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Exact Sampling of TCP Window States

Ashish Goel
University of Southern California

Abstract— We demonstrate how to apply Coupling from
the Past, a simulation technique for exact sampling, to
Markov chains based on TCP variants. This approach pro-
vides a new, statistically sound paradigm for network sim-
ulations: instead of simulating a protocol over long times,
or explicitly finding the stationary distribution of a Markov
chain, use Coupling from the Past to quickly obtain samples
from the stationary distribution.

Coupling from the Past is most efficient when the un-
derlying state space satisfies a partial order and certain
monotonicity conditions. To efficiently apply this general
paradigm to TCP, we demonstrate that the states of a sim-
ple TCP model possess a monotonic partial order; this order
appears interesting in its own right.

Preliminary simulation results indicate that this approach
is quite efficient, and produces results which are similar to
those obtained by simulating a TCP-Tahoe connection.

Keywords—TCP, Coupling from the past, Exact sampling.

I. INTRODUCTION

There are two commonly used methods for determining
or comparing the performance of TCP variants. The first
approach is to use simulations over large time scales, us-
ing toolssuch as ns[17]. While useful in practice, this ap-
proach generally lacks a statistical basis, without a priori
knowledge of how long aTCP simulation should run in or-
der to obtain a good sample. A second approach isto de-
velop a simplified TCP model, often based on a Markov
chain. (Another recently proposed related approach is to
use stochastic fluid models [15].) If enough simplifying
assumptions are made, such a model may yield an equa
tion (or bounding equations) for relevant quantities such
as throughput [16], [19], [6], [3]. Such a tack often re-
quires fairly extreme simplifications, however. Alterna
tively, given an appropriate model one may be able to
calculate explicitly the equilibrium distribution [18], [22],
from which relevant quantities can be derived. The cal-
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culations required, however, grow with the complexity of
the model. For example, if complex loss models are used,
calculating the equilibrium distributionmay require signif-
icant resources.

We suggest another approach that may prove useful for
studying performance of TCP variationsor simplifications.
This approach is to treat a TCP connection as a Markov
chain and obtain a sample from the stationary distribution
of thischain. Unlike previouswork, our approach doesnot
reguire computing the entire stationary distribution, which
may be computationally difficult in situations where for
example the loss model is complex. Also, unlike smula-
tion attacks that simply run the chain for along period of
time, our approach is grounded with a solid statistical ba-
sis. Specifically, under certain conditions, one can run a
Markov chain in such a way that one is sure to obtain an
exact sample from the stationary distribution.

We apply “Coupling from the Past” (CFTP) [20], a
simulation technique widely used to sample combinatorial
structures in mathematics and physics, to Markov chains
for TCP. While this connection is theoretically interesting
in its own right, we believe that CFTP may aso prove a
practically useful tool for network analysis. Indeed, we
suspect that CFTP may proveuseful for studying other sim-
ilar complex network phenomena that can be modeled ef-
fectively as Markov chains.

CFTPisessentially avariant of theMarkov Chain Monte
Carlo method [8], [13] and a natural extension of the work
on approximate and exact sampling for specific Markov
chains [4], [14], [13]. Markov Chain Monte Carlo meth-
ods have already been used widely for problems arising
from combinatorics (e.g. [5], [1]), physics(e.g. [10], [11]),
statistics (e.g. [4]), and optimization (e.g. [7]). The reader
is referred to an excellent description of CFTP by Propp
and Wilson [20] for more detail.

Coupling from the Past ismost effective when thereisa
partial order on the underlying state space with amonotone
structurei.e. if X < Y inthe partial order, then thisrela-
tionshipis preserved asthe states X and Y evolveintime.
Accordingly, we first present a partial order defined on all
possible states of a TCP connection. We show that this
partial order resultsin a minimum and a maximum state.
The minimum state corresponds to a connection perform-
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ing slow start, with the slow start threshold and the conges-
tion window set to the smallest possible values. The max-
imum state corresponds to a connection performing con-
gestion avoidance, with the congestion window set to the
maximum possible value. We then demonstrate that if we
start in two different states which are ordered and couple
their packet loss events, then the ordering is preserved as
the states evolve. Thusthe partial order has a monotonic
structure. Thisalowsusto apply CFTP to efficiently ob-
tain an exact sample from the stationary distribution of the
window sizesof abulk TCP connection; here the stationary
distributionis as seen by arandom packet.

The sampling algorithm is very simple. For notational
convenience, it is simplest to think of arranging matters
so that packet sequence numbers are increasing but non-
positive, so that our exact sampleis obtained at the packet
numbered 0. To obtain a sample from the exact distribu-
tion of the TCP Markov chain, wefirst generate an infinite
packet loss pattern going backwards from packet 0,' and
choose a small value 7. Then we simulate the TCP con-
nection for packets numbered —r to O starting in both the
minimum and the maximum states. If the two states have
converged by the time we get to the packet number O, then
the common state at the end is the desired sample. Other-
wise, we double 7 and repeat. Note that the work involved
isjust to run the Markov chains, albeit from two states in-
stead of just one.

In order for the CFTP paradigm to apply, the underly-
ing Markov chain needs to be ergodic. In the case of TCP,
whether the chain is ergodic or not depends on the nature
of the loss process that determines whether each packet
gets dropped or successfully transmitted. Two interesting
loss processes that result in ergodicity of the TCP chain
are where the packet dropsarei.i.d., and where the packet
drops form a Markovian On-Off process. A further condi-
tionisthat we need to be able to sample from the station-
ary distribution of the loss process, and create a loss pat-
tern backwardsintime. A moredetailed explanationispre-
sented in section IV-A.

We also perform arunning time analysis of thisscheme;
in order to obtain one exact sample, we need to simulate a
TCP connectionover O(N,,;- log W) packets on the aver-
age, where N,,,.- isthe number of packets required for the
TCP Markov chain to mix (see section IV-C for aformal
definition). It is unrealistic to expect to obtain any good
sample (much less an exact sample) in fewer stepsthan the

! Clearly aninfiniteloss pattern can not be generated in the traditional
sense; in order to “generate” such a pattern, it sufficesto fix adetermin-
istic algorithm that takes a non-positive packet sequencenumber as an
input, and output a bit indicating whether this packet got lost. We deal
with thisissuein greater detail in section IV-A.

mixing time, and hence the running time guarantees are
quite strong. Finally, we show how simple sub-sampling
techniques can allow usto sample from the stationary dis-
tribution at a random time instant (as opposed to at a ran-
dom packet departure epoch).

Several points about the CFTP approach are worth not-
ing. First, even thoughtherunning time guaranteeinvolves
the quantity V,,;.., the algorithm does not need to know
this quantity to obtain the exact sample. Thisisagreat as-
set, since computing N,,,.;.- OF anupper bound on N, ;,- can
get very complicated even for very simple Markov chains.
Second, even though proving the correctness of the CFTP
approachinvolvesthepartial order definedin sectionll, the
resulting sampling a gorithm does not involve any knowl-
edge of the partial order. Again, thisis very useful since
the partial order and the proof of monotonicity are quite
intricate. Finally, it isimportant to note that CFTP does
not strictly require monotonicity under a partia order, al-
thoughtheserequirementsaid analysisand greatly improve
the practicality of using CFTP. Thus, athough TCP vari-
ants can demonstrate non-monotonic behaviors[9], we be-
lieve this approach can be extended to Markov chains for
other TCP variants besidesthe chain considered in this pa-
per. Also, we believe that our monotonic partial order is
interesting initsown right and may lead to further insights
into the nature of TCP congestion control.

Our simulationsof simple scenariossuggest that thisap-
proach is efficient, scales well with increasing maximum
window sizes, and yields results which are close to those
obtained by running the network simulator ns for TCP-
Tahoe. Our simulation results are quite preliminary, and
it would be interesting to develop a more extensive sim-
ulation infrastructure to explore the practical utility of the
ideas in this paper.

In this paper, we restrict ourselvesto bulk TCP connec-
tions, so we ignore the connection establishment phase.
Further we assume that the TCP slow start and congestion
avoidance algorithms are in place, but fast retransmit and
fast recovery algorithms are not (see [12], [21], [2] for a
detailed description of these algorithms). Extending our
approach to all variants of TCP and to other networking
protocolsisan interesting open problem.

Section |1 definesthepartial order, and section 1 proves
that this partial order ismonatonic. Section 1V detailshow
the CFTP paradigm can be applied to this problem, sec-
tion V presents the simulation results, and section VI con-
cludesthe paper.

I1. A PARTIAL ORDER ON TCP WINDOWS

In this section, we define a simplified state space for
TCPR, and provide a partial order on this state space. We
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show that this partial order has unique minimum and max-
imum elements, which is useful in applying CFTP.
Definition 1: GivenaTCP connectionC, the state S(C)

of the TCPwindow isthetriplet (MODE, SSTHRESH, CWND)

where
o« MODE = SS if the TCP connectionis performing slow
start, and MoDE = CA if the connection is performing
congestion avoidance.
o SSTHRESH denotestheslow start threshold. If MODE =
CA then the slow start threshold isirrelevant and is de-
noted by the symbol .
o CWND denotes the congestion window of the TCP con-
nection.
We use MODE(S), SSTHRESH(.S), and CWND(S) to de-
note the three components of the state S'; al'so we overload
notation and use MODE(C) etc. to denote MODE(S(C))
etc.

Definition2: Let S denote the space of al valid TCP
states.
We do not define formally what the valid TCP states are,
but invoke the properties of TCP as and when needed to
disqualify statesfrom belongingto S. In particular, we as-
sume that a TCP connection goes out of slow start and into
congestion avoidance as soon as the congestion window
becomes equal to or exceeds the slow start threshold.

We now definearelation < on S.

Definition 3: Given two states A, B € &, the relation
A < B holdsif and only if exactly one of thefollowingis
true:

1. MoDE(A) = MODE(B) = CA and CwND(A) <
CwND(B)

2. MODE(A) = MODE(B) = SS, SSTHRESH(A) <
SSTHRESH (B), and CWND (A) < CwWND(B)

3. MoDE(A) = SS, Mobe(B) = CA, and
SSTHRESH(A) < CWND(B)

4. Mobe(A) = CA, MoDE(B) = SS, ad

CWND(A) < CWND(B)

This relation has some very interesting properties. In
particular, we will show that thisrelation isa partial order.
Figure 1 illustratesthis partial order for asimple case.

A. Thepartial order property

We now claim that the relation < isa partia order i.e. it
isreflexive, anti-symmetric, and transitive.

Theorem 1. Therelation < isapartia order.

Proof: X < X istrivia to prove, so reflexivity
holds.

To prove anti-symmetry, we need to show that if X # Y
then X <Y = Y £ X. The proof is by contradiction.
Suppose X # YV, X < Y andY < X. We consider four
Cases.

(CA,_,4)
l (SS4,3)
(CA,_3)
\ '
(ss 32) «—(S54.2)
(CA,_ ,2)
v v
(SS,3,1)+——(SS4.1)
v
(SS,2,1)

Fig. 1. A pictoria representation of the partial order < for a
small set of TCP window states. There is a directed path
from B to A in the above graph iff A < B. Notice
that there is a minimum state (55, 2, 1), a maximum state
(CA ,0,4), and that there are incomparable states (eg. the
states (CA ,0,3) and (S5, 4, 2)).

1. Suppose MODE(X') = MODE(Y) = CA . Then, com-
bining X < Y with rule 1 in definition 3, we know that
CwND(X) < CwnD(Y). SinceY < X dso holds, we
know that CwND(Y) < CwND(X)i.e. CWND(X) =
CwND(Y'). Since MODE(X) = MoODE(Y) = CA, we
know that SSTHRESH (X ) = SSTHRESH(Y') = (. Hence
X =Y whichisacontradiction.

2. Suppose MODE(X) = MODE(Y) = SS. Then
combining rule 2 in definition 3 with X < Y and
Y < X, weget SSTHRESH(X) < SSTHRESH(Y),
SSTHRESH(Y) <  SSTHRESH(X),CwWND(X) <
CwND(Y'), and CwND(Y') < CWND(X') simultaneously.
Together, these imply that X = Y, which is a contradic-
tion.

3. Suppose MODE(X) = SS and MoDE(Y) = CA.
Then by rule 3 and the fact that X < Y, we get
SSTHRESH(X) < CwnND(Y'). Combining rule 4 with
Y < X,weget CwND(Y) < CWND(X). Together, the
two imply that SSTHRESH (X)) < CwND(X). But TCP
goesout of dow start and into congestion avoidance when
the congestion window becomes equal to or exceeds the
dow start threshold. Hence state X could not be in slow
start mode, which isa contradiction.

4. Suppose MODE(X) = CA and MODE(Y) =
Thisis symmetric with the previous case.

Sinceall four cases aboveresultin acontradiction, we have
established that < isanti-symmetric.

SS.
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We must now provethat < istransitivei.e. X <Y and
Y < Z togetherimply X < Z. Again, wedividethe proof
into four steps:

1. Suppose MODE(X) = MoODE(Y) = CA. |If
MoDE(Z) = CA , then by rule 1, we have CWND (X') <
CwWND(Y) < CwND(Z) whichimpliesthat CWwND (X') <
CWND(Z). Invoking rule 1 again, we have X < Z.
If MODE(Z) = SS, then by rules 1 and 4, we have
CWND(X) < CwND(Y) < CwWND(Z); invoking rule 4
againimpliesthat X < 7.

2. Suppose MODE(X) = MoODE(Y) = SS. If
MoDE(Z) = SS then by invoking rule 2, we know
that CwNnD(X) < CwnD(Y) < CwnND(Z) and
SSTHRESH (X') < SSTHRESH(Y) < SSTHRESH(Z); in-
voking rule 2 again, we obtain X < Z. |f MODE(Z) =
CA theninvokingrules2 and 3, weget SSTHRESH (.X) <
SSTHRESH(Y) < CWND(Z); reinvoking rule 3 gives
X <Z.

3. Suppose MODE(X) = SS and MoDE(Y) = CA.
If MODE(Z) = CA theninvoking rules3 and 1, we get
SSTHRESH(X) < CwND(Y) < CwND(Z); invoking
rule 3 again gives X < 7. Thecase MODE(Z) = SS
is a little more involved. Invoking rules 3 and 4, we get
SSTHRESH(X') < CWND(Y') < CWND(Z). Thisinitself
isnot enough to invokerule 2 and claim that X < 7. But
observethat since X and Z arebothin slow start, we know
that CwND(X) < SSTHRESH(X) and CWND(Z) <
SSTHRESH (/). Combining these two inequalities with
SSTHRESH(X) < CWND(Z) gives CWND(X) <
SSTHRESH(X') < CWND(Z) < SSTHRESH (7). We can
now invokerule 2 to claimthat X < Z.

4. Suppose MODE(X) = CA and MODE(Y) = SS.
If MODE(Z) = SS, then rules 4 and 2 imply that
CWND(X) < CwND(Y) < CwWND(Z); invoking rule 2
again gives X < Z. If MobE(Z) = CA, thenrule 4
impliesthat CWwND (X)) < CwND(Y), MODE(Y) = SS
impliesthat CWND(Y) < SSTHRESH (Y'), and rule 3 im-
plies that SSTHRESH(Y) < CwND(Z). Combining the
above, we obtain CwND(X') < CWND(Z); invoking rule
1now givesus X < 7.

It isinteresting to note that the partial order < isatotal or-
der if restricted to only those states which are in the con-
gestion avoidance mode. The above proof illustrates how
the definition of < iscarefully tailored for usto be ableto
prove that therelation < isa partial order. There are other
partial ordersthat can be defined on the TCP window state
space. What makes the relation < particularly interesting
is the existence of a minimum and a maximum element.

B. Thelower bound property

We now define a special “lower bound” state L.
Definition 4: Thestate L is(SS , 1,1)i.e. theTCPcon-
nectionisin slow start, and the congestion window and the
slow start threshold? are both set to 1.
Thestate L isaminimumi.e. L < X forall X € S. This
iseasily verified by looking at rules2 and 3.

C. The upper bound property

We now define a special “upper bound” state /. We
usethe termsmax_cwnd and max_ssthresh torefer to the
maximum possible window size and the maximum possi-
ble slow start threshold, respectively. These terms typi-
cally depend on the TCP variant in use, the advertised win-
dow size of the receiver, and the configuration of the end-
hosts. We assumethat max_ssthresh < max_cwnd; if not
then max_ssthresh can be set equal to max_cwnd with-
out any change in TCP behavior. By a similar argument,
we assume that max_cwndis no larger than the receiver’s
advertised congestion window.

Definition 5: The state U7 is (CA , 0, max_cwnd) i.e.
the TCP connection is in the congestion avoidance phase
and the congestion window is the maximum possible.
Thestate U/ isamaximumi.e. X < U foral X € S. This
is easy to verify by looking at rules1 and 3.

I1l. MONOTONICITY IN THE TCP WINDOW SPACE

We show here that the partial order < has a nice mono-
tonic property which alows us to apply Coupling from
the Past, assuming the loss process satisfies certain useful
properties.

Consider two valid states X and Y of a TCP connec-
tionC suchthat X < Y. Let Next(.X) and Next(}') de-
note the states of this connection after sending one packet
each from states X and Y and receiving the corresponding
ACK or NACK. Here we make the following simplifying
assumption: when aloss occurs, it begins aloss event that
causes al subsequent packetsto belost until a timeout oc-
curs. Since we are not using fast retransmit or fast recov-
ery, essentially thisassumption provides alower bound on
TCP performance; we ignore packets that may have been
received that and will be acknowledged later. Similar as-
sumptions have been made in other work, e.g. [19], [3].

If we couple the fate of the next packet sent in state X
with the fate of the next packet sent in state Y (i.e. either
both begin aloss event, or both are successfully transmit-
ted), then Next(X') < Next(Y).

2Most variants of TCP set thq congestion window to at least 2; for
these variants we should define L = (SS , 2, 1). All theresultsin this
paper hold with this variation as well.
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We recall how Next(.X') dependson X .

1. If MODE(X) = SS, then a successful transmis-
sion yields CWND (Next(X)) = CwND(X) + 1. Also
MobDE(Next(X)) = CA if CwND(Next(X)) =

SSTHRESH (X') = SSTHRESH (Next(.X)).
2. If MoDE(X) = CA,, then a successful transmission
yields CWND (Next(X')) = CwND(X ) + 1/CWND (X).

3. Onapacketloss, MoDE (Next(X)) = SS , SSTHRESH (N&t(NOY Y5 + 1/CwWND(Y').

max{[CWND(X)/2], 2}, and CWND (Next(X)) = 1.

Before proving the theorem for the above setup, it is
worth emphasizing that our approach could easily apply to
other common TCP simplifications. For example, in some
cases TCP is modeled without slow start; it is instead as-
sumed that the process is always in congestion avoidance,
and that a loss causes the sending window to shrink by
some constant factor. (See, for example, [19], [3] for rele-
vant discussions.) Inthiscaseour Markov chain state space
would be evensimpler (wecould avoidthe SS modealto-
gether), and we we could prove monotonicity in a manner
similar to the theorem below.

Theorem2: If X < Y then Next(X) < Next(Y).

Proof: As before, we require a careful case by case

analysis:
1. Suppose MODE(X) = MODE(Y) = CA. Then
by rule 1 in definition 3, we know that CwND (X)) <
CwND (Y'). If thereisno loss, then MODE(Next(X)) =

5

SSTHRESH(Y') < CwWND(N

nition 3, Next(.X') < Next(Y).
3. Suppose MODE(X) = SS and MoDE(Y) = CA.
Then by rule 3, CWND(X) < SSTHRESH(X) <
CwND(Y). If there is aloss, it is asin case 1. If
there isno loss, then SSTHRESH (.X') remains unchanged,

t(X')), so by rule 3 in defi-

CwND (Next(X)) = CWND(X )+1,and CWND (Next(Y)) =

If MoDE(Next(X)) =
SS, then CwWND(Next(X)) < SSTHRESH(X) <
CwnND (Next(Y')), thenby rule3indefinition 3, Next(X ') <

Next(Y"). If MODE(Next(X )) = CA ,then CwND (Next(X)) =

SSTHRESH (X)) < CwND(Next(Y)), and by rule 1 in def-
inition 3, Next(.X') < Next(Y').
4. Suppose MODE(X) = CA and MODE(Y) =
SS . Then by rule 4 in definition 3, CWND(X) <
CwND(Y). If there is aloss, it is asin case 1. If
there is no loss, then CwND (Next(X)) = CWND(X) +
1/CwWND(X), and CWND (Next(Y)) = CwND(Y) + 1.
If MODE(Next(Y)) = SS , then by rule 4 in definition 3,
Next(X') < Next(Y); otherwise, it followsby rule 1.

|

IV. APPLYING CFTP 1O THE TCP WINDOW SPACE

In this section, we demonstrate how to use our previ-
ous results to apply CFTP to the TCP window space. We
confine ourselves to bulk TCP connections; specifically,

MoDE(Next(Y)) = CA , CwND (Next(X )) = CwND (X )fwe choose a positionin the stream and |abel its packet se-

1/CwWND(X), and CwND(Next(Y)) = CwND(Y) +

guence number as 0, and we assume there are an infinite

1/CwWND(Y'). Notethat CwND (Next(X )) < CwND (Next(YSeguence of packets prior to this one. Our godl isto find

as the function f(z) = 2 + 1/z isincreasing in z for
x > 1. Hence CWND (Next(X')) < CwND(Next(Y')), so
by rule 1 in definition 3, Next(X) < Next(Y'). If there
isaloss, then MODE(Next(X)) = MoDE(Next(Y)) =
SS, CwND(Next(X)) = CwND(Next(Y)) = 1,
SSTHRESH (Next(X')) = max{[CwWND(X)/2],2}, and
SSTHRESH (Next(Y')) = max{[CWND(Y)/2],2}. Note
SSTHRESH (Next(.X')) < SSTHRESH (Next(Y)). By rule
2 in definition 3, Next(X') < Next(Y').

2. Suppose MoDE(X) = MODE(Y) = SS.
By rule 2 in definition 3 we have SSTHRESH (X ) <
SSTHRESH(Y') and CWND (X)) < CwND(Y). If there
is aloss, it is as in case 1. If there is no loss, then
the SSTHRESH remain unchanged, CWND (Next(X)) =
CWND(X) + 1, and CwND(Next(Y)) = CwND(Y) +
1, so CWND(Next(X)) < CwND(Next(Y)). If both
states remain in mode SS , then by rule 2 in definition 3,
Next(X) < Next(Y). If both states move to mode CA ,
then by rule 1 in definition 3, Next(X) < Next(Y). If
state X moves to mode CA and Y does not, by rule 4
in definition 3, Next(XX) < Next(Y). If state Y moves
to mode CA and X does not, then SSTHRESH (X)) <

the state of the TCP connection as seen by this packet. All
other packets have negative numbers. Further, we require
that each packet islabeled with abit that indicateswhether
this packet was successfully transmitted by the network. A
loss processisastochastic process that producesthislabel -
ing of theinfinite stream of packets.

In this paper, we are concerned with loss processes
where packet drops are governed by a Markov chain. A
loss process along with the TCP congestion control algo-
rithms define aMarkov chain that we call the TCP Markov
chain. Note that in our TCP Markov chain, we do not in-
clude packetsthat are sent out after the dropped packet (un-
til atimeout happens); hence our lossprocessreally signals
loss events.

A. Ergodic TCP loss processes

Definition 6: A lossprocessissaidtobeanergodic TCP
loss processif the resulting TCP Markov chain is ergodic.
One sufficient condition for a loss process to be an er-
godic TCP loss process is that arbitrarily long sequences
of packet drops and successful packet transmissionsshould
occur with a non-zero probability. Two interesting loss
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processes that result in ergodicity of the TCP chain are
wherethe packet dropsarei.i.d, and wherethe packet drops
form aMarkovian On-Off process.

In order for the CFTP paradigm to apply, we need to
be able to generate the loss pattern from —oc to 0. Since
thisis an infinite sequence, we can not enumerate it in any
traditional sense; instead we need to generate elements of
this sequence on demand and in a consistent fashion. For
i.i.d. drops,itiseasy to generate elements of this sequence
on demand. For Markovian On-Off drops, we can sample
from the stationary distribution of the On-Off process to
determine whether packet 0 got dropped. We can then do
abackwardswalk in the On-Off Markov chain to generate
other elements of thissequenceon demand. Samplingfrom
the stationary distribution of a Markovian On-Off process
iseasy. Similar techniques should apply for other natural
loss processes.

B. Applying CFTP to sample fromthe TCP state space

We use the CFTP paradigm for monotonic Markov
chainsasdefined by Propp and Wilson[20] to obtainasam-
ple from the stationary distribution of TCP window sizes.
The evolution of the states I, and {7 inthe Markov chainis
simulated from event —7 to 0. If the two processes are in
the same state at event O, then this common state is output
as the sample from the stationary distribution. If not, then
7 isdoubled and the processis repeated. It isimportant to
reuse the same random numbers at event —¢ during all the
iterationsof the algorithm. In our scenario, thismeans that
during all the iterations of the algorithm, we should have
a consistent view of whether the packet numbered —¢ was
lost. Themain intuitionisthat when the sample paths start-
ing from the bottom state . and the top state I converge,
they sandwich the entire state space in between. Itisim-
portant to follow this procedure exactly as described and
not cut corners such as simulating states  and 7 forward
in time from event O till they converge. The reader isre-
ferred to an excellent description of the process by Propp
and Wilson [20] for more detail.

The following theorem follows from a general theorem
due to Propp and Wilson [20] regarding the correctness of
the CFTP paradigm.

Theorem 3: The algorithm outlined above samples ex-
actly from the stationary distribution of the Markov chain
defined by the TCP slow start and congestion avoidance
mechanismsin conjunction with an ergodic TCP loss pro-
cess.

C. Running Time Analysis

We first need some definitions. Assume we are given
an ergodic Markov chain M ; further assume that the state

6

space of this Markov chain is equipped with a partial or-
der, a minimum state, a maximum state, and a monotonic
property.

Definition 7. Let d(k) = max,, ., ||7f — 75|| where
7" isthe distribution governing the Markov chain M after
k transitions, when started in a random state governed by
the distribution . Themixing time7’,,,;,. (M) isdefined to
be the smallest & for which d(k) < 1/e.

The mixing time need not necessarily be a“time;” in fact,
for the TCP Markov chainit isgoing to denote the number
of packets transmitted.

Definition 8: The convergencetime 7 (M ) denotesthe
number of simulation steps required by the CFTP process
to return a sample from the stationary distribution of M.

Definition 9: Given a partial order on the state of the
Markov chain M, the chain-length C'(M) of M is the
length of the largest ordered sequence of distinct states.

The following general lemma was proved by Propp and
Wilson.

Lemma 4: E[T*(M)] < 2T (M) - (1 +In C(M)).

Let W denote the maximum congestion window size of
the TCP connection under study, and let N,,;,. denote the
mixing time of the TCP Markov chain.

Lemma 5: The number of distinct states in the TCP
Markov chainis O (W?3).

Proof: We need to prove that |[S| = O(W?). If a
TCP connectionisinthe slow start mode, thenitsslow start
threshold and congestion window are both integers < W.
Hence the number of different slow-start statesis at most
W2, Now suppose that the TCP connection isin the con-
gestion avoidance phase, and that the transition from slow
start to congestion avoidance was made when the window
sizewas z. There are at most W choices for the value of
x. Also, each successful ack during congestion avoidance
resultsinthewindow sizebeingincreased by at least 1 /1.
Consequently, there can be at most W2 distinct window
sizes encountered as the window increases from z to .
Hence, there can be at most 172 different statesin the con-
gestion avoidance phase. The total number of statesis at
most W2 4+ W? = O(W?). |

Since the chain-length can not be any larger than the
number of states, we obtain the following theorem:

Theorem 6: The convergence time for the TCP Markov
chanisO(N,,i, In W).

D. Sub-samplingto obtain samplesat a randomtime

When the window sizeislarge, alarge number of pack-
etsseethat window size. Thusthe stationary distributionas
seen by a random packet is biased towards larger window
sizes compared to the stationary distribution at a random
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timeinstant. In order to obtainasamplefrom thelatter dis-
tribution, we need to discard some of the samples returned
by the CFTP process outlined above.

We usetheterm samplinginterval to represent thelarger
of the timeout value and the RTT for the TCP connec-
tion (the timeout value is the duration after which the
sender presumes that an unacknowledged packet has been
dropped). We denote the sampling interval by /. To ob-
tain samples at a random time we use the following sub-
sampling algorithm:

1. UseCFTPtoobtainasample X fromthe stationary dis-
tribution of the TCP state space as seen by arandom packet.
2. Simulate the TCP connection starting from X to deter-
minetheinterval I’ after which the next packet is sent.

3. With probability 7'/, output this sample and exit; else,
go back to step 1.

The following theorem states that the sub-sampling algo-
rithm is correct and efficient.

Theorem 7: The sub-samplingalgorithmoutlined above
returns an exact sample from the stationary distribution of
the TCP Markov chain as seen at a random time instant.
Further, the sub-sampling algorithm makes at most W -
(I/RTT) calsto the CFTP agorithm on an average.

Proof:

(a) Correctness: Thispart isrelatively straightforward, so
instead of giving aformal proof, we sketch the main intu-
ition. Assumethat the state of the TCP connection changes
at packet-departure epochs. Now the state seen by a ran-
dom packet persiststill the next packet is sent out. This
happens an interval I’ later. Therefore we need to weight
thissampleby I’. Since I’ must be lessthan I (recall that
I isthelarger of the RTT and the timeout), choosing to re-
tain the sample with probability 7’ /I givesit the appropri-
ate proportional weight.

(b) Running time: Let usartificialy dividetheentire packet
sequence into chunksof W contiguouspackets. Let usex-
amine a specific chunk B. Let I{ denote the time between
the first and second packet departures in the chunk, 7 de-
note the time between the second and third packets in the
chunk, and so on. Further, let I};, denote the time between
the last packet departure from chunk B and thefirst packet
departurefrom the next chunk. The CFTP agorithminsec-
tion I V-B givesasamplefrom the stationary distributionas
seen by arandom packet. L et uscondition our sample such
that the random packet must belong to chunk B. Given
this conditioning, each of the W packets on this chunk is
chosen with probability 1/W. Hence the probability that
the sub-sample succeeds is (1/W) Z]VL I7/1. Sincethe
chunk isof size W (i.e. the maximum window size), it re-
quires at least RTT time to go across, which implies that
S°ILy It > RTT. Therefore the success probability given

7

this conditioning is at least (1/W) - (RTT/I). We did
not use any special properties of the chunk B, so the same
lower bound on the success probability holdsif weremove
the conditioning. It now follows that the expected number
of samples required for successisat most W - (I /RTT).

|
The sub-sampling algorithm as stated above seems to re-
quire a knowledge of the exact values of the timeout and
the RTT. However, the same algorithm continues to work
if weuseany I > max{RTT, timeout}.

V. SIMULATION RESULTS

We built a simple implementation to test the feasibility
and utility of our CFTP framework. We present resultsfor
the case where each packet islost independently with prob-
ability p. (Of course in this case the equilibrium distribu-
tionfor the TCP Markov chain we have described could be
calculated explictly, but the number of states growsrapidly
in the window size.)

Our implementation takes as input the maximum win-
dow size max_cwnd, and a drop probability p. The maxi-
mum slow start threshold is assumed to be the same asthe
maximum window size. We allow a congestion window
of size one, and the minimum slow start threshold after a
drop istwo. Initially we simulate two steps of the Markov
chain, and then we double the number of time steps ssim-
ulated if coupling has not occurred between the upper and
lower bound states. Hence when we describethe number of
stepsrequired before coupling, our implementation always
givesa power of two. Recall that thisis not arequirement,
but simply a convenient choice.

In Table I, we show the average and maximum num-
ber of time steps (or equivaently packets) required be-
fore a state was output over 1,000 trials and various drop
rates when the window size was set to 40 and 400 pack-
ets. The average is significantly smaller than the maxi-
mum; often CFTP yields an exact sample quickly. When
the probability of a drop p is small, the coupling time is
essentially dominated by the time for the congestion win-
dow of the lower bound state to reach its maximum size
max_cwnd. When p is larger, the bounding states tend to
couple more quickly, as the congestion window of the up-
per state quickly decreases toward the lower state. Aspre-
dicted in the theory of Section 1V, scaling up to a large
maximum window size does not dramatically increase the
running time required, particularly when the drop rate is
high. Importantly, this suggests that CFTP may be a use-
ful alternative approach when the number of states grows
too large for explicit calculations of the equilibrium distri-
bution.

In Table II, we show the average cwnd for our simu-
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Drop | max_cwnd=40 | max_cwnd= 400
Ratep | Avg. Max. Avg. Max.
0.001 | 1585.4 | 16384 | 5479.0 | 16384
0.01 350.8 | 1024 | 451.0 | 2048
0.02 1741 | 1024 | 211.8 | 1024
0.03 121.3 | 512 | 130.9 512
0.04 83.6 256 93.2 512
0.05 68.7 256 72.7 512
0.06 53.6 256 56.7 256
0.07 44.3 256 47.6 256
0.08 384 256 44.3 256
TABLE

QUICK SAMPLES FROM THE CFTP METHOD.

Drop | max_cwnd=40 | max_cwnd= 400
Rate p avg. cwnd avg. cwnd
0.001 337 47.4

0.01 14.16 14.25

0.02 9.77 10.09

0.04 6.93 7.07

0.08 4.97 5.02

TABLE Il

AVERAGE CWND VALUE FROM CFTP SAMPLES.

lation. Note that this average is the average cwnd expe-
rienced by each packet, and not the average over time.
It is interesting to note that cwnd still appears to follows
the square root law in our simulations; that is, cwnd falls
roughly proportionaly to 1/,/p. Also, as one might ex-
pect, the difference between the average cwnd value does
not differ significantly between the smaller and larger win-
dow size unlessthe drop rate islow.

We also provide results comparing our CFTP impleme-
nation to a ns simulation with 10,000 packets using the
Tahoe protocol. We examined the specific case where the
drop probability p is 0.01 and the maximum congestion
window, max_cwnd, is 40. We re-ran our CFTP simula-
tion to obtain 1,000 new samples for this comparison. We
found that the average congestion window over al pack-
etswas 14.77 in our CFTP samples, whileit was 14.33 for
the ns simulation. As another point of comparison, 5.2%
of the samples were in the slow start mode for our CFTP
samples, while5.7% of the packetswerein slow start mode
for the ns simulation. We would expect the agreement to
be rough, both because we are sampling and because our
Markov chain is not a true faithful representation of the

Tahoe protocol. These results suggest that our approach
can lead to good approximationsfor actual TCP behavior.

V1. CONCLUSIONS

We presented a partial order on the space of TCP win-
dow states that possesses a natural monotonic property.
Thisleadsto an efficient application of the* Coupling From
The Past” paradigm to sample from the stationary distribu-
tion of TCP window statesas seen by arandom packet. The
convergence time of this schemeis O (N, In W) where
N, 1S the number of steps required for the underlying
TCP Markov chain to mix and W is the maximum win-
dow size of. It isunredlistic to expect an exact sample in
lessthan NV, steps. Hence, the above algorithmisonly a
small factor (In W) away from the optimum. At the same
time, the algorithm does not need to know N,,,;,.. We aso
showed how a simpl e sub-sampling algorithm can be used
to obtain asample at arandom timeinstant. Our partial or-
der and proof of monotonicity may well be of independent
interest and may yield new insightinto the structureof TCP
congestion control algorithms. Our simulations of simple
scenarios suggest that thisapproach isefficient, scaleswell
with increasing maximum window sizes, and yieldsresults
which are close to those obtained by running the network
simulator ns for TCP-Tahoe.

The above approach can potentially give rise to the fol-
lowing new paradigm for network simulations: instead of
simulating a protocol over long times, or explicitly finding
the stationary distribution of the states of the protocal, try
to quickly obtaina“typical” sample of the state of the pro-
tocol. Our approach currently worksfor asimplified TCP
model that does not employ fast recovery. Extending these
ideasto other TCP variants and other network protocolsis
animportant open problem. Also, itwould beinterestingto
develop asimulationinfrastructure to explore the practical
utility of theideasin this paper.
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