
Distance-Sensitive Bloom Filters

Adam Kirsch ∗ Michael Mitzenmacher †

Abstract

A Bloom filter is a space-efficient data structure that
answers set membership queries with some chance of
a false positive. We introduce the problem of design-
ing generalizations of Bloom filters designed to answer
queries of the form, “Is x close to an element of S?”
where closeness is measured under a suitable metric.
Such a data structure would have several natural appli-
cations in networking and database applications.

We demonstrate how appropriate data structures
can be designed using locality-sensitive hash functions
as a building block, and we specifically analyze the
performance of a natural scheme under the Hamming
metric.

1 Introduction

A Bloom filter is a simple, space-efficient, randomized
data structure that allows one to answer set membership
queries with a small but constant probability of a false
positive.1 Bloom filters have found numerous uses,
particularly in distributed databases and networking
(see, e.g. [2, 9, 10]). Here we initiate a new direction
in the study of Bloom filters by considering distance-
sensitive Bloom filters that answer approximate set
membership queries in the following sense: given a
metric space (U, d), a finite set S ⊂ U , and parameters
0 ≤ ε < δ, the filter aims to effectively distinguish
between inputs u ∈ U such that d(u, x) ≤ ε for some
x ∈ S and inputs u ∈ U such that d(u, x) ≥ δ for every
x ∈ S. Our constructions allow false positives and false
negatives. By comparison, the standard Bloom filter
corresponds to the case where ε = 0 and δ is any positive
constant, and it only gives false positives.

We establish a framework for constructing distance-
sensitive Bloom filters when the metric d admits a

∗Division of Engineering and Applied Sciences, Harvard Uni-
versity, Cambridge, MA 02138. Supported in part by an NSF
Graduate Research Fellowship and NSF grants CCR-9983832 and
CCR-0121154. Email: kirsch@eecs.harvard.edu

†Division of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138. Supported in part
by NSF grants CCR-9983832 and CCR-0121154. Email:
michaelm@eecs.harvard.edu

1We assume some familiarity with Bloom filters throughout
the paper; see [2] for background.

locality-sensitive hash family (see, e.g., [4, 5, 7]). The
potential benefits of this type of data structure are its
speed and space; it can provide a quick answer without
performing comparisons against the entire set, or even
without performing a full nearest-neighbor query, and
it should require less space than the original data. For
example, in a distributed setting, client processes might
use such a filter to determine whether sending a nearest
neighbor query to a server would be worthwhile without
actually querying the server; if the filter indicates that
there is no sufficiently close neighbor to the query, then
the request can be skipped. Of course, in all applications
the consequences of and tradeoffs between false positives
and false negatives need to be considered carefully.

As an example of a possible application of a
distance-sensitive Bloom filter, consider a large data-
base that identifies characteristics of people using a large
number of fields. Given a vector of characteristic values,
one may want to know if there is a person in the data-
base that matches on a large fraction of the characteris-
tics. One can imagine this being useful for employment
databases, where one is seeking a candidate matching
a list of attributes. A company may wish to provide a
distance-sensitive Bloom filter as a way of advertising
the utility of its database while providing very little in-
formation about its actual content. Similarly, the data
structure may also be useful for criminal identification;
it could provide a quick spot-test for whether a suspect
in custody matches characteristics of suspects for other
unsolved crimes.

As a networking example, the SPIE system for IP
traceback represents packet headers seen over a small
interval of time by a Bloom filter [16]. The authors
of that work found that packet headers usually remain
consistent as packets travel among routers. A distance-
sensitive Bloom filter might allow small changes in the
packet header bits while still allowing the Bloom filter
to answer queries appropriately.

As a very general example, suppose that we have
a collection of sets, with each set being represented
by a Bloom filter. For example, a Bloom filter might
represent packet traces as above, or a sketch of a
document as in [3]. The relative Hamming distance
between two Bloom filters (of the same size, and created
with the same hash functions) can be used as a measure

41

of the similarity of the underlying sets (see, e.g., [2]).
Hence, one can construct a distance-sensitive Bloom
filter on top of such a collection of Bloom filters to
attempt to quickly and easily answer questions of the
form, “Are there any sets in the collection very close
to this query set?” Such a general construction may
prove useful for other distributed applications where
Bloom filters are used. For this reason, we pay special
attention to the case where U = {0, 1}� and d is the
relative Hamming metric on U .

A more distant but potentially very exciting appli-
cation of distance-sensitive Bloom filters is in the con-
text of DNA sequences. One might hope that such a fil-
ter could effectively handle queries when d is chosen to
be the edit distance metric, in order to answer questions
of the form, “Is there a DNA sequence close to this one
in your database?” Unfortunately, edit distance cur-
rently appears to be too difficult to adequately handle
in our framework, as there is no known good locality-
sensitive hash function for edit distance, although there
is recent work attempting to connect edit distance and
Hamming distance via various reductions [7, 11]. Simi-
lar problems arise in computer virus detection, and ad
hoc variations of Bloom filters have recently been used
in this setting [15].

Although there are many potential applications,
this problem does not appear to have been the subject of
much study. Manber and Wu [8] considered the problem
of handling a single character error using Bloom filters
in the context of password security. Work on nearest-
neighbor problems (including [4, 5, 7]) is clearly related,
but the problem setting is not equivalent. Our work
also seems similar in spirit to work on property testing
[14, 6], and specifically to the recently introduced notion
of tolerant property testing [13], although here the task
is to design a structure based on an input set that will
allow quick subsequent testing of closeness to that set,
instead of an algorithm to test closeness of an object to
some property.

Our main contributions in this paper are therefore

1. introducing the formal problem of developing
Bloom filter variants that effectively determine
whether queries are close to an item in a partic-
ular set,

2. developing the connection between this problem
and locality-sensitive hashing, and

3. examining in detail the case where U = Σ� and d
is the relative Hamming metric.

Our initial results are not as strong as one might hope.
For example, when U = {0, 1}�, d is the relative

Hamming metric on U , and |S| = n, our distance-
sensitive Bloom filter is only efficient and effective for
constant δ when ε = O(1/ log n). That is, we can only
differentiate between query strings that differ from all
strings in S on a (constant) δ-fraction of bits and query
strings that share a 1 − ε = 1 − O(1/ log n)-fraction of
bits with some string in S. We would prefer ε to be
constant. Nevertheless, our experiments suggest that
even with this limitation distance-sensitive Bloom filters
work sufficiently well to be useful in practice.

Our work leaves many additional open problems.
Indeed, one obvious question is whether Bloom filters
provide the appropriate paradigm for this problem;
alternatives to standard Bloom filters have recently
received study [12]. Our major reasons for initiating
our study with Bloom filters are because they provide a
natural theoretical framework and because Bloom filters
are already widely accepted, understood, and used by
practitioners.

2 A General Approach

This section gives a general approach to designing
distance-sensitive Bloom filters for metric spaces (U, d)
that admit a locality-sensitive hash family [5].

Definition 2.1. A family H = {h : U → V } is
(r1, r2, p1, p2)-sensitive with respect to a metric space
(U, d) if r1 < r2, p1 > p2, and for any x, y ∈ U ,

• if d(x, y) ≤ r1 then Prh←H(h(x) = h(y)) ≥ p1, and

• if d(x, y) > r2 then Prh←H(h(x) = h(y)) ≤ p2.

We say that any such family is a (U, d)-locality-sensitive
hash (LSH) family, omitting (U, d) when the meaning is
clear.

It turns out that our approach is more effectively
expressed when we generalize Definition 2.1.

Definition 2.2. Let (U, d) be a metric space, and let
pL : R≥0 → [0, 1] and pH : R≥0 → [0, 1] be non-
increasing. A hash family H : U → V is called
(pL, pH)-distance sensitive (with respect to (U, d)) if for
all x, y ∈ U

pL(d(x, y)) ≤ Pr
h←H

(h(x) = h(y)) ≤ pH(d(x, y)).

We note that Definition 2.2 really does general-
ize Definition 2.1, since for any (r1, r2, p1, p2)-locality-
sensitive hash family H, we may set

pL(r) =

{
p1 if r ≤ r1

0 otherwise

42

and

pH(r) =

{
p2 if r > r2

1 otherwise

and get that H is a (pL, pH)-distance-sensitive hash
family.

We are now ready to present our first and most gen-
eral distance-sensitive Bloom filter construction, which
is essentially a standard partitioned Bloom filter where
the random hash functions are replaced by distance-
sensitive hash functions. Let H : U → V be a (pL, pH)-
distance sensitive hash function, fix some S ⊂ U with
n elements, and let A be an array consisting of k dis-
joint m′-bit arrays, A[1, 1], . . . , A[k,m′] (for a total of
m = km′ bits), where k and m′ are parameters. If
V �= [m′], then let H′ : V → [m′] be a weakly pairwise-
independent hash family.

To initialize the filter, we first choose h1, . . . , hk ←
H independently. If V �= [m′], then we also choose
h′1, . . . , h

′
k ← H′ independently, and define gi = h′i ◦ hi

for i ∈ [k]. If V = [m′], then we define gi = hi for
i ∈ [k]. Next, we set all of the bits in A to zero. Finally,
for x ∈ S and i ∈ [k], we set A[i, gi(x)] = 1.

It remains to specify how to use the filter to
effectively determine whether a query u ∈ U is close
to some x ∈ S. In a standard Bloom filter, to answer
queries of the form, “Is u ∈ S?” we simply check if
all of u’s hash locations in A (that is, the set of bits
{A[i, hi(u)] : i ∈ [k]}) are set to 1; we return “u ∈ S”
if this is the case and we return “u �∈ S” otherwise. In
our setting, we must consider that u might not be in S
but still be close to some element of S, in which case
it might be that not all of u’s hash locations are set
to 1. We consider instead the set of u’s hash locations
that are set to 1; specifically, by symmetry, it suffices
to consider the number B(u) of u’s hash locations that
are set to 1.

Now, it is easy to see that B(u) =
∑

i∈[k] A[i, gi(u)].
As the A[i, gi(u)]’s are independent and identically
distributed bits, B(u) ∼ Bin(k, qu) for some qu ∈ [0, 1]
(where Bin(t, r) denotes the binomial distribution with
t trials and common success probability r). We derive
upper and lower bounds on qu.

Proposition 2.1. In an abuse of notation, we define
d(u, S) = minx∈S d(u, x) for u ∈ U . Let 1 (·) denote the
indicator function. For any u ∈ U ,

pL(d(u, S)) ≤ qu ≤
∑
x∈S

pH(d(x, u)) +
nk

m
· 1 (V �= [m′])

Proof. For the lower bound, we write

qu = Pr(A[1, g1(u) = 1])
= Pr(∃x ∈ S : g1(x) = g1(u))
≥ max

x∈S
Pr(g1(x) = g1(u))

≥ max
x∈S

pL(d(x, u))

= pL(d(u, S)),

where the last step follows from the fact that pL is non-
increasing.

For the upper bound, we write

qu = Pr(A[1, g1(u) = 1])
= Pr(∃x ∈ S : g1(x) = g1(u))

≤
∑
x∈S

Pr(g1(x) = g1(u)).

Now, if V = [m′], then for any x ∈ S,

Pr(g1(x) = g1(u)) = Pr(h1(x) = h1(u)) ≤ pH(d(x, u)),

and if V �= [m′], then for any x ∈ S,

Pr(g1(x) = g1(u))
≤ Pr(h1(x) = h1(u))

+ Pr(h′1(h1(x)) = h′1(h1(u)) | h1(x) �= h1(u))
≤ pH(d(x, u))

+ Pr(h′1(h1(x)) = h′1(h1(u)) | h1(x) �= h1(u))

≤ pH(d(x, u)) +
1
m′

,

so

qu ≤
∑
x∈S

Pr(g1(x) = g1(u))

≤
∑
x∈S

(
pH(d(x, u)) +

1
m′
· 1 (V �= m′)

)

=
∑
x∈S

pH(d(x, u)) +
nk

m
· 1 (V �= m′) .

�
For real-valued random variables X and Y , we write

X ≤st Y or if Y stochastically dominates X. That
is X ≤st Y if for all x ∈ R, Pr(X ≥ x) ≤ Pr(Y ≥
x). The following corollary now follows readily from
Proposition 2.1.

Corollary 2.1. For any u ∈ U ,

Bin (k, pL(d(u, S)))
≤st B(u)

≤st Bin

(
k,
∑
x∈S

pH(d(x, u)) +
nk

m
· 1 (V �= [m′])

)
.

43

Corollary 2.1 suggests that if the filter is configured
properly then whenever u ∈ U is particularly close to
some x ∈ S and v ∈ U is particularly far from every x ∈
S, we should have that qu is substantially larger than
qv. Since binomial distributions are reasonably well-
concentrated around their expectations, this intuition
suggests the existence of some threshold t (that does
not depend on the particular strings in S) such that
B(u) is unlikely to be below t and B(v) is unlikely to
be above t. It follows that for any w ∈ U that is either
particularly close to some x ∈ S or particularly far from
every x ∈ S, we can effectively determine which of these
two cases applies by comparing B(w) and t.

As an example, we consider t = k, which corre-
sponds to the technique used by a standard Bloom fil-
ter. More specifically, we suppose that when the filter
is queried with parameters 0 ≤ ε < δ and u ∈ U , it
responds that “d(u, S) ≤ ε” if all of u’s hash locations
are 1 and “d(u, S) ≥ δ” otherwise. For this scheme,
Corollary 2.1 immediately tells us that

• if d(u, S) ≤ ε, then Pr(the filter is incorrect) ≤
1− pL(ε)k, and

• if d(u, S) ≥ δ, then Pr(the filter is incorrect) ≤(
n
[
pH(d(δ)) + k

m · 1 (V �= [m′])
])k

.

The setting of t = k is simply an example. For any real
application, it is important to assess the relative severity
of false positives and false negatives and experimentally
determine the value of t that optimizes the tradeoff
between the observed frequencies of the two types of
errors.

Before continuing, we note that the bound for
the false positive probability is unfortunately rather
weak in this general setting, due to the fact that
the probability that a particular hash location is set
to 1 (from the occurrence of the event {∃x ∈ S :
hi(x) = hi(u)} for some fixed i ∈ [k] and u ∈ U
with d(u, S) ≥ δ) is bounded only by npH(δ); this
requires that pH(δ) is certainly O(1/n) and preferably
o(1/n). In practice, this weakness may be avoided,
although this depends on the set S (and the underlying
metric); in particular, maxu

∑
x∈S pH(d(x, u)) will often

be smaller than npH(δ), and one may be able to bound
maxu

∑
x∈S pH(d(x, u)) easily given S. Alternatively,

the bound npH(δ) may be reasonably tight, such as
when pH(δ) is small and collisions between elements of
S are unlikely. Similar issues arise in nearest-neighbor
problems [1]; this issue clearly warrants further study.

3 The Relative Hamming Metric on U = Σ�

To give more insight and make the problem more
concrete, we now focus on the special case where

U = Σ� for some � and alphabet Σ, and d is the
relative Hamming metric on U (that is, d(u, v) =∑�

i=1 1 (ui �= vi) /�, where 1 (·) is the indicator function
and for u ∈ U and i ∈ [�], we let ui denote the
ith character of u). Without loss of generality, we
suppose that Σ = {0, . . . , r − 1} for some r ≥ 2. An
obvious alternative approach in this situation would be
to simply choose s character locations (independently
and uniformly at random) and for each string in S use
these s characters as a sketch for the string. To check if
any string in S has distance at most ε from some input
x the sketches can be checked to see if any match in
(slightly less than) a 1 − ε fraction of locations. Such
schemes require checking at least Ω(n) characters to find
a potential match; while this may be suitable for some
applications, we aim (in the spirit of standard Bloom
filter constructions) to use only a constant number of
character lookups into the data structure, making this
approach unsuitable (although it may also be useful in
practice).

We first give a general analysis of a distance-
sensitive Bloom filter and show that this analysis does
not yield performance tradeoffs nearly as good as a
standard Bloom filter. Then we show that by limiting
our goals appropriately, our analysis yields results that
are suitable in practice for the important case where r =
2. Finally, we present the results of simple experiments
that demonstrate the potential practicability of the
scheme.

Recall that, given parameters 0 ≤ ε < δ ≤ 1,
our goal is to effectively distinguish between the strings
u ∈ U where d(u, S) ≤ ε, which we call ε-close to S,
and those where d(u, S) ≥ δ, which we call δ-far from
S.

We define

c =

{
1 if r = 2
1/2 if r > 2

n = |S|
�′ =

⌈
log 1−cε

1−cδ
4n
⌉

m′ = 2�′

m = km′

t = k(1− cε)�′/2.

Here n is the number of items, m is the total size
of the filter (in bits), k ≥ 1 is the number of hash
functions, and �′ is the number of locations read per
hash function. If r = 2, the bits yield a location in the
hash table in the natural way. Specifically, we define the
hash family H : U → [m′] in the case where r = 2 as

44

follows: we choose h ← H by choosing i1, . . . , i�′ ← [�]
uniformly and independently, and then defining h(u) =
ui1 · · ·ui�′ +1 (where we are considering ui1 · · ·ui�′ as a
number in binary). If r > 2, we do essentially the same
thing, but with an added level of pairwise independent
hashing from Σ to {0, 1}. More precisely, if r > 2, we let
H′ : Σ→ {0, 1} be a pairwise independent hash family,
and we define the hash family H : U → [m′] as follows:
we choose h← H by choosing i1, . . . , i�′ ← [�] uniformly
and independently, h′1, . . . , h

′
�′ ← H′ independently, and

then defining h(u) = h′1(ui1) · · ·h′�′(ui�′) + 1. Using
these definitions, we construct the filter described in
Section 2.

It is easy to verify that H is a (pL, pH)-distance
sensitive hash function for pL(z) = pH(z) = (1 − cz)�′ .
(Indeed, if r = 2, then H is a canonical example of a
locality-sensitive hash family [5].) Proposition 2.1 now
immediately yields the following result.

Corollary 3.1. Consider some u ∈ U .

• If d(u, S) ≤ ε, then qu ≥ (1− cε)�′ .

• If d(u, S) ≥ δ, then qu ≤ n(1− cδ)�′ .

In Section 2, we gave some intuition as to why
results of the above form should allow for a properly
configured filter to effectively distinguish between those
u ∈ U that are ε-close to S and those u ∈ U that are
δ-far from S. Theorem 3.1 formalizes that intuition.

Theorem 3.1. When t = k(1 − cε)�′/2, then for any
fixed u ∈ U , over the random choices made constructing
the filter:

• If d(u, S) ≤ ε, then

Pr(B(u) < t) < exp
[−2t2/k

]
= exp

[
−k(1− cε)2�′/2

]
.

• If d(u, S) ≥ δ, then

Pr(B(u) ≥ t) ≤ exp
[−t2/2k

]
= exp

[
−k(1− cε)2�′/8

]
.

Remark 3.1. While the correct choice of the threshold
t in practice may depend on the relative importance
of false positive and false negatives, the choice of t =
k(1− cε)�′/2 presented here allows provable statements
that give insight into the performance tradeoffs involved
in designing the filter; specifically, the bounds are the
same order of magnitude in the exponent, and allow for
the asymptotic analyses in Sections 3.1 and 3.2.

Proof. For the first inequality, we have d(u, S) ≤ ε.
Then

t−E[B(u)] = t− kqu ≤ t− k(1− cε)�′ = −t

by Corollary 3.1. Therefore,

Pr(B(u) < t) = Pr(B(u)−E[B(u)] < t−E[B(u)])
≤ Pr(B(u)−E[B(u)] < −t)

< exp
[−2t2/k

]
,

by the Azuma-Hoeffding inequality.
For the second inequality, if d(u, S) ≥ δ, then

t−E[B(u)] = t− kqu

≥ t− kn(1− cδ)�′

= k(1− cε)�′
[

1
2
− n

(
1− cδ

1− cε

)�′
]

≥ k(1− cε)�′
[
1
2
− 1

4

]
= t/2,

where the second step follows from Corollary 3.1, the
fifth step follows from the fact that �′ ≥ log 1−cε

1−cδ
4n, and

the other steps are obvious. Therefore,

Pr(B(u) ≥ t) = Pr(B(u)−E[B(u)] ≥ t−E[B(u)])
≤ Pr(B(u)−E[B(u)] ≥ t/2)

≤ exp
[−2(t/2)2/k

]
= exp

[−t2/2k
]
,

by the Azuma-Hoeffding inequality. �

3.1 Asymptotic Analysis: The Bad News. We
now consider what Theorem 3.1 suggests about the
performance of our basic distance-sensitive Bloom filter
construction. While the experiments in Section 4 show
that our construction is likely to be useful in many
practical situations, it does not scale well to very large
numbers of items. By comparison, we recall that
standard Bloom filters have the following three very
desirable properties when properly configured:

1. They use O(n) bits (and the hidden constant is
small).

2. They guarantee a small constant error probability
(asymptotically and in practice).

3. To answer a query, one must only read a small
constant number of bits in the array.

Our construction does not appear to meet these
goals for constant (with respect to n) values of the

45

parameters ε and δ. In fact, it does not even seem
to meet the last two goals for constant ε and δ. For
example, for r = 2, if we take k = O(1) and ε = Ω(1),
then the bounds in Theorem 3.1 yield constant error
probabilities only if �′ = O(1), in which case

log 1−ε
1−δ

4n = O(1) =⇒ δ = 1− 1
nΩ(1)

.

Similarly, if k = O(1) and δ = 1−Ω(1), then the bounds
in Theorem 3.1 give constant error probabilities only if
(1− ε)�′ = Ω(1), implying that

⌈
log 1−ε

1−δ
4n
⌉

= �′ = O

(
1

log 1
1−ε

)
,

which cannot hold for constant ε. Therefore, the only
way that Theorem 3.1 allows us to achieve the desired
goals is if we restrict our attention to cases where the
gap between ε and δ is extremely large for sufficiently
large n.

3.2 Asymptotic Analysis: The Good News. If
we loosen the desired properties for a distance-sensitive
Bloom filter, we can still obtain results that appear
useful in practice. Specifically, in the case of the relative
Hamming metric, we note that the total length of the
strings in the original set is at least n� log2 r bits.
Therefore, we should seek that the total length of the
filter m is much less than n�, and not be concerned if
m = ω(n) so long as this condition holds. Furthermore,
and more importantly, we consider cases where δ is
constant but ε is only O(1/ log n). That is, we only seek
to differentiate between query strings that differ from all
strings in S on a (constant) δ-fraction of bits and query
strings that share a 1 − ε = 1 − O(1/ log n)-fraction
of bits with some string in S. This restriction clearly
limits the scalability of the construction. However, it
still allows very useful results for n in the thousands
or tens of thousands. (Larger n can be handled, but
only with quite small values of ε or quite large values of
�.) In fact, as our experiments in Section 4 show, the
asymptotic restriction that ε = O(1/ log n) still allows
for excellent performance with reasonable values of n,
�, and δ. And if a particular application allows for an
even smaller value of ε, say ε = c′/n for some constant
c′, then the performance for reasonable values of n and
� only improves, although the gap between ε and a
reasonable value of δ may be quite large.

For convenience we focus on the binary case where
r = 2, so U = {0, 1}�. In this case, k�′, the total number
of sampled characters, is still logarithmic in n. The
space used in the filter is

m = k2�′ = O
(
n1/ log2

1−ε
1−δ

)
.

For δ < 1/2 (which is the normal case, as even
random bit strings will agree on roughly 1/2 of the
entries) and ε = O(1/ log n), we have that m = ω(n).
However, in many cases we can still configure the filter
with reasonable parameters so that m � n�. To gain
some insight (that will guide our experiments) it is
worth considering some sample cases. For n = 1000,
ε = 0.1, and δ = 0.4, we find �′ = 21. Hence for k ≤ 32
the number of bits required is less than 226, giving an
improvement over the total number of bits n� whenever
� ≥ 216 bits or 8 Kilobytes. Similarly, for n = 10000,
ε = 0.05, and δ = 0.4, we find �′ = 24, and again for
k ≤ 32 there is a space savings whenever � ≥ 216.

Formally, we have the following asymptotic relation-
ship, which shows that � need only grow polynomially
with n to have m = o(n�). (Little effort has been made
to optimize the constants below.)

Proposition 3.1. For any constant δ and r ≥ 2, if
logn � = (4− 6cδ)/cδ + Ω(1/ log n), then we may choose
ε = Ω(1/ log n) and have m = o(n�).

Proof. Let γ = (logn �)/2. Since � ≥ logr n, we have
that

� = ω(1) = 2ω(1) = 2(log2 n)ω(1/ log n) = nω(1/ log n),

so γ = ω(1/ log n). Therefore, we have that m = o(n�)
if

1
log2

1−cε
1−cδ

+ γ ≤ logn n�

for sufficiently large n, since in that case

m/n� = O
(
n−γ

)
= O

(
2−γ log2 n

)
= O

(
2−ω(1)

)
= o(1).

Solving the above inequality for cε gives

cε ≤ 1− (1− cδ)21/ logn n1−γ�.

Therefore, we may choose ε = Ω(1/ log n) if

1− (1− cδ)21/ logn n1−γ� ≥ Θ(1/ log n).

Equivalently, we may choose ε = Ω(1/ log n) if

21/ logn n1−γ� ≤ 1−Θ(1/ log n)
1− cδ

Since � = n2γ , we have that logn n1−γ� = 1 + γ, and

21/ logn n1−γ� = exp
[

ln 2
logn n1−γ�

]

= exp
[

ln 2
1 + γ

]

≤ exp
[

1
1 + γ

]

≤ 1 +
2

1 + γ
,

46

where we have used the facts that γ > 0 and ex ≤ 1+2x
for x ∈ [0, 1]. Therefore, we may choose ε = Ω(1/ log n)
if

1 +
2

1 + γ
≤ 1−Θ(1/ log n)

1− cδ
,

or, equivalently,

1 + γ ≥ 2(1− cδ)
(

1
cδ −Θ(1/ log n)

)

=
2(1− cδ)

cδ

(
1

1−Θ(1/ log n)

)

=
2(1− cδ)

cδ
(1 + Θ(1/ log n))

=
2(1− cδ)

cδ
+ Θ(1/ log n),

where we have used the Taylor series for 1/(1 + x) (for
|x| < 1). Therefore, we may choose ε = Ω(1/ log n) if

γ ≥ 2− 3cδ

cδ
+ Θ(1/ log n),

which holds by our assumption on logn � = 2γ. �

Proposition 3.1 tells us that distance-sensitive
Bloom filters can be very space efficient. Unfortunately,
for certain reasonable settings of n, ε, and δ, the length
� of the strings may need to be very large in order for
the filter to require less space than the natural encod-
ing of the set, particularly when r > 2 (so c = 1/2).
(And in these cases, one might be willing to sacrifice
very fast query times to reduce the storage requirement
using, for instance, the sketching approach mentioned
in Section 3.) For example, consider the case where the
characters in the alphabet Σ are bytes, so r = 256. Then
if, as before, n = 1000, ε = 0.1, and δ = 0.4, we now
have m′ = 249. Therefore, even if k = 1 (which is al-
most certainly too small to achieve good performance),
m ≤ n� log2 r only if � > 7 × 1010. We are unaware
of any current applications where � can be this large,
although there may be future applications of distance-
sensitive Bloom filters to extremely long strings, such
as DNA analysis. Thus, while distance-sensitive Bloom
filters work reasonably well for binary strings, there is
much room for improvement in dealing with larger al-
phabets.

4 A Simple Experiment

We present experimental results demonstrating the be-
havior of the basic distance-sensitive Bloom filter of Sec-
tion 3 in the special case where r = 2. In our experi-
ments, we populate our data set S with uniform random
binary strings of 65,536 characters, and test whether
we can distinguish strings that are near an element of

S from strings far from every element of S (under the
Hamming metric). In part, this test is chosen because it
represents a worthwhile test case; surely we would hope
that any worthwhile scheme would perform reasonably
on random inputs. In application terms, for the setting
described in Section 1 of a distance-sensitive Bloom fil-
ter taken over a collection of other Bloom filters, this
random experiment roughly corresponds to sets of the
same size with no overlapping elements; similar results
would hold even if small overlaps between sets were al-
lowed.

We consider sets of sizes n = 1000 and n = 10000
with � = 65536. For n = 1000, we take ε = 0.1 and
δ = 0.4, and for n = 10000, we take ε = 0.05 and
δ = 0.4. For each value of n and k = {1, . . . , 25},
we repeat the following experiment 10 times. Generate
50000 independent close queries by randomly selecting
a string in S and flipping an ε-fraction of its bits, and
testing whether the filter returns a false negative. Then
generate 50000 independent far queries by randomly
selecting a string in S and flipping a δ-fraction of its bits,
and testing whether the filter returns a false positive
(here, the implicit assumption is that the query string
is δ-far from all strings in S, not just the one chosen; this
holds with very high probability). We compute observed
false positive and false negative rates by averaging our
results over all queries.

The results are given in Figures 1 and Figure 2,
with a summary in Table 1. In the figures, the x-axis is
given in terms of the number m of bits used, but recall
that m = km′, so it also reflects the number k of hash
functions. The abrupt jumps in the false positive rate
correspond to values of k where the threshold value
t�
increases. At such a point, it naturally becomes much
harder for a false positive to occur, and easier for a false
negative to occur.

As the figures and table indicate, we successfully use
fewer than n� bits and require only a constant number
of bit lookups into the data structure (the array A).
The observed false positive and negative rates are quite
reasonable; in particular, the false negative rate falls
rapidly, which is good as false negatives are often very
damaging for applications.

We emphasize that although the experimental re-
sults appear to give modest size improvements, this is
because we have chosen a small value for the item size
of � bits. For larger values of �, the results would be en-
tirely the same, except that the ratio m/n� would shrink
further.

Before concluding, we point out a few interesting
characteristics of these experiments. First, recall that
these tests roughly correspond to the application de-
scribed in Section 1 where a distance-sensitive Bloom

47

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

0e+0 1e+7 2e+7 3e+7 4e+7 5e+7 6e+7

O
bs

er
ve

d
F

al
se

 P
os

iti
ve

 R
at

e

m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0e+0 1e+7 2e+7 3e+7 4e+7 5e+7 6e+7

O
bs

er
ve

d
F

al
se

 N
eg

at
iv

e
R

at
e

m

Figure 1: The observed false positive and false negative rates for n = 1000, � = 65536, ε = 0.1, and δ = 0.4.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

0e+0 5e+7 1e+8 2e+8 2e+8 2e+8 3e+8 4e+8 4e+8 5e+8

O
bs

er
ve

d
F

al
se

 P
os

iti
ve

 R
at

e

m

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0e+0 5e+7 1e+8 2e+8 2e+8 2e+8 3e+8 4e+8 4e+8 5e+8

O
bs

er
ve

d
F

al
se

 N
eg

at
iv

e
R

at
e

m

Figure 2: The observed false positive and false negative rates for n = 10000, � = 65536, ε = 0.05, and δ = 0.4.

(a) n = 1000, � = 65536, ε = 0.1, and δ = 0.4.

k k�′ fp rate fn rate m/n�

5 105 0.04744 0.124236 0.16
10 210 0.09235 0.015366 0.32
15 315 0.134926 0.001934 0.48
20 420 0.01572 0.002816 0.64
25 525 0.023874 0.000372 0.8

(b) n = 10000, � = 65536, ε = 0.05, and δ = 0.4.

k k�′ fp rate fn rate m/n�

5 120 0.025958 0.019746 0.128
10 240 0.001338 0.00495 0.256
15 360 0.000068 0.00125 0.384
20 480 0.000158 0.000034 0.512
25 600 0.000006 0.000012 0.64

Table 1: The number k�′ of sampled bits, the observed false positive and false negative rates, and the corresponding
storage requirements, for various values of k.

48

filter is formed for a collection of Bloom filters with no
shared elements. In certain instances of this applica-
tion, we might be justified in choosing a very small ε.
For example, if the Bloom filters each represent sets of
n′ = c1n elements and have size c2n

′, and ε = c3/n,
where c1, c2, and c3 are reasonable constants, then a
query Bloom filter is ε-close to the set of Bloom filters
if (roughly speaking) the set underlying the query filter
shares all but a constant number of items with one of the
other sets. While this threshold is certainly low, it may
be suitable for some applications, and for such appli-
cations a properly configured distance-sensitive Bloom
filter is likely to be extremely successful.

On a more general note, these experiments have the
nice property that the set S is uniformly sampled from
{0, 1}�. Thus, it is unlikely that any close query is ε-
close to any element of S other than the one used to gen-
erate the query. Furthermore, for a far query, the events
corresponding to hash collisions between the query and
the elements of S are independent and, since �′ is rea-
sonably sized, each occur with small probability. By
looking back at the proof of Proposition 2.1, it follows
that the bounds in Corollary 3.1 are fairly tight. There-
fore, while those results may be very weak for certain
data sets, it is impossible to substantially improve them
without taking into account specific properties of S.

5 Conclusions and Further Work

We strongly believe that efficient distance-sensitive
Bloom filters will find significant use in many applica-
tions. Our initial work suggests that distance-sensitive
Bloom filters can be constructed with parameters suit-
able in practice, but further improvements appear pos-
sible.

We suggest a number of open questions for further
work:

• Is there a general approach that would allow con-
stant ε, δ > 0, a linear number of bits, a constant
number of hash functions, and constant false posi-
tive/false negative probabilities?

• Are there simple and natural conditions one can
place on a set S for natural metrics that would
yield stronger bounds?

• There are very natural information-theoretic
bounds on the number of bits required for Bloom-
filter-like structures. Are there equivalent bounds
in this setting? (Perhaps one must fix a metric,
such as the relative Hamming metric.)

• Can closeness in edit distance be handled using
data structures of this type?

References

[1] A. Andoni, M. Datar, N. Immorlica, P. Indyk, and
V. Mirrokni. Locality-sensitive hashing using stable
distributions. To appear in Nearest Neighbor Methods
in Learning and Vision: Theory and Practice, MIT
Press.

[2] A. Broder and M. Mitzenmacher. Network Applica-
tions of Bloom Filters: A Survey. Internet Mathemat-
ics, 1(4):485-509, 2004.

[3] N. Jain, M. Dahlin, and R. Tewari. Using Bloom filters
to refine web search results. In Proc. of the Eighth
International Workshop on the Web and Databases
(WebDB2005), 2005.

[4] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proc. of the 20th ACM Symposium
on Computational Geometry, pp. 253-262, 2004.

[5] A. Gionis, P. Indyk, and R. Motwani. Similarity Search
in High Dimensions via Hashing. In Proc. of the 25th
International Conference on Very Large Data Bases,
pp. 518-529, 1999.

[6] O. Goldreich, S. Goldwasser, and D. Ron. Property
testing and its connection to learning and approxima-
tion. JACM, 45(4):653-750, 1998.

[7] P. Indyk. Approximate nearest neighbor under edit dis-
tance via product metrics. In Proc. of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.
646-650, 2004.

[8] U. Manber and S. Wu. An algorithm for approximate
membership checking with applications to password
security. Information Processing Letters, 50(4):191-
197, 1994.

[9] M. Mitzenmacher. Compressed Bloom Filters.
IEEE/ACM Transactions on Networking, 10(5):613-
620, 2002.

[10] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[11] R. Ostrovsky and Y. Rabani. Low distortion embed-
dings for edit distance. In Proc. of the 37th Annual
ACM Symposium on Theory of Computing, 218-224,
2005.

[12] A. Pagh, R. Pagh, and S. Srinivas Rao. An Optimal
Bloom Filter Replacement. In Proc. of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.
823-829, 2005.

[13] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant prop-
erty testing and distance approximation. ECCC Report
No. 10, 2004.

[14] R. Rubinfeld and M. Sudan. Robust characterization
of polynomials with applications to program testing.
SIAM Journal on Computing, 25(2):252-271, 1996.

[15] K. Shanmugasundaram, H. Brunnimann, and N.
Memon. Payload attribution via hierarchical Bloom fil-
ters. In Proc. of the 11th ACM Conference on Com-
puter and Communications Security, pp. 31-41, 2004.

49

[16] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F.
Tchakountio, B. Schwartz, S. Kent, and W. Strayer.
Single-Packet IP Traceback. IEEE/ACM Transactions
on Networking, 10(6):721-734, 2002.

50

