Information Asymmetries in Pay-Per-Bid Auctions: How Swoopo Makes Bank

John W. Byers Computer Science Dept. Boston University Michael Mitzenmacher School of Eng.& Appl. Sci. Harvard University

Georgios Zervas Computer Science Dept. Boston University

In 25 secs Swoopo earned ? * 60 cents = \$? in bid fees

In 25 secs Swoopo earned 11 * 60 cents = **\$6.60** in bid fees

In 25 secs Swoopo earned 11 * 60 cents = \$6.60 in bid fees

Not bad. That's about \$1000/hour.

(...but of course not all auctions are as profitable)

2008 revenues were \$28,300,000

1789-1989 789-1989 ULLASSING OF ATTAL PROPERTY. 789-1989

COLUMN 14

"Take your time in finding the right auction, don't rush into it."

Adam O. - Story, IA

REGISTER

"I received my item less then 5 days after my auction.

9.1989

maaa

9.1989

101111111 COLORAD P. C.

0.01414114 Addition in case

Ken C. - Canyon, ID

REGISTER

"I won a new Mino Flip camera. I use my flip every week.

Geoffrey M. - Summit, OH

REGISTER

"Can you say excited? I told a couple of close friends immediately ..."

Marvin W. - Wake, NC

course of the

REGISTER

"Love the site and so far I have won 3 Items."

Julio G. - Alameda, CA

REGISTER

The New York Times

"...a scary website that seems to be exploiting the lowprice allure of allpay auctions."

Previous work predicts profit-free equilibria

[Augenblick '09, Platt et al. '09, Hinnosaar '09]

Some of this prior work tries to explain the profit using risk-loving preferences and sunk cost fallacies

Previous work predicts profit-free equilibria

[Augenblick '09, Platt et al. '09, Hinnosaar '09]

OUTCOMES dataset (121,419 auctions)

- Total number of bids
- Bid fee
- Price increment
- Retail price
- Winner

From OUTCOMES dataset

Month

Basic symmetric pay-per-bid model

- *n*, number of players
- b, bid cost (60 cents for Swoopo)
- v, value of the auctioned item (\$10s to \$1,000s)

Fixed-price auctions

- p, fixed purchase price (usually \$0)
- last bidder acquires item for price p

Ascending-price auctions

- s, price increment (between I and 24 cents/bid)
- last bidder acquires item for sq
 - where q number of bids

Predicts zero profit!

Symmetric equilibrium for fixed-price auctions

Indifference condition: A player's expected profit per bid should be zero.

 μ , probability that somebody places a subsequent bid

$$b = (v - p)(1 - \mu)$$
 \rightarrow $\mu = 1 - \frac{b}{v - p}$

 β , probability that an individual player places a subsequent bid

$$1-\mu=(1-\beta)^{n-1}$$

$$\beta = 1 - \left(\frac{b}{v - p}\right)$$

Symmetric equilibrium for ascending-price auctions

Indifference condition: The player making the (q+1)st bid is betting *b* no future player will bid

 μ_{q+1} , probability that somebody places the (q+1)st bid

$$b = (v - sq)(1 - \mu_{q+1}) \qquad \longrightarrow \qquad \mu_{q+1} = 1 - \frac{b}{v - sq}$$

 β_{q+1} , probability that a player bids after q bids have been placed

$$1 - \mu_{q+1} = (1 - \beta_{q+1})^{n-1} \quad \Longrightarrow \quad \beta_{q+1} = 1 - \left(\frac{b}{v - sq}\right)^{\frac{1}{n-1}}$$

Time varying

Expected revenue in equilibrium is v

- A player puts a value of **b** at risk with each bid for an **expected reward of b**.
- This implies **zero profit per bid** in expectation.
- Since players are symmetric the expected profit across all bids is also zero.
- At the end of the auction an item of value v is transferred from the auctioneer to the winner.
- This has to be counterbalanced by a total cost
 of v in bid fees which is the auctioneer's revenue.

Our contribution: Asymmetric players

1) What if these parameters vary from player to player?

2) What if some players aren't aware that they vary?

Not just a theoretical concern: Swoopo displays the list of bidders active in the last 15 minutes.

TRACE dataset

(4,328 auctions)

- Time and user of each bid
- Plus all attributes of OUTCOMES dataset

Thought experiment: True number of players is *n* but everyone thinks there are *n-k* players

$$b = (v - p)(1 - \lambda) \Longrightarrow \lambda = 1 - \frac{b}{v - p}$$

where λ is the **perceived probability** someone places a subsequent bid

Mistaken players

Omniscient players

Reminder: β pr. one player bids, μ pr. some player bids

Overestimation

Underestimation

Over and underestimation in equal measures: **Swoopo still profits**

- Underestimates of the number of players increase Swoopo's profit.
- Overestimates of the number of players decrease
 Swoopo's profit.
- But not symmetrically!
- Mixtures of over/underestimates with the right mean will increase Swoopo's profit!

Modeling general asymmetries

Two groups of players, A & B

Group A

- size k
- bid *b*^A
- value v^A
- population
 estimate n^A
- aware of B

Group B

- size *n*-k
- bid b^{B}
- value v^B
- population
 estimate n^B
- unaware of A

COLUMN 1

ALCONTA HATTER

Asymmetries in bid fees

-	Userr	name		LOGIN
categories				
uchers		All auction	ons Live auctions	Future auctions Ended auction
e auctions	DESCRIPTION	PRICE	BIDDER	COUNTDOWN
ZOOM Q	300 Bids Voucher Give your account a boost with 300 extra Bids! Use them wisely and you could bag yourself a top bargain on Swoopo. more Penny auction	\$0.06 (instead of \$180.00)	Perse	00:15:28 BID
ZOOM Q	50 Bids Voucher Don't miss out on the next great Swoopo deal. Grab an extra 50 bids to help you on your way. more Penny auction	\$0.01 (instead of \$30.00)	Mdobby2010	00:45:28 BID
1/ Ja	50 Bids Voucher	\$0.01	Мадинер	01:45:28

<u>uunniii</u>

Asymmetries in bid fees

Asymmetries in bid fees

winners' discount

winners' discount accounting for previously lost auctions

Asymmetries in bid fees for fixed-price auctions

- Group A of size k has a discounted bid and they know it.
- Group B of size *n*-*k* think everyone is paying *b*.

Synergy!

CONSISTER

Asymmetries in bid fees for ascending-price auctions

- Group A of size k has a discounted bid and they know it.
- Group B of size *n*-*k* think everyone is paying *b*.

CONSISTER

Varying object valuations

Add auction to watchlist

Auction ID: 261695

Sony Bravia KDL-40XBR9 40" 1080p 240Hz LCD TV NEW ON SWOOPO

Experience powerful performance and superior design with the premium Sony BRAVIA XBR9 HDTV

.....

Varying object valuations

Auktionsnummer: 261695

Auktion in Mein Swoopo beobachten

Sony KDL-40Z5500 NEU BEI SWOOPO

Scharfe Bilder, fließende Bewegungen und ein attraktives Design. Sony LCD-TV KDL-40Z5500 mit 40 Zoll (102cm) Bilddiagonale, Motionflow 200Hz, 1920 x 1080 Pixel FUII HD Auflösung, 4x HDMI, 2x SCART, DLNA Ethernet, USB 2.0 und DVB-T/-C-Tuner.

11122

Same auction id ...

Auktionsnummer: 261695

Auktion in Mein Swoopo beobachten

...........

CONSTRUCTOR OF

NEU BEI SWOOPO Sony KDL-40Z5500

Scharfe Bilder, fließende Bewegungen und ein attraktives Design. Sony LCD-TV KDL-40Z5500 mit 40 Zoll (102cm) Bilddiagona FUII HD Auflösung, 4x HDMI, 2x SCART, DLNA Ethernet, LOD 0 A und DVB-T/-C-Tuner.

Varying object valuations for fixed-price auctions

$$n = 50, v = 100, b^B = 1$$

- Revenue is naturally bounded by maximum valuation
- The more players overestimate the item the better for Swoopo

......

Collusion & shill bidding: The role of hidden information

Collusion

Many players model

A group of players form a coalition and they secretly agree not to outbid each other

Single player model

A single player secretly controls many identities and never bids when leading the auction

Difference between two models is the tie-breaking rule

Collusion:

Ascending-price auctions, many-players model

- A coalition of size k is playing against *n*-k players
- Swoopo's revenues shrink as the coalition size grows
- The coalition gains an advantage exponential to its size in winning the auction

Shill bidding: Ascending-price auctions, many-players model

- A (ρ,L)-shill enters the auction with probability
 ρ and bids until L bids have been made
- A shill produces no revenue for the auctioneer
- If the shill wins all revenue is profit (no item is shipped)

Swoop it Now

Buy the item at a discount equal to your bid fees

Swoop it Now - Bid to save

Place a bid to win or cash out and save.

You will be able to buy the item at a discount equal to the amount of bids you've placed. Now you will never leave empty handed.

The auction will continue as usual, so other bidders can battle it out.

Committed player: someone who is willing to bid up to a certain price and then exercise the Swoop it Now option

Swoop it Now

- In the presence of many committed players the resulting game is a **game of chicken**.
- Assuming a common valuation of v and a retail price of r the maximum loss is bounded by v-r.

	Quit	Play Till End
Quit	Both lose bidding fees	Lose bidding fees/ Get discount
Play Till End	Get discount/ Lose bidding fees	Both lose v-r

Is there evidence of chicken?

Look for **duels** - auctions culminating is long bidding sequences by two players

The Scrum

The Mêlée

The Duel

The Duel

The Duel

Evidence of chicken

% of auctions	Duel length
9%	≥10
5%	≥20
1%	≥50

anni d

Signaling intention: Aggressive bidding

Players willing to playing chicken need a way to announce it

A natural way is to be aggressive by placing many bids in rapid succession

Aggression = $\frac{\text{Number of bids}}{\text{Average response time}}$ (bids² / sec)

Aggressive	Number of	Auction revenue	Mean winner
bidders	auctions	(as % of retail price)	profit margin
0	1,699	62%	77%
1	493	135%	51%
≥ 2	834	246%	26%

COLUMN 1

Signaling intention: Aggressive bidding

- Highly skewed aggression distribution
- Winners most aggressive, but profitable winners less so
- Those who lost demonstrate about average aggression

- Successful strategies are mostly concentrated at aggression ranks lower than average
- The highly aggressive players are responsible for most of Swoopo's profits

Conclusions and Remarks

- •Information asymmetry can have **powerful effects** in pay-per-bid and similar auctions.
- Is this understanding useful?
 What is the value of the missing information in this setting?
- Swoopo operates in the grey area between gambling and "entertainment shopping."
- •Is this a **fad** or the **future**?

Thank you. Any questions?