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Abstract—JPEG is one of the most widely used image formats,
but in some ways remains surprisingly unoptimized, perhaps
because some natural optimizations would go outside the stan-
dard that defines JPEG. We show how to improve JPEG com-
pression in a standard-compliant, backward-compatible manner,
by finding improved default quantization tables. We describe
a simulated annealing technique that has allowed us to find
several quantization tables that perform better than the industry
standard, in terms of both compressed size and image fidelity.
Specifically, we derive tables that reduce the FSIM error by over
10% while improving compression by over 20% at quality level
95 in our tests; we also provide similar results for other quality
levels. While we acknowledge our approach can in some images
lead to visible artifacts under large magnification, we believe use
of these quantization tables, or additional tables that could be
found using our methodology, would significantly reduce JPEG
file sizes with improved overall image quality.

I. INTRODUCTION

Since the original development of the JPEG Still Picture
Compression Standard by the Joint Photographic Experts
Group in 1992 [1], JPEG has become one of the most widely
used image standards. Almost a sixth of the space of all
web pages is filled by JPEG images [2]. JPEG is based on
a Discrete Cosine Transforms (DCT) that shifts the image
data into the frequency domain. JPEG then leverages the
fact that lower frequency signals are more perceivable to the
human visual system (HVS) by using a lossy compression
that more aggressively eliminates information related to the
high frequency signal. The key to the exact compression-
quality tradeoff lies in JPEG’s quantization tables, an eight by
eight matrix that determines to what extent each frequency is
compressed. JPEG’s designers emphasized the users’ ability
to significantly control visual fidelity, and therefore while a
general standard quantization table has been proposed and
adopted in the standard library [3], JPEG implementations
allow for the use of personalized tables. It also includes a
quality metric which allows for the tables to be scaled (the
formula for which can be found in the libjpeg code and
documentation [4]).

JPEG has known deficiencies, but its wide use as an
industry standard has made replacement of JPEG with a new
format a seemingly insurmountable task. For example, in 2002
Taubman and Marcellin proposed an improvement on JPEG
called JPEG2000 [5]. While that paper and later works such
as [6] have shown that JPEG2000 is an almost universal
improvement over JPEG, it is not widely used and has clearly

failed to replace JPEG. Our work sets out to improve JPEG
compression and image fidelity without requiring any changes
to the JPEG implementations in use today, specifically by
providing improved general quantization tables. The choice of
quantization table is a challenging problem, but understanding
of the problem has improved over time. When JPEG was
introduced, no reasonable model existed for the HVS. Little
documentation exists for exactly how the quantization table
originally adopted for JPEG was developed, but it relied
largely on testing with human subjects. One would expect
that such a table would have been determined with a very
coarse exploration of the solution space and an inconsistent
measurement of error. In the early 2000s, the first promising
HVS model was proposed [7], and recent work has come
closer to giving an objective metric closely tied to human
experiments [8], [9]. Such metrics allow us to apply natural
optimization techniques.

We make use of two of the best current HVS models, FSIM
and M-SSIM, with a particular focus on the first [7], [8], [9].
We have also incorporated a very recently proposed metric,
Butteraugli [12], although its use is limited to verification
due to its computational complexity. With these error methods
we use simulated annealing over a subset of the Raw Image
Dataset (RAISE) [10] to develop a set of quantization tables
optimized for both error and compression. Our experiments
show reductions ranging from 21-50% in file size depending
on the JPEG quality used while improving FSIM error by
over 10% across all qualities. These results are a significant
improvement over previous attempts in both compression and
image fidelity, and are primarily due to a new, compression
focused annealing method.

Our paper proceeds as follows. We first review the various
error metrics for images. We then describe our annealing
approach, focusing on how we aim to improve both com-
pression and image quality. We present experimental results
demonstrating the improved performance using our discovered
quantization tables, and follow up by diving deeper into our
results, deriving some insight into how our tables improve
performance, and the potential downside of our approach in
terms of the possible addition of compression artifacts. We
conclude describing potential follow-on work. As a baseline
for future work, we provide a small library of quantization



tables online. 1

II. REVIEW OF ERROR METRICS

The original JPEG quantization tables were created us-
ing psychovisual experiments, basing their results on human
perception of the images [1]. For search-based optimizations
methods such as simulated annealing, requiring human input
for the error measurements is unrealistic, so we employ
a machine-computable metric which reflects human visual
perception. Because we are able to compare the compressed
image to the original at any point, we may use full-reference
image quality assessments (FR IQA) that take advantage of
having the original image available. Creating effective FR
IQA algorithms to model the HVS is an active research area.
Over the past decade the more straightforward techniques,
like root mean square error (RMSE) measurements, have been
replaced by more complex and accurate metrics. Sheikh, Sabir,
and Bovik provide an analysis of 10 different modern error
metrics, both for color and luminance only [8]. Their analysis
suggests that a structural method, SSIM, is one of the most
effective methods in approaching the HSV standards set by
psychovisual databases while also beating other methods such
as VIF (Visual Information Fidelity) in time complexity. We
review RMSE, SSIM, and other error metrics below.

A. Root Mean Squared Error and Peak Signal-to-Noise

For many years, IQA methods relied on either Root Mean
Squared Error (RMSE) or Peak Signal-to-Noise Ratio (PSNR)
methods [11]. Part of the reason for this was due to their ease
of calculation. The following are standard equations used in
measuring the “distance” between two images:

RMSE =

√√√√ 1

nm

n,m∑
i,j=1

(yi,j − ŷi,j)2;

PSNR = 20 log10

(
MAXI

RMSE

)
.

Here n and m are the width and height of the image in
pixels respectively, yi,j and ŷi,j are the values of the (i, j)th
pixel in the two images, and MAXI is the maximum value for
a pixel. While these error methods offer a clear measure of the
difference in pixel data, they have little to no correlation with
the HVS, and are thus ineffective IQA measurements [11].

B. SSIM and M-SSIM

The aptly named Structural Similarity (SSIM) compares the
structural similarity between the original image and the new
compressed image. A seminal paper on the model by Wang et
al., summarizes the basic concept behind SSIM [7]. Essentially
three comparisons are conducted: one on luminescence, one
on contrast (measured through the standard deviation of the
image), and one on the structure (which is a comparison of the
images once their mean has been subtracted and they’ve been
normalized to have standard deviation 1). This basic algorithm

1http://www.eecs.harvard.edu/∼michaelm/SimAnneal/simulated
annealing for JPEG quantization.html

was later improved on by Wang et al. and renamed Multi-scale
SSIM, which adds the idea that HSV depends on the scale at
which the image is being viewed, and therefore extending the
metric to multiple resolutions should improve its agreement
with HSV. Mathematically, Multi-scale SSIM only requires
that the SSIM algorithm be run on multiple resolutions and
the outputs be multiplied together by a formula of the form

Multi-scale SSIM =
∏

(SSIMi)
γi ,

where each γi represents a weight for the importance of a
particular resolution, the i index iterates over the the different
resolutions being sampled, and the product is over the SSIM
scores at each resolution. Unsurprisingly, Multi-scale SSIM
has been shown to outperform SSIM and has given some of
the best results on HSV databases.

C. FSIM

While several broad comparison papers have pointed to VIF
and SSIM as the leading FR IQA algorithms, a more recent
publication has put forth a new technique, labeled feature
similarity (FSIM), and shown that FSIM outperforms both
SSIM and VIF on six major publicly available IQA databases
[9]. FSIM takes advantage of two newer strategies in the IQA
community: phase congruency (PC) and gradient magnitude
(GM). PC is based on the idea that we generally perceive
features in locations where the Fourier components are in
phase, which is a refinement over SSIM’s simplistic focus on
contrast. The GM strategy, on the other hand, is effectively a
measure of contrast, allowing FSIM to factor in SSIM’s basic
feature analysis. The final FSIM score is then the weighted
product of the similarity between the GM values and the
similarity between the PC values. Instead of summing over the
similarity of each point, the sum is weighted by the maximum
of the two PC values at the point, which effectively assigns
more weight to high importance regions.

D. Butteraugli

Google Research recently introduced a new error method
named Butteraugli [12]. While there do not yet appear to
be any published results for the metric, the specification
for Butteraugli claims that the method performs better than
SSIM or PSNR on tests where overall compression is roughly
equivalent to quality 90-95 of the standard JPEG table. While
more details need to be released, Butteraugli uses a heat map
of differences between the original and compressed images
for its computation. Butteraugli also takes significantly longer
to calculate on a single photo than comparable methods such
as FSIM, but could be more efficient when calculating the
metric on similar versions of a photo; this is a potentially
useful feature for simulated annealing that we believe should
be explored in future work.

III. RELATED WORK

The first attempt to use simulated annealing techniques
on JPEG quantization tables was a 1993 paper by Monro
and Sherlock [13]. Their initial technique worked with all
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64 quantization coefficients and utilized RMSE as their error
metric. Due to their computational limitations, they were only
able to anneal on a single image, Barabara 2. Their results gave
an 8% improvement on error to the standard table. However,
as discussed previously, RMSE has been shown to be a poor
metric for the HVS. Their work also demonstrated that the
high frequency domain was more important than the quanti-
zation by the standard table assumed. A paper published a year
later by Sherlock et al. [14] proposed a simpler 3 parameter
model for annealing that minimized computational difficulties.
The results showed a similar order of magnitude improvement
against the standard table. The paper also highlighted the
ineffectiveness of RMSE by showing that a one parameter
model (a constant value for all quantization values) gave only
marginally worse RMSE error as compared to standard table
despite a significant visual difference. Later work by Monro et
al. in 1996 [15] reaffirmed their previous work and expanded
the discussion of JPEG optimization using simulated annealing
to varying block sizes. While their approach to modifying
block sizes showed promise, it would require a significant
modification of the JPEG algorithm.

As new statistical methods and models of the HVS arose,
the question of the quantization table was tackled again.
Direct frequency analysis gave tables with slightly less error,
amounting to a around 3% improvement on PSNR error [16].
Some work extending on the contribution by Sherlock et al.
was done using genetic algorithms, but the results gave at best
a 10% improvement on PSNR [17].

More recently, Pattichis and Jiang considered Pareto optimal
points, quantization tables such that no other table with a lower
bit-rate and a higher SSIM score exists. They proposed five
annealing techniques to approximate these points, the best of
which offered a sizable 11.68% improvement on bit-rate over
their training set. However, Pareto optimal points differ by
photo, and the authors did not report results over a disparate
evaluation set, which we would expect to significantly decrease
their performance.

Upon testing variants of the five proposed techniques, we
adopted a method similar to their suggestion of using an
exponential function in frequency to change higher frequency
values of the quantization table more often. Our variant differs
slightly in how it selects these higher frequency values, and
in addition changes ten values per step, rather than the one
suggested by Pattichis. Further, due to the shape of the error
solution space, instead of directly attempting to approxi-
mate Pareto optimal points, our annealing variant focuses on
compression maximization with a temperature function that
rewards lower error. Lastly, the error metric used in their paper,
SSIM, while better than those in the early works, is still out-
dated when compared to M-SSIM and FSIM.

Within the last few months, Google Research Europe
launched the new JPEG Encoder “Google Guetzli” [2]. While
the methods used in their paper differ significantly from
ours, we note the techniques are mostly orthogonal, and our
approach to generating tables could be combined with Guet-
zli’s innovative methods. Rather than using globally improved

tables, Guetzli runs a brief annealing process on every photo
it compresses, using the Butteraugli method to maximize
compression while maintaining image fidelity. However, most
of the improvement from Guetzli comes from an improvement
not to the quantization table, but to the DCT coefficients
themselves. Guetzli uses RLE-encoding on the zeroes in the
DCT coefficients that causes additional adjacent zeroes to have
a very low compression cost. Thus their main compression
method consists of identifying DCT coefficients to set to zero
without greatly altering the Butteraugli error score of the
resulting image. When combining the annealing on Butteraugli
with this method, Google produced some impressive results,
claiming to be able to improve image compression by 29-
45% without losing image fidelity. Due to both methods being
specific to each image, this fundamentally differs from our
goal of creating a generally optimized quantization table. We
believe that combining our initial general tables with these
methods could boost the results of both papers; we leave this
exploration as future work.

IV. ANNEALING

A. Standard Table

While many specialized quantization tables exist for pho-
tography applications, any of the numerous applications that
directly employ libjpeg use the luminance table adopted in
their standard library [3]. We call this table the standard
quantization table, shown below:

Standard =


72
49
24
18
14
14
12
16

92
64
35
22
17
13
12
11

95
78
55
37
22
16
14
10

98
87
64
56
29
24
19
16

112
103
81
68
51
40
26
24

100
121
104
109
87
57
58
40

103
120
113
103
80
69
60
51

99
101
92
77
62
56
55
61


Our goal is to propose a new baseline table that offers

improvements to the standard table over standard image sets.

B. Annealing variants

We recall the basic framework of simulated annealing. At
each step, we have a solution; in our case, a solution is a
quantization table. We randomly locally perturb the current
solution to obtain an neighbor of that solution, and update our
current solution to be that neighbor with some probability,
depending on a scoring function. In particular, we may move
to a solution that is worse than the current solution with a
probability that depends on the change in score and the number
of steps the process has run, according to what is commonly
referred to as a temperature function.

We discuss the temperature function in detail below, but
describe some of our other decisions. After experimenting
with various methods of generating neighboring candidates
in our annealing, we settled on selecting ten values (with
replacement) and randomly altering these by ±1 chosen with



probability inversely scaling with the importance of that fre-
quency to the HVS. We roughly approximate a frequency’s
importance by its value in the standard table (a smaller value
indicates higher importance). Selecting ten values at once
allows our annealing to move very quickly through the solution
space–necessary due to its gargantuan size. However, such a
method makes it easier for poor changes to be packaged with
positive changes in a single move. For example, if 9 of our 10
changes results in worse compression and error but one gives
large improvements on both the step could be considered a
net positive and taken. This could have implications for our
ability to reach an optimum, but since (as we describe later)
we are running 400 annealing processes in parallel we believe
the approach is still appropriate.

We also compare annealing processes that minimize error
with those that maximize compression. In the minimization
version of our annealing, steps with lower error are always
accepted unless they reduce compression by more than one
percent of the standard table’s compression. Steps with higher
error are accepted with some probability given by the temper-
ature function. Similarly, in the maximization version, steps
with higher compression are always accepted unless they
increase error by more than one percent, and steps with lower
compression are accepted with some probability.

C. Probability and Temperature Functions
We now describe our temperature function and how it

relates to the probability of updating our current solution at
each step. Let C∗ and E∗ be the compressed file size and
error of the baseline solution, where the baseline is the most
recently accepted solution. To be more specific, C∗ is the
total file size of the training set (detailed in the following
section) compressed with the current solution, and E∗ is the
sum of the errors of the same compressed images. For the
results presented in this paper, the training set consists of
ten images and the error is measured using FSIM. We let
S∗ = (E∗ × C∗)20 be the “score” for the current solution.
Similarly, let Ci and Ei be the compression and error of the
proposed solution over the ten image training set of images
at the ith step, and let Si = (Ei × Ci)

20. Finally, let the
temperature T (i) be 200/(200+ i). Then the probability P (i)
we move to the new solution at the ith step is given by

P (i) =

{
1 if Ci < C∗;

min
[
1− eSi/(T (i)S∗), 1

]
otherwise.

In the above equation we have assumed that we are optimizing
for compression, but the same equation could be used to
optimize for error if we substitute Ei < E∗ for Ci < C∗. The
constants in the temperature and score functions are manually
tuned such that the probability function approaches zero near
the mid thousands for annealing candidates with small fluctu-
ations in error and compression. We experimentally found the
mid thousands to be an ideal cutoff, with a larger or smaller
value yielding poorer results. In addition, the exponent in the
score functions are chosen so that steps with large reductions
in error are still likely to be kept even late in the annealing. For

example, a step that yields even a small increase in size along
with a 1% decrease in error has a 10% chance of being taken
on the 2000th step, while one with a 10% decrease in error
has a 45% chance of being taken. Again, the exact choice of
sensitivity to reductions in error was chosen from experimental
results. Figure 1 displays our acceptance probability P (i) for
a typical annealing candidate with 1% larger file size and 1%
smaller error value than the baseline.

Fig. 1. Our acceptance probability for a solution with 1% larger file size and
1% smaller error value than the baseline

D. Implementation and Methods

Our implementation of annealing uses the cjpeg command
line tool from the libjpeg library at each step to calculate the
compression ratio

( ∑
New Image Size∑

Standard Table Image Size

)
of the candidate

quantization table over a set of images [4] at a given cjpeg
quality parameter. Further, we use an implementation of FSIM
due to L. Zhang [9] at each step to calculate error. We strictly
use FSIM both due to its greater speed, allowing far more
steps than methods such as Butteraugli, and the results in
[9] suggesting it better models the HVS than then existing
alternatives. Lastly, we used Harvard’s computing cluster
Odyssey to run and parallelize annealing and data analysis.
The main challenge in deciding specifications for the annealing
technique came in the trade-off between the generality of
the quantization tables produced by each annealing run, and
the total number of steps possible given the time per step.
Calculating the average compression and error values over a
larger database of images gives greater generality but lowers
the number of steps through which the annealing may explore
the solution space. In the end, despite being able to parallelize
the work over Odyssey, calculating compression and error
for each candidate table in the annealing over any significant
number of images was computationally inviable due to the
start-up time of Matlab, the time to receive a node on the
cluster, and node failure within the cluster. Thus, as is depicted
in Figure 2, we ran 4 groups of 400 separate annealing
processes in parallel at qualities 95, 75, 50, and 35. Each
process was trained on 10 distinct images after partitioning
the database of 4000 RAISE images [10] into 400 groups (at
random), which we will refer to as the training set.



Fig. 2. Above is a basic schematic of our implementation. For each quality
we anneal on, we have 400 runs. Each of the 400 runs has its own unique
subset of 10 images that it runs on, pulled from a set of 4000 training images
from RAISE.

Running over 10 photos kept a reasonable level of generality
and allowed for over 3000 steps of annealing over a 7
day period (with the actual values varying by node). This
amounted to about 3.36 minutes per step of annealing. Further,
since our annealing method probabilistically selects changes,
running 400 separate processes better explores the enormous
QT solution space.

E. Compression vs. Error Optimization

Initially, we set out with the objective of generating three
types of tables in our annealing: tables that minimize error,
tables that maximize compression, and tables that improve
both. However, we quickly came to realize that annealing on
error produces far less favorable results than compression,
especially if our goal is to find tables that simultaneously
improve both metrics. While error annealing would deliver
the tables with the lowest error, as one would expect, it would
always come coupled to a substantial decrease in compression.
The same could not be said for our compression runs, which
consistently delivered sizable improvements to both metrics
in the same period of annealing. A side by side comparison
of the annealing history of our best performing tables for
both metrics helps explain this asymmetric result. We plot
the annealing graphs for the best error optimizing table in
Figure 3 and best compression optimizing table in Figure 4
over our 4000 picture training set, where error is measured
by the ratio

( ∑
(1 − New FSIM Score)∑

(1 − Standard Table FSIM Score)

)
over a set of ten

images at quality parameter 75. In both figures the FSIM
error metric shows a clear pattern of plateaus and sudden
jumps. While the error optimizing run manages to reach a
much lower final error ratio, both annealing runs find tables
with noticeably improved error. However, the annealing of
the compression optimized table in Figure 4 moves smoothly
through the compression space, whereas the error optimized
table in Figure 3 moves through the compression space almost
randomly, never producing a meaningful improvement. As
we discussed previously, both annealing runs use the same
randomized policy to choose the next table to test. Therefore,
it is solely the decision to prioritize compression optimization
that yields the more balanced results of Figure 4.

Fig. 3. These two graphs show the error and compression ratio throughout
the annealing run that generated the best (lowest) final error ratio. The blue
line in both the left and right hand graph is the value of the baseline table
at that particular step. The orange line is the value of the “best” table seen
so far, where best in this case means the lowest error. The error history on
the left hand side resembles a step function, with each step in the annealing
either having no real effect on the error or making a drastic change. The right
hand side has no real discernible trend.

Fig. 4. These two graphs show the error and compression ratio throughout
the annealing run that generated the best (lowest) final compression ratio. The
blue line in both the left and right hand graph is the value of the baseline table
at that particular step. The orange line is the value of the “best” table seen
so far, where best in this case means the lowest compression ratio. The error
history on the left hand side still has some clear steps and plateaus, but also
has periods of gradual change. The compression history on the right shows a
near constant gradual decline.

There are a few reasons for the discrepancy between how
the processes move over the space of possible tables. The
first is that FSIM, despite being one of the best metrics in
the current literature for modeling the HVS, has difficulty
modeling small changes in error. Annealing on a metric that
resembles more a step function than a continuous function
gives poor results. The second is that there seem to be,
at least on the surface, some inefficiencies in the standard
table we are remedying. It is natural that, generally, when
our compression increases so does our error, but there are
steps where error will decrease drastically while compression
is only minimally changed. Similarly, there are steps where
compression increases and error is weakly affected. Therefore,
due to the quantized nature of the error, as we move along
our compression space we stumble upon steps that make huge
improvements to error but barely change compression. In these
cases our annealing function accepts with high probability.



Then our compression will continue to improve while error
only occasionally increases. The net effect is that eventually
we find ourselves at better compression and error. Finding
this same improvement while optimizing in the error space is
effectively impossible since compression changes by fractions
of a percent from one annealing step to the other. Our tempera-
ture function is intentionally insensitive to such small changes,
as we found that optimizing for both metrics simultaneously
produced incredibly poor results.

V. RESULTS

For each of the annealing qualities (95,75,50,35), we com-
pared all the runs based on the best table found with regard
to compression, selected the five runs that performed the best,
and calculated their error and compression ratios across 200
images from the RAISE database distinct from the training set
[10]. We refer to this set as our evaluation set. For each quality,
we then selected the single table with the best results, based
on a trade-off of error and compression ratios. However, we
were also interested in sampling the evolution of the best table
throughout the annealing process. Therefore, we subsampled
100 tables from the history of our best table and ran them
over the evaluation set. The final tables presented in Figure 9
are those from this subsample of 100 that achieve the highest
compression while still improving FSIM error by over 10%
over the evaluation set. The improvements in compression
for these four tables range from 20 − 50% depending on the
training quality. In the next two sections, we walk through
the process described above in further detail, provide image
comparisons to corroborate the final tables’ improved FSIM
scores, and give a brief summary of the properties that seem
to allow these tables to outperform the standard table.

A. Annealing History

As we discussed previously, in order to better understand
our annealing process we took the best performing table for
each quality and calculated compression and error ratios for
100 tables from its annealing history, each one one-hundredth
of the way through, across our evaluation set. The results for
all four qualities can be found in the appendix in Figures
12, 13, 14, and 15, but here we will specifically discuss
the results for our quality 95 run. Figure 5 shows the full
annealing history for the best table trained at quality 95.
As with the graphs we presented in the previous section,
the left hand graph shows the history of the error ratio( ∑

(1 − New FSIM Score)∑
(1 − Standard Table FSIM Score)

)
and the right hand side the

history of the compression ratio
( ∑

New Image Size∑
Standard Table Image Size

)
,

both over the training set with quality parameter 95, and where
in both cases a lower value is an improvement. The blue line
in both graphs is the value of the most recent table that was
kept (the baseline table), and the orange line is the value
for the table with the lowest compression ratio the annealing
algorithm has seen overall. Recall that the most recently
accepted table is not necessarily the best table seen so far. Both
the blue and the orange line show values on the original 10

images used to train the annealing. The black dots correspond
to the 100 tables we sampled from the annealing history, and
they represent the value of the current table at that step on
the 200 image evaluation set. Therefore, the gap between the
black dots and the blue line represents the difference between
the performance of our tables on the training and evaluation
sets.

There are a couple of interesting trends to note. The first is
that the graphs show that despite only training on 10 images,
most of our results carry over to the evaluation data. The
shape of our error and compression graphs is mirrored closely
by evaluation results, with the error deviating by a range of
1.84% to 6.35% on error and .76% to 3.27% on compression
between the 2000th and 6000th step. The gap grows in the
later annealing steps, extending to between and 6.17% to
9.81% for error and 1.94% to 4.41% for compression from
the 6000th step to the end of the annealing. This implies that
our annealing does begin to exploit specific features of the
images in its 10 image training set, but this is not entirely
unexpected, as inevitably the annealing will chose a table that
only makes substantial improvements for the subset of 10
training images. What is reassuring is that there is no step
where improvements on the 10 images used for training do
not translate to improvements on the completely independent
200 image evaluation set. Interestingly, for quality 50, the
final 3000 steps perform better on the evaluation set than the
training set for both metrics, and for quality 75 the error on
the evaluation set is consistently lower than on the training set
(the graphs for these qualities can be found in the appendix
in Figures 12 - 14). This suggests that in part the gap in
results between evaluation and training data is also due to
how easily our ten image subset can be compressed compared
to the mean, which we assume the 200 image evaluation set
better captures. The comparison of our results on the training
and evaluation sets strongly suggests that our tables generalize
well. While we were restricted by computation limitations,
this gap could also be reduced by expanding the training set
beyond our choice of ten images.

In Figures 6 and 7 we present a side by side comparison of
the compression of an image using different tables from the
annealing history presented in Figure 5. We chose 6 tables for
our visual comparison, the table with the best compression that
our annealing found, the standard table, and four tables that
divide the compression history into fourths. These four tables
occur at steps 1940, 3977, 5820, and 7760. Their evaluation
results are circled in blue in Figure 5. Note that while we
focus on the quality 95 visual comparison here, the same visual
comparison for all four qualities can be found in Figures 12
- 15 in the appendix. To our best judgment the unmagnified
side by side images in Figure 6 are not distinguishable, as are
their significantly magnified counterparts in Figure 7. We can
make the same claim of the unmagnified images for all three of
the other qualities. However, in Figure 8, which shows a side
by side comparison of the magnified images for quality 35,
there is a small drop in fidelity. If you look closely, you may
notice some additional pixelation on the images labeled Best



Fig. 5. These two graphs show the error and compression ratio throughout the annealing run that generated the best (lowest) final compression ratio trained
at quality 95. The blue line in both the left and right hand graph is the value of the table being tested at that particular step, and the orange line is the value of
the table with the lowest compression seen up to that step in the annealing. The black dots correspond to the error and compression ratios over our evaluation
set for the 100 tables we chose to sample from this history. A few of these points have been removed due to hanging processes on the Odyssey cluster. The
gap between the black dots and the blue line represents the gap between performance on our training and evaluation sets. The black dots circled in blue are
the tables used for the visual comparison in Figures 6 and 7

Fig. 6. These six unmagnified images give a visual comparison of the image fidelity throughout our quality 95 annealing process shown in Figure 5. The
upper left is the best compression from the entire history, followed by the standard table, and then four tables in chronological order circled in Figure 5. There
is no obvious visual difference between any of these photos.

Compression and Fourth Slice. This is not shocking, given
that a fifty percent increase in compression requires the loss of
some information. However, there are two factors we believe
minimizes the relevance of this pixelation.

The first is that it is noticeable only upon significant
magnification of the image, and it does not bring with it any
effects on the unmagnified image (for example, as we will
show in Final Results section, the same distinction does not



Fig. 7. These six images are magnified and cropped versions of those in Figure 6 and give another visual comparison of the image fidelity throughout our
quality 95 annealing process. Even with such magnification there is no obvious visual difference between any of these photos.

Fig. 8. These six images are magnified and cropped versions of the original pictures found in Figure 12. Going from left to right, they were generated by the
table with highest compression, the standard table, and the four tables circled in the graph of 12. They show some signs of pixelation in the most compressed
images. In particular, this pixelation can be seen in the comparison between the picture labeled ’standard table’ and the one labeled ’best compression’.

hold for compression through quality scaling for the standard
table). Also the effects are only noticeable for the later tables,
where we have previously discussed our annealing may begin
to exploit its training set in ways that do not extrapolate to
a larger image set. Therefore, for our final results we select
tables earlier in the annealing where the error on the evaluation
set gives at least a 10% improvement. However, it is possible
that part of the reason we see this pixelation is because our
annealing has found a way to exploit FSIM. As we noted in
the error section, FSIM is not a perfect model of the HVS,
and therefore it should be possible to decrease FSIM error in
ways that do not correspond to HVS perceived error. In fact,
despite improved performance with FSIM, our tables perform
slightly worse with regard to the Butteraugli metric. While
the compression values of our final table trained at quality
95 fall somewhere just below the standard table with quality
parameter set to 93, its Butteraugli score is closer to the
standard at quality 92. It may be that Butteraugli is picking up
on the pixelation, and it is thus possible that a combination of
FSIM and Butteraugli may be able to address this issue. We
will discuss this possibility in our Future Work section.

B. Final Tables
Top Optimization Values

Table Name Error Ratio Compression Ratio
Trained-at-95 .8963 .7872

Trained-at-75 .8619 .5890

Trained-at-50 .8873 .4984

Trained-at-35 .8394 .5737

We have chosen one table trained at each quality in the
aforementioned manner to present as the best table. The error
and compression ratios are calculated as above across our 200
image evaluation set at the same quality parameter at which
they were trained. Note that along with those specifications,
we selected tables whose FSIM error is improved by at least
10% over the standard table on this evaluation set. Figure 9
shows these tables with respect to the standard table, where
red values have been increased, blue values have decreased,
and intensity corresponds to the relative magnitude of change
normalized by the maximum and minimum changes in the
table.



Fig. 9. Heat map of final quantization tables. Red tints denote an increase in value, blue a decrease. The shade of the tints correlates to the magnitude of the
change.

C. Visual Improvement

Previously we mentioned how our tables may introduce
pixelation to compressed images, noticeable upon significant
magnification. However, by accentuating the errors of our
trained-at-95 table and the standard table, we can show how
our table also increases the image fidelity on the unmagnified
image and improves scaling. We already noted that in a side by
side comparison our trained-at-95 table has little to no visual
difference from the standard when the quality parameter is set
to 95. Figure 10 shows the same original image presented in
Figure 6 compressed again by the standard table but with the
quality parameter significantly lowered to accentuate errors.
The sky in this image shows clear gradation not in the original

Fig. 10. Image compressed with low quality parameter by the standard table.
The sky shows clear gradation

image. In fact, this kind of gradation of empty space is a
common artifact of heavier jpeg compression. Compare this to
the image presented in Figure 11, which has been compressed
using our trained-at-95 table, but using a similarly low quality
parameter to Figure 10. Figure 11 has no obvious gradation in

Fig. 11. Image compressed at a similarly low quality parameter to Figure 10
but using our trained-at-95 table. No obvious gradation occurs.

the sky, nor obvious artifacts elsewhere. Despite this, the image
is actually smaller than the one compressed by the standard
table in Figure 10.

D. Timing

One small concern for improving the quantization table is
that somehow in the process of changing the quantization
values, we would have slowed JPEG compression. However, as



we ran over the 200 images in our evaluation set, none of our
tables showed any statistically significant difference in timing
from the standard table. Therefore, we are confident that these
tables will not increase the overhead of JPEG compression.

E. Understanding the Best Tables

Examining Figure 9, we look at common trends throughout
our proposed tables. The most noticeable decrease across the
tables occurs in the DC coefficient, where in all but trained-at-
35 it has been reduced from 16 to 8. In all training qualities ex-
cept 95, the next 20 lowest frequencies have been significantly
raised to counter-balance this change (frequencies are arranged
diagonally), while higher frequencies have been decreased.
This result matches the initial suggestions of Sherlock and
Monroe that the standard table undervalues high frequencies.
However, the case is flipped to an extent for trained-at-95.
While the DC coefficient is still halved, higher frequency
values have increased more significantly than the lower ones –
with the lowest frequencies being left essentially unchanged.
The ubiquity in the decrease of the DC coefficient (indeed, this
appeared in the majority of our runs across every annealing
method) firmly supports the standard table undervaluing this
coefficient, but the difference in trained-at-95 suggests that
the relative importance of other frequencies may depend on
the quality of the image. If this were the case, the quality
scaling metric used by libjpg could be significantly improved
to match the changing importance of these frequencies at
different resolutions.

F. M-SSIM Runs

In addition to our annealing on FSIM, we ran 400 annealing
processes on quality 75 using the M-SSIM error metric. The
results for these runs generate similar, but more erratic tables
to those from FSIM. For instance, consider this table with over
10% reduced error and 37% improved compression:

M-SSIM =


117
87
56
28
18
19
24
13

146
125
35
47
40
29
32
17

156
105
77
56
27
50
0
21

180
138
118
115
45
57
19
39

138
163
161
131
89
75
45
45

136
167
171
127
109
105
113
81

147
182
87
128
119
115
110
65

118
137
109
69
61
70
54
75


The DC coefficient has been decreased and for the most

part the lower frequencies have increased, but the table has
odd behavior throughout–e.g. 0 at (2,3), or the 182 at (7,7).
These are likely places where our annealing has exploited this
less robust error metric. Regardless, the results show that our
annealing technique is not limited to a single error metric.
The only caveat is that both M-SSIM and FSIM operate under
similar principles in their attempts to model the HVS. It would
be interesting to attempt to expand our annealing to more
distinct error metrics in future work

VI. FURTHER DIRECTIONS

Our results on Butteraugli suggest that annealing over
FSIM alone may not improve image fidelity in all aspects.
Unfortunately, not only does there not exist a fully accurate
error metric, but those that are powerful tend to be too slow
to use for annealing. FSIM is an exception to this rule.
However, it may be possible to get around this issue by using
multiple error metrics. For instance, for every x steps our
annealing takes using the FSIM metric, 1 step could be run on
Butteraugli to check that FSIM has not deviated too far from
Butteraugli’s model of the HVS. While this process would take
more resources than our current annealing, it is still feasible
to run over a cluster in a matter of weeks.

VII. CONCLUSION

Through simulated annealing on FSIM we have produced
quantization tables which significantly cut the size of JPEG
files from 20 − 50% on a variety of image qualities while
improving errors in gradients on unmagnified images and
quality scaling. This improvement sometimes comes at the
trade-off of the resolution of the image upon magnification,
and fixing this side-effect may be an interesting consideration
for further work.
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APPENDIX

In what follows, we provide more detailed examples show-
ing the annealing history and performance for some of our
tables.



Fig. 12. The figure shows numeric and visual confirmation for our trained-at-35 table. The top is a plot of the annealing history of the best table trained at
quality 35, with error plotted on the left and compression on the right. The four black circles represent that data points for the four tables we chose to further
analyze visually. The middle image (the first set of six identical pictures) is a side by side comparison of a picture compressed by the standard table, the best
compression table trained at quality 35, and the four slices highlighted in the graphs. The bottom image is a heavily magnified version of the pictures used
for the middle image and again shows a side by side comparison of each table. You can see that despite significant increases in compression, our unmagnified
images are indistinguishable. Upon significant magnification, as is done in the bottom image, some minor pixelation be noticed.



Fig. 13. The figure shows numeric and visual confirmation for our trained-at-50 table. The top is a plot of the annealing history of the best table trained at
quality 50, with error plotted on the left and compression on the right. The four black circles represent that data points for the four tables we chose to further
analyze visually. The middle image (the first set of six identical pictures) is a side by side comparison of a picture compressed by the standard table, the best
compression table trained at quality 50, and the four slices highlighted in the graphs. The bottom image is a heavily magnified version of the pictures used
for the middle image and again shows a side by side comparison of each table. You can see that despite significant increases in compression, our unmagnified
images are indistinguishable. Upon significant magnification, as is done in the bottom image, some minor pixelation be noticed.



Fig. 14. The figure shows numeric and visual confirmation for our trained-at-75 table. The top is a plot of the annealing history of the best table trained at
quality 75, with error plotted on the left and compression on the right. The four black circles represent that data points for the four tables we chose to further
analyze visually. The middle image (the first set of six identical pictures) is a side by side comparison of a picture compressed by the standard table, the best
compression table trained at quality 75, and the four slices highlighted in the graphs. The bottom image is a heavily magnified version of the pictures used
for the middle image and again shows a side by side comparison of each table. You can see that despite significant increases in compression, our unmagnified
images are indistinguishable. Upon significant magnification, as is done in the bottom image, some minor pixelation be noticed.



Fig. 15. The figure shows numeric and visual confirmation for our trained-at-95 table. The top is a plot of the annealing history of the best table trained at
quality 95, with error plotted on the left and compression on the right. The four black circles represent that data points for the four tables we chose to further
analyze visually. The middle image (the first set of six identical pictures) is a side by side comparison of a picture compressed by the standard table, the best
compression table trained at quality 95, and the four slices highlighted in the graphs. The bottom image is a heavily magnified version of the pictures used
for the middle image and again shows a side by side comparison of each table. You can see that despite significant increases in compression, our unmagnified
images are indistinguishable. For quality 95, even upon considerable magnification as is done in the bottom image, the pictures are still indistinguishable.
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