
Privacy Preserving Keyword Searches on
Remote Encrypted Data

Yan-Cheng Chang and Michael Mitzenmacher

Division of Engineering and Applied Sciences,
Harvard University,

Cambridge, MA 02138, USA
{ycchang,michaelm}@eecs.harvard.edu

Abstract. We consider the following problem: a user U wants to store
his files in an encrypted form on a remote file server S. Later the user
U wants to efficiently retrieve some of the encrypted files containing (or
indexed by) specific keywords, keeping the keywords themselves secret
and not jeopardizing the security of the remotely stored files. For exam-
ple, a user may want to store old e-mail messages encrypted on a server
managed by Yahoo or another large vendor, and later retrieve certain
messages while travelling with a mobile device.
In this paper, we offer solutions for this problem under well-defined secu-
rity requirements. Our schemes are efficient in the sense that no public-
key cryptosystem is involved. Indeed, our approach is independent of the
encryption method chosen for the remote files. They are also incremen-
tal, in that U can submit new files which are secure against previous
queries but still searchable against future queries.

1 Introduction

We consider the following distributed file system: a user U pays a file server
S for storage service, with the goal being that U can retrieve the stored files
anytime and anywhere through Internet connections. For example, U may store
files containing personal data that U may want to later access using his wireless
PDA. A user might be willing to pay for such a service in order to have access
to data without carrying devices with large amount of memory, and to have
the data well-maintained by professionals. Such distributed file services already
exist, such as the “Yahoo! Briefcase”.1 We expect such services will grow with
the expansion of mobile and pervasive computing.

In many cases U will not want to reveal the contents of his files to S in order
to maintain security or privacy. It follows that the files will often be stored in
encrypted form. Suppose, however, that later U wants to retrieve files based on
a keyword search. That is, U wants to retrieve files containing (or indexed by)
some keyword. If the files are encrypted, there is no straightforward way for S
to do keyword search unless U is willing to leak the decryption key. A trivial

1 Emails are actually a typical example, as they are stored on remote servers [11, 3].

solution that preserves the security of U ’s files is to have S send all the encrypted
files back to him. This may not be a feasible solution if U is using mobile devices
with limited bandwidth and storage space. An additional complication is that U
may naturally also want to keep secret the keyword that he is interested in as
well.

We provide practical solutions to this problem with strong theoretical security
guarantees that require only small amounts of overhead in terms of bandwidth
and storage, as we describe more fully in the main text. Our solution utilizes the
notion of a keyword index, which is created by U . The keyword index associates
each keyword with its associated files. We picture the keyword index being cre-
ated offline, with a more powerful home machine, before the user wishes to access
the files remotely with a mobile device. All keyword searches by U are based on
this index; hence our scheme does not offer full pattern-matching generality with
the actual text. In practice, this should be sufficient for most users. It is worth
noting that in this framework U can have complete control over what words are
keywords and which keywords are associated with which files, a power that can
be useful for many applications.

We take care in defining a proper notion of security for this problem. Intu-
itively, after processing one of U ’s queries, S learns something: it learns that the
encrypted files that S returns to U share some keyword. We want this to be all
that S learns. We formalize this notion in cryptographic terms and prove that
our schemes satisfies our formalization.

To set up our solution, we clarify further our methodology and our contribu-
tions. Our solutions are two-phased. In the first phase, we assume U is at home
and is going to submit his files to S, and assume that sufficient space is available
to store a dictionary. In the second phase, we assume U becomes a mobile user
and wants to retrieve some encrypted files from S by keyword searches. This is
a very natural framework describing realistic distributed computing situations.
We consider both the case that U can store a dictionary on his mobile device and
the case that he cannot. The first case may be practical in some situations, where
the mobile device has sufficient storage, and is useful for framing the solution to
the second case, which is our main result.

Our main idea is the following: we let U use pseudo-random bits to mask a
dictionary-based keyword index for each file and send it to S in such a way that
later U can use the short seeds to help S recover selective parts of the index,
while keeping the remaining parts pseudo-random. This requires some additional
storage overhead on S as we clarify later.

No public-key cryptosystem is required in our schemes; only pseudo-random
functions are used. We claim that this property significantly increases the prac-
ticability of our schemes, since in practice heuristic pseudo-random functions
(that is, functions that appear pseudo-random enough for the specific appli-
cation) can be implemented efficiently. Moreover, because our methodology is
independent of the encryption method chosen for the remote files, our schemes
have the advantage of working for different file formats (including compressed

files, multimedia files, etc.), as long as a keyword index on the corresponding
content can be built a priori.

Last but not least, we solve the update problem, which says how to ensure
the security of the consequent submissions in presence of previous queries. Our
solution enjoys very simply key management.

1.1 Related works

In theory, the classical work of Goldreich and Ostrovsky [7] on oblivious RAMs
can resolve the problem of doing (private) searches on (remote) encrypted data.
Although their scheme is asymptotically efficient and nearly optimal, it does
not appear to be efficient in practice as large constants are hidden in the big-O
notation.

The question how to do keyword searches on encrypted data efficiently was
raised in [11]. In that paper, they proposed a scheme which encrypts each word
(or each pattern) of a document separately. Such an approach has the following
disadvantages. First, it is not compatible with existing file encryption schemes.
Instead, a specific encryption method must be used. Second, it cannot deal with
compressed data, while we believe users will often want to save in storage costs
by compressing their files, since generally the service fee is proportional to the
storage space. Finally, as the authors themselves acknowledge, their scheme is
not secure against statistical analysis across encrypted data (Section 5.5, [11]),
in that their approach could leak the locations of the keyword in a document.
Although some heuristic remedies (and an index construction alternative) were
proposed, their security proof is at least not theoretically sound.

Recently, an alternative scheme aiming to solve this problem was proposed in
[6]. The idea of that scheme is to build an index of keywords for each file using a
Bloom filter [1], with pseudo-random functions used as hash functions. When U
submits a document to S, he also submits the corresponding Bloom filter. One
inherent problem with this Bloom-filter-based approach is that Bloom filters can
induce false positives, which would potentially cause mobile users to download
extra files not containing the keyword. While sufficiently rare false positive might
be acceptable in practice, we note that our scheme avoids this issue.2

As further related work, the paper [3] studies the problem how to search on
data encrypted by a public-key cryptosystem. In particular, they consider the
problem of a user that wants to retrieve e-mails containing a certain keyword
from his e-mail server, with the e-mails encrypted by the senders using his public
key. The problem setting is related to but different from ours.
2 We note that some care must be taken with this approach. For example, a preprint

version of [6] did not take into account the following issue: because the number of
1 entries in a Bloom filter for a document is (roughly) proportional to the number
of the distinct keywords in that document, some information is immediately leaked
from the Bloom filters themselves. This problem can be avoided by padding the
Bloom filters using arbitrary and otherwise meaningless keywords so that they all
have the same number of elements; the latest version of [6] proposes an appropriate
security model and a padding scheme to deal with this problem.

2 Preliminaries

We use the notation a ← A to denote choosing an element a uniformly at
random from the set A, and use PPT to denote probabilistic polynomial time.
For a positive integer n ∈ N, let [n] denote the set {1, 2, · · · , n}; for a string s,
let s[i] denote its i-th bit; for a function f , let |f | denote its output length. We
say a function is negligible in t if for any polynomial p there exists a t0 such that
for all t > t0 we have f(t) < 1/p(t). All logarithms in this paper have base 2.

2.1 Cryptographic basics

For completeness we first define pseudo-random permutations and functions.
Our definitions are standard; see, e.g., [5].

Definition 1. (Pseudo-random permutations) We say a permutation fam-
ily {PK : {0, 1}n → {0, 1}n|K ∈ {0, 1}t} is pseudo-random if it satisfies the
following:

– Given x ∈ {0, 1}n and k ∈ {0, 1}t, there is a PPT algorithm to compute
Pk(x).

– For any PPT oracle algorithm A, the following value is negligible in t:

|Pr
k←{0,1}t [A

Pk(1t) = 1]−Prp←Up
[A

p

(1t) = 1]|,

where Up is the set of all the permutations on {0, 1}n.

Definition 2. (Pseudo-random functions) We say a function family {FK :
{0, 1}n → {0, 1}m|K ∈ {0, 1}t} is pseudo-random if it satisfies the following:

– Given x ∈ {0, 1}n and k ∈ {0, 1}t, there is a PPT algorithm to compute
Fk(x).

– For any PPT oracle algorithm A, the following value is negligible in t:

|Pr
k←{0,1}t [A

Fk(1t) = 1]−Pr
f←Uf

[A
f

(1t) = 1]|,

where Uf is the set of all the functions mapping {0, 1}n to {0, 1}m.

For completeness, we include the following simple lemma, which says it is safe to
feed pseudo-random functions with pseudo-random seeds instead of truly random
seeds.

Lemma 1. Consider two pseudo-random function families {FK : {0, 1}n →
{0, 1}m|K ∈ {0, 1}t} and {GK : {0, 1}` → {0, 1}t|K ∈ {0, 1}t}. For any PPT
oracle algorithm A and any x ∈ {0, 1}`, the following value is negligible in t:

|Pr
σ←{0,1}t,k=Gσ(x)

[AFk(1t) = 1]−Pr
f←Uf

[A
f

(1t) = 1]|,

where Uf is the set of all the functions mapping {0, 1}n to {0, 1}m.

Proof. If (A, x) is a counterexample, then there is a construction of a PPT
algorithm B using A, x, FK such that the following value is not negligible in t:

|Pr
σ←{0,1}t [B

Gσ (1t) = 1]−Pr
g←Ug

[B
g

(1t) = 1]|,

where Ug is the set of all the functions mapping {0, 1}` to {0, 1}t. Clearly, it
induces a contradiction. ut

In practice, we can use HMAC-SHA1 [2] to implement a pseudo-random function.
Also, it is well known that a pseudo-random permutation can be constructed
using a pseudo-random function in three rounds [8, 10].

2.2 Problem setting

We define the problem of Privacy Preserving Keyword Searches on Remote
Encrypted Data (PPSED for short) in this section, and will hereafter use PPSED
to denote this problem. Recall that we allow the user U to specify the relationship
between files and keywords. That is, U can associate any collection of keywords
with a file. Generally, when files are text files, keywords will be actual words of
text. In order to formalize a clear definition, we only consider queries containing
a single keyword. We emphasize that to deal with queries containing Boolean
operations on multiple keywords in the security setting of PPSED remains a
challenging open problem.

The formal definition of PPSED is as follows:

Definition 3. (PPSED) PPSED is a multi-round protocol between a remote
file server S and a user U . The server S has a set of n encrypted files ζ =
{E1(m1), E2(m2), · · · , En(mn)} where for each i ∈ [n], Ei is an encryption func-
tion and mi is a file. The user U has decryption algorithms D1,D2, · · · ,Dn such
that D1(E1(m1)) = m1,D2(E2(m2)) = m2, · · · ,Dn(En(mn)) = mn. Moreover, in
each round j ∈ N, U prepares a keyword wj ∈ {0, 1}∗. An implementation of
PPSED with security parameter t must satisfy the following:

1. Correctness: In round j, for i ∈ [n], if wj is a keyword of mi, U can obtain
Ei(mi).

2. Limits on the bandwidth and the storage space:
• In round j, the number of bits sent from S to U is

∑
i∈Ij

|Ei(mi)|+ O(1),

where Ij = {i| i ∈ [n], wj is a keyword of mi}.
• The number of bits stored on U is O(t).
• The number of bits sent from U to S is O(t) per keyword search.

3. Security requirement:
For k ∈ N, let Ck be all the communications S receives from U before round
k, and let C∗k = {ζ,Q0 ≡ ∅, Q1, · · · , Qk−1}, where for each j ∈ [k− 1], Qj is
an n-bit string such that for i ∈ [n], Qj [i] = 1 if and only if wj is a keyword
of mi.

• For k ∈ N, for any PPT algorithm A, any ∆k = {m1, · · · ,mn, w0 ≡
∅, w1, · · · , wk−1}, any function h, there is a PPT algorithm A∗ such
that the following value is negligible in t:

|Pr[A(Ck, 1t) = h(∆k)]−Pr[A∗(C∗k , 1t) = h(∆k)|.
(Note the requirement captures the following: everything about ∆k that
can be computed given Ck can also be computed given C∗k .)

On the security requirement. Recall that our goal is the following: in round
j, S can learn nothing more than “a keyword is shared by the sent encrypted
files.” To this end, consider an ideal case: U records in advance a set of linked
lists such that each file index is associated with a list of all the keywords of the
corresponding file. In this case, U knows for sure which files contain the keyword
in round j, namely wj , and hence it is enough for U to send S an n-bit string Qj

such that for i ∈ [n], Qj [i] = 1 if and only if wj is a keyword of mi (and S has
to send Ei(mi) back). Note C∗k exactly consists of such communications from U
before round k. To be sure that the security of an implementation P of PPSED
is not worse than that of the ideal case, we ask all the communications from U
before round k in the execution of P , namely Ck, cannot leak more information
than C∗k . Specifically, we ask everything about ∆k that can be computed given
Ck can also be computed given C∗k . Notice that this ideal case is not a practical
solution itself to the PPSED problem, since it would require U store these linked
lists, which would be Ω(n) bits in total. (In particular, these lists would gener-
ally require significantly more storage than a dictionary.) It would also require
potentially sending n bits from U to S for every query.

3 Efficient Schemes

In this section, we consider the following two cases separately: (1) a dictionary
can be stored on U ’s mobile device, and (2) a dictionary cannot be stored on U ’s
mobile device (ostensibly due to lack of space). We study the first case both for
its own merit and to lead us to the solution of the second case. In either case,
our scheme consists of two phases. In the first phase, we assume U is at home
and is going to submit his files to S, and assume a keyword dictionary is always
available to U . However, we do not exclude the possibility that S has a dictionary
that is totally the same (i.e. the dictionary may be publicly accessible). In the
second phase, U becomes a mobile user, and wants to retrieve certain files by
keyword searches via his mobile device. The main idea behind our schemes is the
following: U uses pseudo-random bits to mask a keyword index for each file and
sends it to S so that later U can use the short seeds to help S recover selective
parts of the index, while keeping the remaining parts pseudo-random.

3.1 When a dictionary can be stored on U ’s mobile device

We formalize the keyword dictionary as 2d index-word pairs (i, wi), with i ∈
[2d], wi ∈ {0, 1}∗ for some constant d. Next, given the security parameter t, for

K ∈ {0, 1}t, let PK(x) be a family of pseudo-random permutations with domain
{0, 1}d, let FK(x) be a family of pseudo-random functions mapping {0, 1}d to
{0, 1}t, and let GK(x) be a family of pseudo-random functions mapping [n] to
{0, 1}. Here is our two-phase PPSED scheme.

Scheme1

Noninteractive Setup at Home
– U chooses s, r ∈ {0, 1}t uniformly at random and keeps them secret.
– Initially, for each file mj , 1 ≤ j ≤ n, U prepares a 2d-bit index string Ij such

that if mj contains wi, U sets Ij [Ps(i)] to be 1, and otherwise Ij [Ps(i)] is set
to 0.

– Next, U computes ri = Fr(i) for i ∈ [2d], and for each file mj,j∈[n], computes
a 2d-bit masked index string Mj such that Mj [i] = Ij [i]⊕Gri

(j).
– For 1 ≤ j ≤ n, U submits Ej(mj) to S along with the corresponding masked

index string Mj .
– U copies the two secret keys s, r and the dictionary to his mobile device

before leaving home.

1-round Mobile Retrieval
– To retrieve files with a keyword wλ, U first retrieves the corresponding index

λ from his dictionary, and then sends p = Ps(λ) and f = Fr(p) to S.
– S then computes Ij [p] = Mj [p] ⊕ Gf (j) for j ∈ [n]. If Ij [p] = 1, S sends
Ej(mj) to U .

Theorem 1. Scheme1 is a correct implementation of PPSED where S sends∑
i∈Ij

|Ei(mi)| total bits, U stores 2t bits plus a dictionary of constant size, and U
sends (d + t) bits per keyword search.

Proof. Because the correctness and the communication complexity of Scheme1
can be easily verified, it suffices to prove U ’s security. W.l.o.g. we assume U does
not make the same query twice, and hence the protocol consists of at most 2d

retrieval rounds.
In the following, by “the view of S” we mean all the communications S

receives from U . Let ζ denote {E1(m1), E2(m2), · · · , En(mn)}. Next, let

I(a) = {I1[a], I2[a], · · · , In[a]},
M(a) = {M1[a],M2[a], · · · ,Mn[a]},
G(a) = {Ga(1), Ga(2), · · · , Ga(n)},

and let M = {M(1),M(2), · · · ,M(2d)}. Moreover, let λv denote the dictionary
index of the keyword in round v, and define pv = Ps(λv) and fv = Fr(pv). In
addition, let Cv denote the view of S before round v, so we have

C1 = {ζ,M}, C2 = {ζ,M, p1, f1}, C3 = {ζ,M, p1, p2, f1, f2},

Consider the ideal case which meets our security requirement perfectly: U
records in advance a set of linked lists such that each file index is associated
with a list of all the keywords of the corresponding file. In this case, the only
message U needs to send in round v is the n-bit string Qv such that for j ∈ [n],
Qv[j] = 1 if and only if mj contains the keyword in round v (and S has to send
Ej(mj) back). So if we let C∗v denote the view of S before round v in the ideal
case, we have

C∗1 = {ζ}, C∗2 = {ζ,Q1}, C∗3 = {ζ, Q1, Q2},

Observe that Qv = I(pv) for v ∈ [2d].
Our goal is to prove the following (for k ∈ [2d + 1]): for any PPT algorithm

A, any ∆k = {m1, · · · ,mn, w0 ≡ ∅, w1, · · · , wk−1}, any function h, there is a
PPT algorithm A∗ such that the following value is negligible in t:

ρ = |Pr[A(Ck, 1t) = h(∆k)]−Pr[A∗(C∗k , 1t) = h(∆k)|.

Intuitively, suppose A∗ on input C∗k can generate a view C ′k that is indistin-
guishable from Ck. Then A∗ can simulate running A with C ′k to give the desired
result (that is, that ρ is negligible in t). We shall follow this intuition.

For k = 1, A∗ just needs to choose M′ from {0, 1}n2d

uniformly at random,
and feeds A with {ζ,M′}. We claim A∗ is as desired as otherwise the pair (A,A∗)
is a PPT distinguisher for pseudo-random bits and truly random bits. For k > 1,
the strategy of A∗ is as follows:

– A∗ chooses f ′1, f
′
2, · · · , f ′k−1 uniformly at random from {0, 1}t, and chooses

s′ = (p′1, p
′
2, · · · , p′k−1) uniformly at random from S = {s | s ⊂ {1, 2, · · · , 2d}, |s| =

k − 1}.
– A∗ computes M′ = {M′(1),M′(2), · · · ,M′(2d)} in the following way:

• For i ∈ [2d], i 6= p′1, p
′
2, · · · , p′k−1, choose M′(i) uniformly at random from

{0, 1}n.
• For i ∈ [k − 1], set M′(p′i) = Qi ⊕ G(f ′i).

– A∗ feeds A with C ′k = {ζ,M′, p′1, p
′
2, · · · , p′k−1, f

′
1, f

′
2, · · · , f ′k−1}.

We explain why this strategy works as follows. First, recall Qv = I(pv) for
v ∈ [k − 1], and consider the following imaginary case: for each i ∈ [2d], i 6=
p1, p2, · · · , pk−1, U does not generate M(i) according to Scheme1; instead, U
chooses M(i) from {0, 1}n uniformly at random. Clearly, in this case, the only
difference between the generation of C ′k and the generation of Ck comes from the
employment of truly randomness in place of pseudo-randomness. Specifically, C ′k
is generated using truly random p′j and f ′j for j ∈ [k − 1], yet Ck is generated
using pseudo-random pj and fj for j ∈ [k− 1]. So we claim ρ must be negligible
in t in this case as otherwise the pair (A,A∗) can be used to invalidate either
PK or FK .

Next, consider the real case (that U does follow every step of Scheme1).
An observation is for each i ∈ [2d], i 6= p1, p2, · · · , pk−1, M(i) remains pseudo-
random before round k. However, since this is the only difference between the

real case and the imaginary case, we claim ρ must be negligible in t in the real
case as otherwise the pair (A,A∗) can be used to invalidate GK . In consequence,
we have proven the desired security guarantee. ut

Analysis. We examine the practicability of the above scheme with realistic
parameters. First, if we set d = 18, the storage overhead on server is 32 kilobytes
per file. Note the latest Merriam-Webster’s Collegiate Dictionary contains only
225,000 definitions [9]. So even if U adds new words by himself, 218 could be a
reasonable upper-bound in practice for the number of all the distinct words in U ’s
dictionary as well as in his documents. Second, notably only a few bits are sent
from U per keyword search. If we set t = 2030, for example, only 256 bytes are
required. Clearly, our scheme is independent of the encryption method chosen for
the remote files, so it works for different file formats (including compressed files,
multimedia files, etc.), as long as a keyword index on the corresponding content
can be built. Moreover, only pseudo-random functions (and permutations) are
used in the construction of our scheme. As mentioned earlier, these functions
can be implemented efficiently by heuristic algorithms.

Although we assume the availability of a dictionary on U ’s mobile device, the
assumption is not far-fetched as most of today’s mobile devices are equipped with
built-in electronic dictionaries (or can store one on a memory card). Actually, if
we estimate the average length of a keyword by 23 ASCII characters, a dictionary
only amounts to (218)(23)(8) = 2 megabytes, which can be improved further
using compression.

3.2 When a dictionary cannot be stored on U ’s mobile device

We now consider the same setting as the previous section, except that a dic-
tionary cannot be stored on U ’s mobile device. Our new scheme is almost the
same with Scheme1, with the pivotal difference being that U is asked to store
an encrypted dictionary on S.

Let wmax upper-bound the length of a word in U ’s local dictionary at home,
let Φ be a family of pseudo-random permutations on {0, 1}wmax , and let F ∗K(x)
be a family of pseudo-random functions mapping {0, 1}d+wmax to {0, 1}t. Here
is our two-phased PPSED scheme.

Scheme2

Noninteractive setup at home
– U follows the first two steps of Scheme1, except he also chooses τ ∈ {0, 1}t

uniformly at random and keeps it secret.
– U sends to S the following in order: ϕ1 = Φτ (wi1), ϕ2 = Φτ (wi2), · · · , ϕ2d =

Φτ (wi2d
) such that Ps(ij) = j for j ∈ [2d]. (S then records (j, ϕj) for j ∈ [2d],

following the order.)
– Next, U computes ri = F ∗r (i, ϕi) for i ∈ [2d], and for each file mj,j∈[n],

computes a 2d-bit masked index string Mj such that Mj [i] = Ij [i]⊕Gri(j).

– U follows the last two steps of Scheme1, except he copies τ , instead of the
dictionary, to his mobile device before leaving home.

2-round mobile retrieval
– To retrieve files with keyword wλ, U sends ϕ = Φτ (wλ) to S.
– Let (p, ϕp) be such that ϕp = ϕ. S sends p to U , who then sends f = F ∗r (p, ϕ)

to S.
– S then computes Ij [p] = Mj [p] ⊕ Gf (j) for j ∈ [n]. If Ij [p] = 1, S sends
Ej(mj) to U .

Theorem 2. Scheme2 is a correct implementation of PPSED where S sends∑
i∈Ij

|Ei(mi)| + d total bits, U stores 3t bits, and U sends (wmax + t) bits per

keyword search.

Proof. We first prove U ’s security, employing some of the notation in the proof
of Theorem 1. Let C̃k denote the view of S before round k in Scheme2. It suf-
fices to prove the following: for all k, for any PPT algorithm Ã, any ∆k =
{m1, · · · ,mn, w0 ≡ ∅, w1, · · · , wk−1}, and any function h, there is a PPT algo-
rithm A such that the following value is negligible in t:

|Pr[Ã(C̃k, 1t) = h(∆k)]−Pr[A(Ck, 1t) = h(∆k)|.

Recall Ck is the view of S before round k in Scheme1. In other words, we ask
everything about ∆k that can be computed given C̃k can also be computed given
Ck. In other words, the information leakage of Scheme2 is essentially no worse
than that of Scheme1.

Since the retrieval phase is interactive, we know U ’s ongoing action depends
on S’s message, namely p. So we must consider the case that S might dishonestly
send an arbitrary p′ 6= p to U . However, let us start from the simplified case that
S always sends the correct p to U .

In the simplified case, we can assume w.l.o.g. that U always sends back p,
along with f , to S. Note this does not jeopardize U ’s security since U learns p
from S, while the difference between C̃k and Ck now comes from {ϕj}j∈[2d]+{ϕ =
ϕp}.3 An observation is A can simulate each ϕj by flipping coins and can simulate
ϕ by setting ϕ to be the simulated ϕp, in that each ϕj represents t pseudo-random
bits and p is known to A (as p ∈ Ck is part of the input to A). So all A needs to
do is to feed Ã with Ck and the simulated results.

Next, let us consider the case that S might be dishonest. Note if S sends
p′ 6= p to U , then the returning message from U , namely f ′ = F ∗r (p′, ϕ), cannot
be used for decryption and represents nothing more than t pseudo-random bits.
Hence we can assume w.l.o.g. that S always simulate f ′ by flipping t coins
and discarding f ′ from his view (C̃k) in this case. Accordingly, it is enough to
prove that for all k, for any PPT algorithm Ã, any ∆k = {m1, · · · ,mn, w0 ≡
3 W.l.o.g. we can assume FK(j) ≡ F ∗K(j, ϕj) for all j ∈ [2d], i.e. {ϕj}j∈[2d] is part of

the description of FK .

∅, w1, · · · , wk−1}, any function h, there is a PPT algorithm A such that the
following value is negligible in t:

|Pr[Ã(C̃k, 1t) = h(∆k)]−Pr[A(ck, 1t) = h(∆k)|,

where ck ⊂ Ck is the reduced Ck defined as follows: ck is constructed by mim-
icking S’s dishonest behavior to discard the corresponding f from Ck. Clearly,
A just needs to do the same simulations as in the simplified case and feeds Ã
with ck and the simulated results. Hence, we have finished the security proof by
describing this PPT algorithm A.

There server S must send an additional d bits (namely p) beyond the files
themselves. The on-mobile-device dictionary is replaced by a small storage over-
head of t bits (namely the key to ΦK). Moreover, we claim the correctness follows
the fact that ΦK is injective, and the user-side communication complexity can
be easily verified. ut
Analysis. If we estimate the maximal length of a word by 24 ASCII characters,
we have wmax = (24)(8) = 128. Hence the encrypted dictionary amounts to
(218)(128) = 4 megabytes per user. The server-side storage overhead is the same
with Scheme1. On the other hand, the communication complexity changes only
slightly: S needs to send additional d bits per keyword search, while U now needs
to send (wmax + t) bits per keyword search.

4 Secure Update

In this section, we study how to securely submit new files to S. Basically U can
follow all the steps in the first phase of either Scheme1 or Scheme2 to submit a
new set of files, but some additional care is indispensable. First note if U treats
the new files as a continuation of the old ones, or say, if U still uses the old
pseudo-random seeds {ri}i∈[2d], then for any keyword that U has queried, S can
learn (for free) whether the newly added files contain the (unknown) keyword or
not as he already knows the corresponding pseudo-random seed. This says the
newly submitted files suffer from a-prior information leakage before any query.

A solution is to choose independently a truly random seed rθ to generate
{rθ

i }i∈[2d] for each file set ζθ, and to let S memorize the separating points
amongst the asynchronous sets. When U makes a query, he should compute
for each set ζθ a pseudo-random seed corresponding to the keyword index (using
the truly random seed rθ), and send all of them to S, who then decodes the
encrypted index accordingly. In this way, the aforementioned a-priori informa-
tion leakage can be avoided. However, this approach suffers from an increasing
number of truly random seeds that have to be stored on the mobile device: it
works well only when the updating process is not so frequent.

Fortunately, we can apply another pseudo-random function to generate each
rθ, which is thus not truly random anymore. But similarly to our previous
approaches, we know it is safe to feed pseudo-random functions with pseudo-
random seeds, and therefore we just need one truly random seed for the new

pseudo-random function (and for all the sets). In consequence, we claim our
schemes are incremental in the following sense: U can submit new files which are
totally secure against previous queries but still searchable against future queries.
Moreover, they both have very simple key management.

Remark. It is worth considering how to add new words to the dictionary too.
Note though we use a real dictionary to estimate the storage overhead, U needs
not to employ a real (fixed) dictionary in our schemes. This says which words
to be included in the dictionary really depends on U ’s choice. Our Scheme1 has
the advantage that U can add new words to his dictionary freely (and directly),
as long as the number of total words does not exceed some upper-bound. Our
Scheme2, on the other hand, requires U should update the remote encrypted
dictionary, and thus is less efficient.

5 Discussions

We discuss some security improvements and open problems in this section.

5.1 Security improvements

It is worth taking into consideration a malicious S, who may not follow the
protocol at all. And it turns out both our schemes are capable of dealing with a
malicious S, with the help of some additional modules. Let us focus on Scheme1
first. Note the first phase of Scheme1 is non-interactive and the second phase is
one-round. This basically says the only malicious action S can take is to send
incorrect files (e.g. ∅) back to U . However, since there is no way for U to stop S
from doing this, the best U can do is to detect incorrect files when they are sent.
And we claim U can always detect them using some cryptographic techniques.
We outline the ideas below, and leave the details in the full version of this paper.

Note U only needs to check whether any of the returned files is counterfeit
and whether the number of returned files is wrong, since w.l.o.g. we can assume
U can always tell whether a genuine Ej(mj) is associated with a given keyword
or not by checking mj . Here we employ a collision-resistant hash function h and
a pseudo-random function y : ([2d], {0, 1, · · · , n}) → {0, 1}t;4 we also make use
of some unforgeable signature scheme. The new modules are listed below:

– ∀j ∈ [n], U computes hj = h(Ej(mj)) ; U signs and stores each hj on S.
– ∀i ∈ [2d], U computes yi = y(i, numi) using the secret random seed of y,

where numi is the number of files associated with the permuted keyword
index i; U signs and stores each yi on S.5

– When U makes a query on i, S sends back the signed yi and each signed hj

corresponding to the returned files so that U can first check the signatures
and then verify the correctness. (Otherwise U refuses to trust in S.)

4 Note we omit the secret random seed of y, which is known to U only, in the notation.
5 Note it is important to keep numi secret before U makes the corresponding query;

this partially explains why we employ a pseudo-random function here.

Note the keys are (1) U ’s signature is unforgeable, (2) hj is bound to Ej(mj)
because of collision resistance, and (3) yi is bound to (i, numi) because y should
appear to be injective when t is large enough (as a truly random function does).
Consequently, we claim that the above detection method works for Scheme1.

As for Scheme2, recall its second phase contains two rounds and a dishonest
S may send p′ 6= p back to U in the first round. So we have two cases:

– If S sends p, then the first round is correct and the above detection method
can help U detect incorrect files in the second round.

– If S sends p′ 6= p, then we have to let U detect that p′ is incorrect. And the
idea is to replace yi = y(i, numi) by y′i = y′(wi∗ , i, numi), where i∗ should
satisfy Ps(i∗) = i (i.e. i∗ is the original keyword index before permutation)
and y′ is a pseudo-random function similarly defined. By the same reasoning,
we know y′i is bound to (wi∗ , i, numi) so that U can verify the mapping
between wi∗ and i (which is secure against S by pseudo-randomness).

In consequence, we claim that Scheme2 is also secure against a malicious S.
Last, note it is unclear whether the related works [11, 6] can be modified to

detect incorrect files without employing a similar approach to ours to record a
keyword index, which can be associated with, say, the number of files containing
a given keyword.

5.2 Open problems

Dealing with queries containing Boolean operations on multiple keywords re-
mains a significant and challenging open problem.6 Similarly, allowing general
pattern matching, instead of keyword matching, remains open. Solving these
open questions would greatly enhance the utility of these schemes.

Our schemes can also deal with occurrence queries in a less efficient way.
An occurrence query is a query like “I want to retrieve all the files containing
more than 10 occurrences of PRIVACY.” One simple solution coupled with our
schemes is to also record each occurrence of a word in the encrypted index.
Hence if the word PRIVACY appears 12 times in a document, each appearance
would be labelled separately as PRIVACY1, PRIVACY2, . . ., and a query could
be done on PRIVACY10. This approach can dramatically increase the storage
overhead on the sever-side; more efficient solutions would be desirable.

Finally, it seems that none of the existing schemes (including ours) can pro-
vide general secure update with deletion. Our schemes can ensure the security
of newly submitted files against previous queries, but they cannot ensure the
security of previously submitted files (which U now wants to delete) against new

6 The paper [6] proposed a method to deal with Boolean queries such as x ∧ y by
letting S learn both which files contain x and which files contain y and then send
the intersection set back to U . This method can also be applied to our schemes;
however, a stronger and clearly more suitable notion of security in this context is
that S should only learn the set of files corresponding to the query x ∧ y, and not
the set of files corresponding to x and y. This is the question that remains open.

queries. The problem arises because S can always keep the old files and the cor-
responding keyword indices rather than delete them. This reasoning appears to
apply to all existing schemes that we know of.

We believe these problems are of growing importance, as keyword searches on
encrypted data might have a broad range of applications in distributed multi-user
settings. For example, [4] studies the problem how to efficiently share encrypted
data on P2P networks. In similar settings, keyword searches on encrypted data
are indispensable.

Acknowledgement. We would like to thank Benny Pinkas and anonymous
referees for their comments.

References

1. B. Bloom, “Space/time trade-offs in hash coding with allowable errors,” in Com-
munications of the ACM, Vol. 13(7), pp. 422–426, 1970.

2. M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message au-
thentication,” in Proceedings of CRYPTO’96, Lecture Notes in Computer Science
1109, pp. 1–15.

3. D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryption
with keyword search,” in Proceedings of Eurocrypt 2004, Lecture Notes in Com-
puter Science 3027, pp. 506–522.

4. K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu, “Efficient sharing of en-
crypted data,” in Proceedings of ACISP 2002, Lecture Notes in Computer Science
2384, pp. 107–120.

5. O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University
Press, 2001.

6. E.-J. Goh, “Secure indexes,” in Cryptology ePrint Archive: Report 2003/216
(http://eprint.iacr.org/2003/216/).

7. O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious
RAMs,” in Journal of ACM, Vol. 43(3), pp. 431–473, 1996.

8. M. Luby and C. Rackoff, “How to construct pseudo-random permutations from
pseudo-random functions (abstract),” in Proceedings of CRYPTO’85, Lecture
Notes in Computer Science 218, pp. 447.

9. F. Mish (editor in chief), Merriam-Webster’s Collegiate Dictionary, 11th edition,
Merriam-Webster, Inc., 2003.

10. M. Naor and O. Reingold, “On the construction of pseudo-random permutations:
Luby-Rackoff revisited (extended abstract),” in Proceedings of ACM STOC’97, pp.
189–199.

11. D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted
data,” in Proceedings of IEEE Symposium on Security and Privacy 2000, pp. 44–55.

