load produced by greedy with ties if the balls are thrown in the order given by the I.D. numbers
and if the bin choices made by the balls are the same for both trials.

Proof: Consider a modification of mpgreedy where a ball commits to all bins from which it receives
a message. The number of communication rounds used by this modified version of mpgreedy is
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Figure 4: Comparing greedy with ties and mpgreedy. Each level is one round of communication.
The crossed and dashed balls are discarded by the mpgreedy process. The greedy with ties

process includes the dashed balls.

the same as for the original. With a little thought one can see that this scheme exactly mimics
the greedy with ties scheme, and hence the two methods give the same final distribution of the
balls. (See Figure 4.) Since the height of the scanline moves up one level each round, the number
of communication rounds used by mpgreedy is one more than the maximum load of greedy with

ties.

Remark: Using ties as we have done may seem unnecessary, but it allows the scanline to be at the
same height for all bins after each round. It may appear that it would improve the final maximum
load if, after ties are deleted, heights in the request lists are updated to reflect the deletions. This is
difficult to prove, because once heights are updated in this way, the connection between the scanline
scheme and the greedy scheme is not readily apparent.

We now suggest a modification of the proof of by Azar et. al. (Theorem 4 of [2]) to handle the case
where there may be ties. The following statement is sufficient:

Theorem 18 The maximum load achieved by greedy with ties when n balls are thrown into n bins
is at most log logn

log d + 2d +O(1) with high probability. In particular, for any fixed d the maximum load

is log logn
log d +O(1).

Proof: The proof is almost entirely the same as Theorem 4 of [2]; we review the differences here,
using their notation. We let ht be the height of the tth ball, and let νi(t) and µi(t) refer to the number
of bins with load at least i and the number of balls with height at least i at time t, respectively. The
main consideration is that for each ball placed in the system up to d copies can be placed if ties remain.
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We let Ei be the event that νi(n) ≤ βi, but we must use a different inductive definition of βi, As our
base case, we may take β6d2 = n/2de; then E6d2 holds with certainty. We set βi+1 = edβd

i /n
d−1.

For a fixed i consider a sequence of random variables Yt where

Yt =

{
d iff ht ≥ i+ 1 and νi(t− 1) ≤ βi,

0 otherwise.

Note that over any given set of choices for the balls before time t, Pr(Yt = d) ≤ (βi/n)d = pi; hence
by Lemma 1

Pr(
∑
Yt ≥ k) ≤ Pr

[
B(n, pi) ≥ k

d

]
,

where B(n, p) is the sum of n independent Bernoulli random variables. Conditioned on Ei we have
νi+1 ≤ µi+1 ≤

∑
Yt, so

Pr(νi+1 ≥ k | Ei) ≤ Pr(
∑
Yt ≥ k | Ei)

≤ Pr(B(n, pi) ≥ k
d | Ei)

≤ Pr(B(n, pi) ≥ k/d)
Pr[Ei]

The proof now proceeds along the same lines as that of Theorem 4 of [2]. This shows that the maximum
load log logn

log d + 6d2+O(1). We can improve this by taking a different base case: for d > 8, β2d = n/2de
holds with high probability even if all balls are simply placed into d random bins, and hence we can
start the induction from this point instead.

Theorem 16 follows immediately from Lemma 17 and Theorem 18. Moreover, an extension to the case
where d grows with n is interesting.

Corollary 19 When mpgreedy is run with d = log logn
log log logn + O(1), the number of rounds and maxi-

mum load are at most O( log logn
log log logn) with high probability.

Theorem 18 demonstrates that one can match the performance of greedy using only log logn
log d +2d+O(1)

rounds of communication, rather than the obvious n rounds. Corollary 19 also matches the lower bound
of Corollary 11, up to constant factors.

It is an open question whether one can extend mpgreedy to avoid the need for the partial order on the
balls or the synchronous rounds while achieving a similar maximum load. Stemann, using a different
algorithm, also achieves a maximum load as good as the mpgreedy algorithm [21]. This algorithm is
also not completely asynchronous, although it seems to require weaker synchrony than mpgreedy.
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5 The threshold strategy

We now examine another strategy, previously exploited in [7] and [14] in similar contexts, to achieve
good load balancing. Given a threshold T , we imagine throwing the balls over r rounds. If more than
T balls enter a bin during a round, the excess balls are rethrown in the next round. We wish to set
T as small as possible while ensuring that, with high probability, at most T balls are thrown into any
bin in the rth round. Then, after all r rounds, the fullest bin will contain at most rT balls. Note that
a ball can choose its bins for all r rounds before any messages are sent, so this scheme again falls into
the general model of Section 2 for which our lower bounds apply.

There are several advantages this method has over the pgreedy strategy already presented. First,
this method can work in completely asynchronous environments: as long as a request includes the
number of its current round as part of the message, messages from distinct rounds can be handled
simultaneously at the bins. Secondly, balls send and receive at most one message per round. Finally,
as we shall show, this method demonstrates a potentially useful tradeoff between the maximum load
and the number of rounds.

THRESHOLD(T ):
while there exists a ball that has not been accepted

in parallel: each unaccepted ball a
chooses u.a.r. a bin i(a)
sends a request to i(a)

in parallel: each bin i
chooses min{T,#received} requests from current round
sends these balls acceptances
sends other requesting balls rejections

The question is how to set the parameter T so that the procedure terminates with high probability
within some specified number of rounds. In Section 5.1, we show how to set T for any constant number
of rounds. We then show in Section 5.2 that, when T = 1, threshold(T ) takes at most O(log log n)
rounds and has maximum load Ω(log log n) with high probability. Our proofs demonstrate essential
techniques that can be used for a wide range of T and r values to emonstrate that a pair (T ,r) leads
to an algorithm that terminates wtih high probability.

5.1 Thresholds with a fixed number of rounds

Theorem 20 If r is fixed independent of n, then threshold(T ) terminates after r rounds with high
probability, where T = O

(
r

√
logn
log logn

)
.

Proof: Let ki be the number of balls to be (re)thrown after i rounds (k0 = n). We will show by
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induction that

ki ≤ n

(
4 log n
T !

)Ti−1
T−1

(15)

for all i ≤ r − 1 with high probability. From this statement one may verify that for constants r and
0 < ε < 1, and suitably large n, T = O

(
r

√
logn
log logn

)
suffices to reduce kr−1 to less than n1−ε. We may

then conclude that only one more round is necessary by applying Lemma 14 with m = n1−ε.

We now inductively prove equation (15). The case i = 0 is readily verified. Now consider the situation
when ki balls are thrown into n bins in the (i+ 1)-st round. It can be verified from equation (15) that
for large enough n, ki/n < T for all i ∈ {0, . . . , r}. We can thus apply the Poisson approximation and
Corollary 13 to obtain that, with high probability, in the (i+ 1)-st round,

Pr(a given bin receives > T requests) ≤ 2e−ki/n(ki/n)T

T !
. (16)

Therefore (via the Chernoff bounds of Lemma 2) with high probability the number of bins with more
than T requests is at most 4ne−ki/n(ki/n)T

T ! . We can make the conservative upper bound assumption that
with probability exponentially close to one, none of these over-full bins has more than logn requests,
so that with high probability,

ki+1 ≤ n

(
4 log n
T !

)T (Ti−1)
T−1

+1

. (17)

Equation (15) now follows by induction, as long as the number of rethrows is large enough so that
the Chernoff bound holds. This immediately implies a maximum load of O(rT ), which, for fixed r, is
O
(

r

√
logn
log logn

)
.

The theorem suggests that using the threshold strategy, one can successfully trade load balance
for communication time in a well-defined manner. We note that one can also show that for T =
Ω
(

r

√
logn
log logn

)
, threshold(T ) requires more than r rounds with high probability. We also remark

that we could show that Theorem 20 holds with very high probability; that is, the probability of failure
is bounded above by 1/f(n) where f(n) is a superpolynomial function. This requires more attention
to the Chernoff bounds.

5.2 The case of T = 1

We can extend our argument to the case where r grows with n with a bit more care. As an illustrative
example, we consider the case where T = 1. We note that more powerful results are given in [14] and
[16], but the simple proofs below are appealing.

Theorem 21 threshold(1) terminates after at most log log n+O(1) stages with high probability.
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Proof: As in the proof of Theorem 20, let ki be the number of balls to be thrown after round i.
It is simple to show by Chernoff bounds (equation (1)) that, with high probability, after only two
rounds at most n/2e balls remain to be thrown. We claim that, as long as ki+1 is at least 4

√
n logn,

ki+1 ≤ ek2i /n with probability 1 − O(1/n2). For convenience we assume that in each round the balls
arrive in some arbitrary order, with the first ball that arrives at a bin being accepted. Let Xj be the
indicator random variable of the event that the jth ball falls into a non-empty bin, where 1 ≤ j ≤ ki.
Note that Pr(Xj = 1 |X1, . . . ,Xj−1) ≤ ki/n. It follows from Lemma 1 that the sum of the ki random
variables Xj is stochastically dominated by the sum of ki independent Bernoulli random variables with
parameter ki/n. Using Chernoff bounds (equation (1)) the above claim follows; the restriction that
ki+1 is at least 4

√
n log n is required for the Chernoff bound to hold with sufficient probability. We

thus have, if i ≥ 2 and ki ≥ 4
√
n log n, that

ki ≤ n

e22i−2 .

Hence r = log log n+O(1) rounds will suffice to cut down kr to below 4
√
n log n with high probability.

By using the Poisson case to bound the number of bins that receive more than one ball, one can show
that only O(1) more rounds will be needed after this point, and the result follows.

The strategy threshold(1) achieves a maximum load that is essentially the same as greedy, but
uses only O(log log n) asynchronous rounds instead of O(n) synchronous rounds. Moreover, because
of its simplicity, we expect that this strategy may be the best choice when the greedy strategy does
not apply. Because the bound of Theorem 21 does not match the lower bound of Corollary 11. one
might hope that threshold(1) actually performs even better than the given upper bound. This
could happen in one of two ways: either threshold(1) might terminate in fewer than Ω(log logn)
rounds, or even if Ω(log log n) rounds are required, perhaps no bin actually receives Ω(log logn) balls.
We will now show, however, that the bound of Theorem 21 is tight, up to constant factors.

Theorem 22 The maximum load of threshold(1) is at least Ω(log log n) with high probability.

Proof: As before, let ki be the number of balls to be thrown in round i, with k0 = n. We can
determine ki+1 by considering the number of bins that receive two or more balls in the ith round.
In the Poisson case, the probability that a bin receives two balls in round i is e−ki/n k2

i
2n2 ≥ k2

i
2en2 . By

equation (2) of Lemma 2 and Corollary 13, as long as ki > 10
√
n logn, then with probability at least

1 −O(1/n2), ki+1 ≥ k2
i

4en . Hence, for all i ≤ n with ki > 10
√
n logn,

ki+1 ≥
(

1
4en

)2i+1−1
k2

i+1

0 =
4en

(4e)2
i+1 . (18)

It is easy to check from equation (18) that we need i = Ω(log log n) before ki ≤ 10
√
n log n. We now

show that with high probability, there will be at least one bin that receives a ball in each of the first
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Ω(log logn) rounds. Say that a bin survives up to round i if it gets a ball in each of rounds 1, . . . , i,
and let si be the number of bins that survive up to round i. Then

Pr
[
bin survives up to i+ 1

∣∣∣ it survives up to i
]

= 1 −
(

1 − 1
n

)ki

≥ ki

2n
,

where the last inequality holds since ki ≤ n. Applying Chernoff’s bound (equation (2)) tells us that
the fraction of bins that survived round i that also survive round i+ 1 is at least ki

4n with probability
at least 1 − O( 1n2 ) as long as si is sufficiently large. Therefore, after the (i + 1)-st round, with high
probability the number of surviving bins is at least

si+1 ≥ n× k0
4n

× · · · × ki

4n

>
nei+1

(4e)2i+1 .

It remains to be checked that for i = Ω(log logn) all the Chernoff bounds will hold, and thus with
high probability there is still a surviving bin.

6 Simulation results

It is important to note that in the balls and bins scenario, even if each ball just chooses one bin
independently and uniformly at random, the maximum load is very small compared to the total number
of bins. Thus, even though one may be able to show that asymptotically one strategy performs better
than another, it is worthwhile to test actual performance. For example, it is not clear from the results
we have described that greedy performs better than straightforward random selection unless n is
exceedingly large! (In fact, for all values of n, the expected maximum load of greedy is less than that
of simple random selection; see [2] for more details.) Even if one can guarantee better performance,
however, a system designer interested in using a load balancing scheme must balance the tradeoff
between the maximum load and the complexity of the underlying algorithm. Asymptotic notation
proves less helpful than specific numbers in understanding this tradeoff. We therefore examine actual
performance through some simulation results.

For simplicity, we here consider only the case where the numbers of balls and bins are equal. As usual,
d represents the number of bins to which each ball sends requests. The numbers given in the table
represent the maximum load found for one hundred trials of each strategy.

The first thing worth noting is that greedy performs noticeably better than simple one-choice ran-
domization: even at just one million balls, the difference is at least a factor of two in all of our trials.
A second interesting feature of greedy is that the maximum load appears to vary little across trials,
suggesting that the maximum load is sharply concentrated on a single value. This can in fact be shown
using straightforward martingale arguments. (See, for example, [19, Section 4.2].)

As expected, both pgreedy and threshold(T ) perform somewhere between simple random selection
and greedy. Notice that for pgreedy when d = 3 the maximum load tends to be smaller than when

26



d = 2, but that the maximum load tends to increase when d = 4. This is not completely surprising
given our previous analysis in Section 4.

In the threshold schemes, the thresholds used were as follows: 3 balls per round per bin in the 2 round
scheme, and 2 balls per bin per round in the 3 round scheme. These choices were made to ensure
that the algorithm terminated with all balls having a final destination in the correct number of rounds
with high probability: in all trials, the algorithm terminated in the correct number of rounds. Our
simulations suggest that threshold schemes are the best practical choice when one wishes to achieve a
better load balance, but cannot meet the sequentiality requirement of greedy.

Balls One greedy pgreedy threshold(T )

n Choice d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 2 rnds. 3 rnds.

1 m.

8 . . 28
9 . . 57
10 . . 13
11 . . 2

4 . . 100 3 . . 100 3 . . 100
5 . . 92
6 . . 8

5 . . 95
6 . . 5

5 . . 77
6 . . 23

5 . . 88
6 . . 12

4 . . 77
5 . . 23

2 m.

8 . . 7
9 . . 72
10 . . 18
11 . . 3

4 . . 100 3 . . 100 3 . . 100
5 . . 90
6 . . 10

5 . . 96
6 . . 4

5 . . 68
6 . . 32

5 . . 74
6 . . 26

4 . . 69
5 . . 31

4 m.

8 . . 1
9 . . 63
10 . . 35
12 . . 1

4 . . 100 3 . . 100 3 . . 100
5 . . 71
6 . . 29

5 . . 87
6 . . 13

5 . . 36
6 . . 64

5 . . 54
6 . . 46

4 . . 47
5 . . 53

8 m.

9 . . 40
10 . . 58
11 . . 1
12 . . 1

4 . . 100 3 . . 100 3 . . 100
5 . . 55
6 . . 45

5 . . 71
6 . . 29

5 . . 6
6 . . 94

5 . . 20
6 . . 80

4 . . 19
5 . . 81

16 m.

9 . . 21
10 . . 62
11 . . 16
16 . . 1

4 . . 100 3 . . 100 3 . . 100
5 . . 31
6 . . 69

5 . . 48
6 . . 52

5 . . 1
6 . . 99

5 . . 5
6 . . 95

4 . . 1
5 . . 99

32 m.

9 . . 5
10 . . 65
11 . . 25
12 . . 5

4 . . 100 3 . . 100 3 . . 100
5 . . 8
6 . . 92

5 . . 20
6 . . 80

6 . . 100 6 . . 100 5 . . 100

Table 1: Simulation results for greedy and other strategies. The number of balls ranges from one
million to thirty-two million. The results from 100 trials are presented: the load is given in bold on
the left, and the number of times (out of 100) that load occurred is given on the right (e.g., “. . . 35”).
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7 Conclusion

In this paper we examined various mechanisms to balance load in a decentralized manner, using the
abstraction of a balls and bins occupancy problem. We specifically explored the trade-off between
the number of communication rounds invested and the remaining load imbalance. Existing work
defined the two extremes in this trade-off, namely, O(log n/ log logn) imbalance after one round, and
O(log log n) after n sequential rounds.

We have demonstrated that, in our models, the sequentiality requirement of the greedy algorithm
is in fact necessary for the strong O(log log n) result they obtained. In light of our lower bounds, we
looked for related algorithms that perform well, both in theory and in practice. Both our lower and
upper bounds are strikingly uniform for all of them, despite their apparent differences. Our analysis
together with our simulations suggest that the threshold(T ) algorithm is the best choice when
sequentiality cannot be maintained and imbalance smaller than a single random choice is desired.
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Sinclair for many comments and suggestions.
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