
Designing Stimulating Programming Assignments for an Algorithms

Course: A Collection of Problems Based on Random Graphs

Michael Mitzenmacher

Abstract

The �eld of random graphs contains many surprising and interesting results. Here we

demonstrate how some of these results can be used to develop stimulating, open-ended

problems for courses in algorithms and data structures or graph theory. Speci�cally,

we provide problems for algorithms that compute minimum spanning trees, connected

components, maximum 
ows, and shortest paths.

1 Introduction

We have found in teaching courses on algorithms and data structures that having students
program some of the standard algorithms can be a useful learning experience. It ensures that
they understand how the algorithms function, it provides them with experience in turning
theoretical results into usable tools, and it demonstrates how theoretical time bounds trans-
late (or fail to translate) into actual running times. We therefore often include programming
exercises in our assignments.

How do we evaluate the exercises we develop? We have several goals in mind for the
exercises will accomplish. First, we hope to make the problems interesting for the students.
Second, we expect the exercises will teach the students something new, even beyond what
they learn simply by programming the algorithm. Finally, we would like them to tie in with
the direction of the course, and perhaps with each other. These goals motivate us to develop
exercises where the students do something beyond just writing the code and testing it on
a few examples. Instead, we seek to create engaging and potentially open-ended questions
that allow students to use their code to discover new and surprising things. In general, of
course, such questions are often hard to come by. However, we have found that the theory
of random graphs provides a source of remarkable problems for several standard algorithms.

In this paper we demonstrate how the area of random graphs can be mined for engaging
exercises by giving some examples that students can explore after programming the follow-
ing speci�c algorithms: minimum weight spanning tree, connected components, maximum

ow, and shortest paths. Although stating the questions is easy, the related results in the
literature are often rather technical, and are certainly beyond the scope of this article. We
will not delve too deeply into these technical details, but instead merely attempt provide
some basic intuition and references where possible.

Algorithms for all of the problems we consider can be found in [3, 7, 9], and many other
standard texts. For more information on the area of random graphs, we recommend the in-
dispensable Random Graphs [2] by B�ela Bollob�as. Throughout we assume that the students

1



have simple and reliable pseudo-random number generators available in their programming
environment. The question of how good a pseudo-random number generator should be is
also beyond the scope of this paper; in practice, most systems provide reasonably good
pseudo-random number generators.

2 Minimum Spanning Tree

We begin by o�ering an example. We presume that the students have been asked to imple-
ment some minimum weight spanning tree algorithm.

Problem: Consider a complete graph on n vertices. Assign a random weight uniformly
and independently from [0,1] to each edge.

Plot the expected weight of the minimum spanning tree as a function of n. For a few
values of n, plot the distribution of the weight for your samples. Do you notice anything?
Can you make any conjectures? 2

Which minimum spanning tree algorithm students implement is unspeci�ed; any can be
used. We have also left open what ranges of n to consider and how many trials to make;
these can be established by the instructor if desired. One might wish to encourage students
to avoid 
oating point arithmetic, which can be slow on some systems. Instead assign a
random integer weight from some large range (say [0,10000]) and then rescale at the end of
the problem.

One might expect that the weight of the minimum spanning tree would grow linearly
with n, since the number of edges the tree contains is n � 1. The actual result is rather
peculiar; as n goes to in�nity, the weight of the minimum spanning tree approaches a small
constant! The result, due to Frieze [4] and presented in [2, p. 141-144], can be formulated
as follows:

Theorem 1 Let s(n) be a random variable corresponding to the weight of the minimum

spanning tree when the edges given weights independently and uniformly from [0; 1]. Then:

limn!1Efs(n)g = �(3) =
1X
k=1

k�3 = 1:202 : : :

And, for every � > 0,

limn!1Pfjs(n)� �(3)j � �g = 0:

Although the theorem describes limiting behavior, students will �nd that the minimum
weight spanning tree is concentrated near �(3) even for relatively small values of n. In
Table 1 we present the results from a sample simulation; �ve hundred trials were performed
for each number of vertices. Even at n = 100, the expectation derived from the simulation
is very close to the limiting value. The tight concentration around the expectation is
also evident for small values of n as well. For example, see Figure 1, which shows an
approximation for the distribution of the minimum spanning tree weight from 1000 trials

2



0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MST weight

100 Vertices

200 Vertices

Figure 1: Estimated Density Function for Random MST: 1000 Trials

for 100 vertex and 200 vertex graphs. (The approximation arises by making a histogram;
each data point covers a range of size 0.02.) Note that the mean of both curves is close to
�(3), and moreover, the concentration around the mean is stronger for 200 vertices than for
100 vertices. This behavior is exactly what Theorem 1 suggests.

Vertices 100 200 300 400 500 600 700 800 900 1000

E[mst] 1.207 1.201 1.200 1.206 1.202 1.205 1.205 1.199 1.204 1.201

Table 1: Expected Random Minimum Spanning Tree Weight: 500 Trials

We hope (perhaps optimistically!) that students will �nd their simulation results sur-
prising and worthy of further investigation. Making the problem open-ended is simple;
there are a variety of issues the students can explore. Some possible suggestions include the
following:

1. What happens if we change the distribution of the weights assigned to the edges?

2. What happens if edges are �rst independently deleted from the graph with some
probability q < 1

2?

3. What is the distribution of the weight of the largest edge in the minimum spanning
tree?

4. How many edges have weight less than the largest edge in the minimum spanning tree
but are not in the minimum spanning tree?

Students can also be encouraged to develop their own questions to explore. This problem
can also be used to spark discussion on general probability questions, if the students have

3



suitable background. For instance, it might be worth noting that the largest edge in the
minimum spanning tree will generally be at least 1= logn, since the expected number of
vertices whose adjacent edges are at least this size is approximately 1.1

3 Union-Find: Connected components

Union-�nd refers to a class of algorithms used to maintain a data structure for disjoint sets,
many of which have been analyzed by Tarjan. (For references, see [3, p. 461].) These algo-
rithms are often used in connected components algorithms, which motivates the following
problem:

Problem: Consider a graph that initially contains n vertices and no edges. Randomly
include one edge at a time until the graph is connected; that is, until there is only one
connected component.

Plot the expected number of edges that must be included before the graph is connected
against n. Can you �nd a function f(n) such that f(n) is close to the expected number of
edges that must be included? For a few values of n, use your samples to estimate gn(m) =
Pr fafter m edges, the n vertex graph is connectedg. Plot your estimates of gn; do you
notice anything? 2

The standard data structure for disjoint sets is particularly e�ective when one performs
many operations that do not actually combine disjoint components, as may be the case
under random edge insertion.

The number of edges that must be added before a graph becomes connected is very
close to n logn

2 . In fact, n logn
2 is a threshold function, in the following sense: as n ! 1, if

we throw in n(logn+!(n))
2 edges, then the probability that the graph is connected approaches

1 if !(n) ! 1 and it approaches 0 if !(n) ! 1. This follows from the following more
speci�c theorem, paraphrased from [2, p. 150-151]:

Theorem 2 If we throw
n(logn+c)

2 edges, the probability that the graph is connected goes to

e�e
�c

as n!1.

Using this fact, we can get a good estimate for the expected number of edges required
to connect the graph as n gets large. We approximate the probability density function and
hence the expectation:

E[#edges] �

Z
1

c=�1

n

2
(logn + c)e�ce�e

�c

dc

=
n

2
(logn +

Z
1

c=�1
ce�ce�e

�c

)

�
n(logn + 0:577)

2

This estimate proves remarkably accurate, even for small n, as can be seen in the results
from a small set of simulations given in Table 2.

1All logarithms have base e unless otherwise speci�ed.

4



Vertices Simulation Estimate Relative Error (%)

100 253 259 2.3

200 581 588 1.2

300 948 942 0.6

400 1314 1314 0.0

500 1685 1698 0.8

600 2076 2092 0.8

700 2440 2495 2.2

800 2874 2905 1.1

900 3331 3320 0.3

1000 3740 3742 0.1

1100 4146 4169 0.6

1200 4578 4600 0.5

1300 4991 5035 0.9

1400 5485 5474 0.2

1500 5927 5918 0.2

1600 6361 6364 0.0

1700 6842 6813 0.4

1800 7150 7265 1.6

1900 7673 7720 0.6

2000 8037 8177 1.7

Table 2: Simulation vs. Estimated Number of Edges for Connectivity: 500 Trials

Students may get some idea of the threshold behavior by examining the distribution of
results for a speci�c value of n. Figure 2 gives an estimated distribution for the probability
that after m edges are included a graph with 500 vertices is connected based on a set of
one thousand trials. (Each data point covers a range of 40 values.) The distribution is well
concentrated around the mean. This type of behavior appears often in the study of random
graphs; for more details on threshold behavior, see [2, pp. 37-38].

Again, this problem raises many interesting questions, making it a good candidate for
open-ended assignments. For example:

1. How many edges must be included before there is one large component, say with over
half the vertices? Over some fraction p of the vertices?

2. What is the size of the largest component after m edges have been included? The
second largest component?

3. What is the expected number of isolated vertices after m edges have been included?

4. What is the behavior on other types of graphs, such as lattices? (See, for example,
[8].)

5. How well does the disjoint set data structure perform on this problem?

5



500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Edges

500 Vertices

Figure 2: Estimated Density Function for #Edges for Connectedness: 1000 Trials

Students may be encouraged to experiment with these or other similar questions.

4 Flow algorithms: Bipartite matchings

Finding maximal bipartite matchings is a standard example of a use of maximum 
ow
algorithms. We o�er two interesting examples based on bipartite matchings:

Problem: Consider a bipartite graph that initially contains n vertices on each side and
no edges. Randomly include one edge at a time until there is a perfect matching.

Plot the expected number of edges that must be included before the graph has a perfect
matching against n. Can you �nd a function f(n) such that f(n) is close to the expected
number of edges that must be included? Use your samples to estimate gn(m) = Prfafter
m edges, the 2n vertex graph has a perfect matchingg for a few values of n. Plot your
estimates of gn; do you notice anything? 2

Note that for the above problem it is more e�cient to update the matching as edges are
introduced, rather than re-compute the maximum matching at each stage. This can easily
be done using standard methods.

The number of edges that must be added before the graph contains a perfect matching
is very close to n logn

2 . Again, n logn
2 is a threshold function; if we throw n(logn+c)

2 edges, the

probability that the graph is connected goes to e�2e
�c

. See [2, p.155-168] for more details.
Students should notice behaviors similar to those in the problem of when a graph becomes
connected. Again, one might also have students explore some of the following questions:

1. How many edges must be included before there is a large matching, say with over half
the vertices? Over some fraction p of the vertices?

6



2. Let hn(m) be the probability that there are no isolated vertices on the 2n vertex
bipartite graph afterm random edges have been added. What is the di�erence between
hn(m) and gn(m)?

3. Suppose one begins with k pairs of vertices already matched. How does this a�ect the
number of edges that must be added before there is a perfect matching? Try both for
small values of k, such as k = 10, and for larger values of k, such as k = n2=3, over a
range of values for n.

Problem: Consider a bipartite graph with n vertices on each side. Suppose that for each
vertex on the left we choose two vertices uniformly at random from the vertices on the right
and include the corresponding edges. Let f(n) be the expected size of a maximal matching.
Experimentally determine how f(n) grows. For a speci�c value of n use your samples to
plot the an estimate of the probability that the maximal matching has at least m edges.
Do you notice anything? 2

This question was studied by Hajek [5]. As n ! 1, f(n) � 0:8381n, and as n gets
larger, the tighter the concentration about its mean. It is interesting to note how much
better this is than when each vertex on the left chooses just one neighbor on the right, in
which case the size of the matching is approximately n� n=e � 0:6321n. The question can
be expanded through a number of variations; we mention a few:

1. What happens if each vertex on the left chooses 3 vertices? 4?

2. What if the left side contains �n vertices, for some constant �?

3. What happens if each vertex on the left and each vertex on the right is chooses 2
random neighbors?

5 All-pairs shortest paths

Shortest paths algorithms are commonly used in network routing problems. Here we con-
sider an interesting variation on a standard type of network.

Problem: Consider a n-dimensional hypercube. Assign a random weight uniformly and
independently from [0,1] to each edge. Let us call the length of the shortest path between
two points the distance between them, and let us call the diameter of the hypercube the
maximum distance between any two points on the hypercube. The diameter can be found
by running an all-pairs shortest paths algorithm and �nding the maximum shortest path
between any two points.

Plot the expected value of the diameter as a function of n. For a few values of n plot
the distribution of the longest path for your samples. Do you notice anything? Can you
make any conjectures? 2

At �rst, one might think that the diameter should be linear in n, since there are 2n�1

pairs of points between which the Hamming distance is n. One can attempt to gain some
intuition by considering paths chosen greedily between pairs of points. Take two points

7



opposite each other on the hypercube, and at each step cross the smallest weight edge in a
dimension that has not yet been crossed. In the �rst step, one has n dimensions to choose
from, and hence the expected distance from the �rst step is 1

n+1 . At the second step, one

chooses an edge from the remaining n � 1 dimensions; the expected cost of this edge is 1
n .

Continuing in this manner, one �nds that the expected cost of the greedy path between any
two vertices is O(logn).

This intuition might lead one to suspect the correct answer is O(logn), but again, the
actual result is dramatic; the diameter appears to be bounded by a constant, with high
probability. In fact, we make the following conjecture:

Conjecture: The diameter of an n-dimensional hypercube with edge weights indepen-
dently and uniformly distributed from [0; 1] is at most 2 with high probability for all n.

We gave this problem on an assignment, and were surprised by the results. The following
intuition seems to be correct2: if one looks only at edges with weight at most c=n for some
constant c, the remaining subgraph should include a large component. Every shortest path
will go on O(n) edges on this component and a constant number of other edges, and hence
the maximum shortest path will be of constant length. This particular problem seems not
to have been mentioned previously in the literature; however, several related results can
be found. (For example, see [1] and [6].) Proving tight bounds on the diameter, however,
appears di�cult; we would be interested in a proof.

Because the number of vertices and edges grows exponentially with the dimension,
students should not be expected to run this experiment for large values of n. In Table 3 we
o�er some data from our simulations up to ten dimensions. Additional questions one might
ask include:

1. How often is the shortest path between two points a greedy path?

2. What does the longest path look like?

3. What happens if we change the distribution of the edge weights?

Dimension 2 3 4 5 6 7 8 9 10

E[diameter] 0.878 1.213 1.445 1.627 1.723 1.794 1.822 1.849 1.865

Table 3: Expected Random Hypercube Diameter: 500 Trials

6 Conclusion

We hope that the speci�c exercises we have suggested here prove useful. The goal is to
make programming algorithms more interesting for students by demonstrating surprising
and unusual results. Perhaps the problems will even encourage students to explore related
questions, or spark them to learn more about graph theory or random graphs.

2Thanks to Andrei Broder for this argument.

8



We believe that there are many other similar potential problems out there, some based
on results in the literature and some as yet undiscovered. We would be interested to hear if
others design their own such exercises. Random graphs are a wonderful area for exploration,
especially since even simple algorithms can be used to experiment with di�cult problems.

References

[1] M.Atjai, J. Koml�os, and E. Szemedr�edi. Largest Random Component of a k-Cube.
Combinatorica. 2, 1982, 1-7.

[2] B. Bollob�as. Random Graphs. Academic Press, 1985.

[3] T. Cormen, C. Leiserson, and R.Rivest. Introduction to Algorithms. MIT Press, 1992.

[4] A. Frieze. On the Value of a Random Minimum Spanning Tree Problem. Discrete

Applied Math. 10, 1985, 47-56.

[5] B. Hajek. Asymptotic Analysis of an Assignment Problem Arising in a Distributed
Communications Protocol. Proceedings of the 27th Conference on Decision and Control.
1988, 1455-1459.

[6] A.V. Kostochka, A.A. Sapozhenko, and K.Weber. Radius and Diameter of Random
Subgraphs of the Hypercube. Random Structures and Algorithms. 4, 1992, 215-229.

[7] D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, 1992.

[8] S. Lumetta, A. Krishnamurthy, and D. Culler. Towards Modeling the
Performance of a Fast Connected Components Algorithm on Parallel Ma-
chines. Available at http://www.cs.berkeley.edu/ stevel. Conference version at
http://www.supercomp.org/sc95/proceedings/465 SLUM/SC95.HTM.

[9] R. Sedgewick. Algorithms. Addison-Wesley Publishing Co, 1988.

9


