Completeness and Robustness Properties of Min-Wise Independent Permutations

We provide several new results related to the concept of min-wise independence. Our main result is that any randomized sampling scheme for the relative intersection of sets based on testing equality of samples yields an equivalent min-wise independent family. Thus, in a certain sense, min-wise independent families are complete for this type of estimation. We also discuss the notion of robustness, a concept extending min-wise independence to allow more efficient use of it in practice. A surprising result arising from our consideration of robustness is that under a random permutation from a min-wise independent family, any element of a fixed set has an equal chance to get any rank in the image of the set, not only the minimum as required by definition.