A Model for Learned Bloom Filters and Optimizing by Sandwiching

Michael Mitzenmacher, Harvard University

Main Questions

How do we analyze and optimize learned Bloom filters? How do we compare them to standard Bloom filters?

Standard Bloom Filters

- Given a set S = {x₁, x₂, x₃,...x_n} on a universe U, want to answer membership queries of the form: Is y ∈ S ?
- Data structure should be:
- -Fast (Faster than searching through S).
- -Small (Smaller than explicit representation).
- To obtain speed and size improvements, allow some probability of error.
- -False positives: $y \notin S$ but we report $y \in S$
- -False negatives: $y \in S$ but we report $y \notin S$

False positive probability = $(1 - e^{-kn/m})^k$

Learned Bloom Filters

- Learned Bloom Filters (LBFs) defined/introduced by [Kraska-Beutel-Chi-Dean-Polyzotis, SIGMOD 2018]
- Learn the set: machine learning function (oracle) returns a probability estimate that an element is in the set
- Choose threshold to return positive response
- Need backup to deal with possible false negatives!

Learned Bloom Filter Diagram

Learned Bloom Filter Analysis

Sandwiched Learned Bloom Filter Diagram

Sandwiched Learned Bloom Filter Analysis

m keys, F_n, F_p, α as before

bm filter bits, split as b_1m initial, b_2m backup Sandwich learned Bloom filter false positive rate =

 $\alpha^{b_1/F_n} (F_p + (1 - F_p)\alpha^{b_2/F_n})$ Take derivatives to optimize :

$$b_2^* = F_n \log_\alpha \frac{F_p F_n}{(1 - F_p)(1 - F_n)}$$

- · Optimal configuration has small, fixed-sized backup filter
- · All remaining bits go to the initial filter
- · Better to get rid of false positives early
- · Can improve false positives by an order of magnitude

Extension: Learned Bloomier Filters

- · Bloomier filters store a value for each key/element in a set
- · Set elements should always return correct value
- · Non-set elements should return null
- · False positives: get non-null value for non-set element
- · Assume an oracle can learn values sufficiently well
- · Then can derive a learned Bloomier filter
- · Minimize false positives, with no incorrect values on the set

Many Open Problems

- · Further optimizations?
- Best implementation? Computational tradeoffs?
- · What applications have sets amenable to learning?
- · Other algorithms/data structures that can benefit from learning?