Designing Floating Codes for Expected Performance

Hilary Finucane Zhenming Liu* Michael Mitzenmacher*
School of Engineering and Applied Sciences
Harvard University

Abstract— Floating codes are codes designed to store provide a useful example of wits; once a position is
multiple values in a Write Asymmetric Memory, with punched, it cannot be reset.
applications to flash memory. In this model, a memory |f permanent storage is required, a medium of wits is
consists of a block ofn cells, with each cell in one ofg ¢ jite useful, but if rewriting of information is required,
Sta?es {0,1,...,q—1}. The cells are used to represenk this irreversibility is problematic. Rivest and Shamir
variable values from an ¢-ary alphabet. Cells can move theref ider th i fh it
from lower values to higher values easily, but moving erg ore consiaer e.ques lon 0_ ow many wits are
any cell from a higher value to a lower value requires eguired to allowt rewrites of ak-bit value. By care-
first resetting the entire block to an all 0 state. Reset fully choosing how wits can be used to represent values,
operations are to be avoided; generally a block can only they are able to design schemes that do significantly
experience a large but finite number of resets before better than the rime scheme usingt wits.
wearing out entirely. A code here corresponds to mapping A variety of related models have been considered
from cell states to variable values, and a transition gyer the years; see, for example, [1], [3], [4], [5].
fun_ction .that gives how to rewrite cell states when a 6], [71, [9], [10], [11], [12], [13], [14], [17], [18].
variable is changed. Questions regarding coding schemes of this type have

Previous work has focused on the developing codes that
L) resurfaced in recent years with the introduction of
maximize the worst-case number of variable changes, or

equivalently cell rewrites, that can be experienced before flash memories, Wh'Ch_‘_’Vork under similar prln(:|p.|es
resetting. In this paper, we introduce the problem of max- [12]. A flash memory utilizes floating-gate cells, which
imizing the expected number of variable changes before can be modeled as havirggstates{0,1,2,...,q— 1}.
resetting, given an underlying Markov chain that models Roughly speaking, the states correspond to the number
variable changes. We demonstrate that codes designedof electrons being held by the cell. Adding electrons
for expected performance can differ substantially from to g cell is easy, but removing electrons from a cell is
optimallworst—case codes, and suggest constructions for gifficult. In our model, that means it is easy to move a
some simple cases. -

cell from a lower-numbered state to a higher-numbered

one, but not the other way around. Indeed, cells are

I. INTRODUCTION generally organized into blocks, and in order to lower a

state value within a cell, one must reset an entire block
't%ack to the all O state. Resetting blocks is considered
yery expensive, first because the rewriting time when
gsetting a block is large, but perhaps more importantly
ecause the lifetime of a flash memory generally only
allows a large but essentially fixed number of reset
perations before the memory is no longer usable [2].
Previous work, including recent work on codes for

name, apparently, has not lasted the test of time.) Eagﬁs_h memories, has focus_ed on th? problem of maxi-
wit initially contains a 0 that may subsequently bémzmg'the'numbgr c.)f rewrite operations before a reset
rewritten as a 1, but such a write is irreversible; a pperation is requiredh the worst case. Codes for this

cannot later be changed back to a 0. Paper punch caﬁ%tmg_ were dupbed floating codes [12] V_/orst-cqse
analysis is certainly a natural approach, particularly in

“ Zhenming Liu and Michael Mitzenmacher are SUIC)_settlngs where no resets are possible, and there is a

ported in part by NSF grant CCF-0634923. Contact authof€€d for fixed guarantees on rewrite performance in
m chael m@ecs. harvard. edu. unknown environments. We suggest, however, that in

A long-standing albeit not widely studied subfield o
coding theory involves data storage in a setting whe
the stored information can change state in only limite
ways. The seminal and perhaps canonical examp|
is the write-once memory introduced by Rivest an
Shamir [16]. Motivated primarily by the potential of
digital optical disks, the authors consider the settin8
of write-once bit positions, which they dukits. (The

the setting of flash memories, where the product will beeset; otherwise, the cost is O.
mass-produced, the product lifetime may allow a large The goal of [12] is to find decoding and rewriting
number of reset operations, and there is the potential fionctions that maximize (starting from the all-zero vec-
study and model user behavistatistical performance tor) the number of rewrites before a resetthe worst
guarantees are more appropriate. The idea of averagase. We here consider a different goal. We assume that
case performance of codes of codes in this setting is niiere is a Markov chain with state spaf@1,...,/ —
new; it is explicitly mentioned by Rivest and Shamir ag}¥ describing the behavior of the variable vector. For
an open question [16]. (Also, see different notions athe most part we will follow [12] and assume that in
average-case analysis in [1], [14].) As far as we knovgnly one variable changes at each time step, although
however, our work actually initiates the study of themore general Markov chains and rewriting functions
expected performance of floating codes. can be considered. Given a decoding functidrand
Our primary contribution is a general model of therewriting functionR, the Markov chain on the variable
underlying problem of average-case performance ekctor induces a corresponding Markov chain on the
floating codes. Then, following the approach of [12]cell state vector. Let the equilibrium distribution of this
we consider particular possible implementations fochain be given by, and letpyy be the probability of
specific parameter settings. At this point our workransitioning to state vector when in a state vectot.
appears to raise more questions than it answers, leaviflgen using standard theory, the average long-term cost
a variety of challenging open problems to consider. per variable change is given by

Il. AGENERAL MODEL FOR AVERAGE-CASE A=Y Tipy. (1)
PERFORMANCE OF FLOATING CODES yFx

We begin by reviewing the model for and definitionsAlso, by standard renewal theoryA can be considered
of floating codes given in [12]. The memory storles the long-term average time between reset operations.
variable values from ar-ary alphabet, given by the Our goal is to find function® and R that minimize
variable vectorvy,va, ..., v) with v € {0,1,...,£—1}. this costA.
The memory consists of a block af cells, repre- We emphasize that the above model can obviously
sented by a cell state vectdcy,cy,...,c,) with ¢; € be generalized in many directions, in manners similar
{0,1,...,9— 1}. A cell state vector(cy,Cp,...,Cy) IS to other proposed generalizations of simple write-only
said to beabove a cell state vecto(d;,dy,...,dy) if memories. We may have arbitrary alphabets for
¢ > d; for all i. Abusing notation, we well writ& >y the variables and? for the states, with an arbitrary
if x andy are cell state vectors such thats abovey, stochastic process oA inducing corresponding pro-
andx #y if x is not abovey. (We avoid vector notation cesses on", given the rewriting transition function.
where the meaning is clear.) For a cell state vegtor The rewriting function could allow multiple variables
to change another stayewith y # x, the memory must to change at once, taking the forf : {0,1,...,q—
first be reset. Ify > x, no reset is needed. 1}" x {0,1,...,0 — 1} - {0,1,...,q — 1}", mapping

A floating code is defined by two functions. The dethe current cell state and a new value vector to a new
coding functionD : {0,1,...,9—1}"— {0,1,...,/— cell state. There may be rules that a priori limit the
1}k maps cell state vectors to variable vectors, and tsansitions possible under the functiéh There may
used to decode the memory, transforming its currebie costs associated with all possible transitions (and/or
contents to the current variable values. The rewritall possible state vectors), and more general functions
ing function R : {0,1,...,9—1}" x {1,...,k} x of these costs could be optimized. There may be history
{0,1,...,¢/—-1} — {0,1,...,g—1}" gives information associated with either the variable state or the cell state,
on how to transition when a single variable valuavhich could be incorporated into the decoding and
changes; given a current cell state vector, a variabtewriting functions. Many other generalizations can be
value to be changed, and the value that variable imagined.
changed to, the functioR gives a new corresponding Indeed, we see the full generality of this coding prob-
cell state vector. The restriction dhis that the current lem as having potential applications beyond coding the-
cell state vector must always decode \ato the ory. Notice that, given the decoding functién we can
current variable vector. Here when a rewrite causesvéew the rewriting functiorR as a policy for a Markov
transition fromx to y with y x, the cost is 1 due to a decision process on the cell state vector, where the

00 01 11 10
10 00 01 11
11 10 00 01
01 11 10 00

possible actions at a state correspond to the collection
of transitions to be made for each possible state change.
Hence, underlying this problem is the question of how
to design an underlying Markov decision process in
the setting where we have an gnvwonment (the vanab}zﬁ:‘g. 1. The code, or the 2DGC, for=2, (=2, n—2, q— 4.
!orocess) and we W'S_h "[0 minimize some function on thg,e upper left corner represents the decoded value vector for cell
induced Markov decision process (the average cost p@ro); the lower right corner represents the decoded value vector
transition of the cell state process), where we have tt@ cell (3,3). Transitions are greedy, to the closest available cell
ability to design the Markov decision process accordingfc°ding to the appropriate value.
to certain rules (in this case, the rules are that decoding
is always successful). We are not aware of this specific :
. . . moves to the closest available cell (generally one space
problem in previous literature, and although we have ng i
. down or to theright) that decodes to the proper new
complexity results, we conjecture that many variations)) i
. value, and a reset occurs only if no move is possible
of this more general problem are at least NP-hard. (For . R
in the down and rightward direction. Note that on a
a related NP-hardness result, see [5].) : o
reset, one starts the next cycle in one of four positions:
ll. THE CASEOFk=2,/=2 (0,0),(0,1),(1,0) or (2,0).
A Thecaseof k=2 =2 n=2 For larger values o, we simply cycle through the

o Gray code values repeatedly. For example, the code
We begin with the case wheke=2, (=2, andn=2. \yhenq =8 is given in (Figure 2).

That is, our value vector consists of two bits, and our

states consist of two values §0,...,q— 1}. Optimal 00 01 11 10 00 01 11 10
codes under worst case analysis for these codes were 10 00 01 11 10 00 01 11
described in [12]; they guaranteg — 1)+ %] ~ 11 10 00 01 11 10 00 O1
%(q— 1) transitions before a reset. Here we consider 01 11 10 00 01 11 10 OO0
asymptotically optimal codes (ag grows large) for 00 01 11 10 00 O1 11 10
the average case, under the simple but natural model 10 00 01 11 10 00 O1 11
where the first of the two value bits is the next to flip 11 10 00 01 11 10 00 O1
with fixed probability p and the second is the next to 01 11 10 00 01 11 10 OO0
flip with probability 1— p throughout the process. By

asymptotically optimal, we mean that wh&n= ¢ = 2 Fig. 2. Code folk=2,¢/=2,n=2,q=8.

andn is fixed, the expected number of moves before

a reset grows liken(q—1) —o(q). (Indeed, we show We call these 2-dimensional Gray Codes, or a 2DGC
this is the number of moves with high probability, withfor short. As we shall see, the 2DGC is not optimal, but
respect to the parameter) While it is perhaps not it is asymptotically optimal, simultaneously for every
surprising that one could find an asymptotically optimavalue of p, in the following sense.

code for a givenp, we show that in fact there exist Theorem 1. For any p, the number of transitions
codes that are simultaneously asymptotically optimddefore a reset for the 2DGC is(@— 1) — o(q) with

for everyp, 0< p< 1. high probability (ing).

Our code systems are based Gmnay codes [8]. Proof: Let us say that a cel(x,y) is even if
While we will give codes for all values af, we begin x+V is even and odd ik +y is odd. At any point
with the important case af= 2. We represent our code away from the right boundary, from an even cell one
pictorially, for the case of = 4, as follows (Figure 1). move downs (respectively right) when the first bit

The upper left hand corner represents the decodéespectively second bit) flips, and vice versa for the
value for the cell statg(0,0); it is written as 00, odd cells. Consider the firstqg2- 2g%/2 steps, which
representing that both value bits are 0. More generallgye necessarily split as evenly as possible between the
the value in thath row andjth column (counting from even and odd cells; for convenience we say there are
0) represents the value vector undefor the cell state q— g2/ moves each at even and odd cells, as rounding
vector (i, j). Hence, for example, the decoded valuand differences by 1 are absorbed in ttg) term. For
for cell state(2,1) is 10 (first bit 1, second bit 0). the moves in even cells, the expected number of down
The rewriting function is implicit; from each cell, one moves isp(q— g%2), and similarly, for odd cells, the

expected number of down moves (i5— p)(q—g?3). with priority toward movingup in the third dimension.
As each move is an independent trial (as long as neith€hat is, from cell stat€x,y,z), when possible our move
boundary is hit), it follows from standard Chernoffincreases the value by 1. (Noteup anddown are not

bounds [15][Theorem 4.4] that the number of dowrpposites here.)

moves (and similarly right moves) is at mapt 3 with

high probability (larger than %+ 1/poly(q)), and hence 00 01 11 10
regardless of the starting position after the last reset 10 00 01 11
with high probability the number of transitions before 11 10 00 01
a reset is 8—0(q). [| 01 11 10 00
It should be noted that our assumption regarding the
underlying model is particularly important. If the two 10 00 01 11
bits alternate flipping, then the number of transitions 11 10 00 01
before a reset will be much less thag, 2s a boundary 01 11 10 00
will be reached in onlyg steps. 00 01 11 10
B. Thecaseof k=2, /=2, n>2 00 01 11 10

10 00 01 11
11 10 00 01
01 11 10 00

To obtain similar results when > 2, we first note
that for even values of, we can simply successively
glue together ther = 2 result multiple times. That is,
one first moves for @— 1) —o(q) transitions in the first
two dimensions, then for(8— 1) —o(q) transitions in
the next two dimensions, and so on, to obtain a total
of n(g— 1) —o(nq) transitions with high probability. 01 11 10 00
(With care, one could obviously tighten the lower order 00 01 11 10
term; we do not pursue this here.) It similarly sufflcels_ig_ 3. The code, or the 3DGC, flr—2, (= 2.n—3,q— 4. The
to demonstrate a code for the case- 3 that allows upper left corner in the first square represents the decoded value
3(g—1)+o(q) moves with high probability to obtain a vector for cell (0,0,0); the lower right corer in the last square
similar result for oddn. To compare with worst-case represents the depodgd valge vectgr for (QGIB,.S). Transitions
results, we note that [1%] shows optimal codes th&f® 9reedy. breaking ties by increasing thepordinate.

G .
Svrasel;rﬁ(igi)(zq 1)+ [%7"] transitions before a reset Theorem 2: For any p, the qumber of transit_ions

We again utilize a construction based on Gray codeg?fore a re?‘?t fqr the 3DGC is(@-1) —o(q) with
although some care must be taken to handle the thipégh probability (ing). . _
dimension properly. We again represent the code pic- Proof:_Fora_lceII(x,y,z), We say that it IS-even if
torially, with the value in theith row and jth column €Zcoordinate is even and that itxg-even if the sum
from thekth square representing the value vector und +Y IS even, and similarly foe-odd andxy—_o_dd. With i
D for the cell state vectofi,j,k). An example for the given code, the moves can be classmed according
q=4 is given in Figure 3, and fog > 4 the code to four cell types (away from the boundaries):

is again obtained by cycling through the Gray code ¢ Xy-even andz-even: move up with probabilityp
values repeatedly in each two-dimensional square. Note @nd right with probability 1 p;

that the cell state vectors for a givérand j are the ¢ Xy-even and-odd: move up with probability and
same for all even values df, and the same for all down with probability 1-p;

odd values ok. As an example, the decoded value for ¢ Xy-odd andz-even: move up with probability % p
cell state(2,1,1) is 11. This gives us a 3-dimensional ~ and right with probabilityp;

Gray Codes (3DGC). For the 3DGC, there is some * Xy-odd andz-odd: move up with probability + p
ambiguity, as a single transition of a value can lead and down with probabilityp.

to multiple cells of distance 1 from the current cell in We first note that, away from the top boundary
the 3DGC. We resolve this ambiguity by having ouig— 1, the probability that we fail to move up in at least
rewriting function, from each cell, move to the closesbne of the next two moves it at moptl— p) < 1/4.
available cell that decodes to the proper new valud, follows easily that, as long as we don't hit one of

10 00 01 11
11 10 00 01

the boundaries in the or y dimension, the number each chain, we found it useful to develop a simulator

of up moves after any reset over the nexy3 1) — in the process of our work.) We varp across a
39%/3 transitions will beq— 1 with high probability for range of values, and present the corresponding costs
sufficiently largeq. (to four decimal places). We also similarly consider the

We now want to show that the number of down an@-dimensional Gray Code (3DGC) and the worst-case
right moves until we reach= q— 1 are essentially split optimal code for three dimensions (3DWC).
equally. This ensures we do not hit another boundary A simple but useful improvement on the 2DGC,
beforez=g— 1, and since when we reagh-q—1 we especially whenq is small, is to change the lower-
will be in the same setting as the 2DGC, it also impliesight corner to 11 from 00, as in Figure 4. This change
that 23— o(q) down and right moves are performed withimproves the average cost because if the process is at 00
high probability. on the lower-right corner, the next transition will cause

There is a minor complication in that the numbemr reset to the upper leftmost 01 or 10 position. However,
of moves spent on a level= a before moving up to the process would transition to the same position when
z=a+ 1 depends on whether we start at that level ostarting from the 00 in the upper left corner. Hence,
an xy-even orxy-odd cell, which in turn depends onwhen the process reaches the cell 00 in the lower
the value ofa and the starting point after the last resettight hand corner, it saves nothing over resetting to the
However, the probability of starting at aty-even cell upper left corner, since the next move will lead to the
after moving up quickly converges to it equilibriumsame position. The cost is therefore reduced by instead
value (which isp) after a small number of levels, andusing the cell to hold value pair 11, which can usefully
so we may ignore this complication, as the differencprevent a reset for one further move on some occasions.
is absorbed into the(q) term. Given that we startatan As can be seen from Table |, the 2DGC almost
xy-even cell, and are away from any of the boundarieg)ways performs better than the worst-case code, the
the probability that we stay at the same lexdior k exceptions being some cases where- 4 . This is
moves (always moving right when starting az-aven perhaps not surprising, in that the worst-case code was
cell, and down for a-odd cell) is the same for every designed with a different consideration in mind. Our
value of z, and is further dominated by a geometrignain point, however, it that it is interesting that a single
distribution. The same holds fog-odd cells. Standard code outperforms this code over the entire range of
applications of Chernoff bounds therefore again give. The 2DGG} variation performs even slightly better
with high probability the deviation between down andhan the 2DGC, although the gap quickly vanishes with
right moves over the first(§—1) — 3g%3 moves iso(q) @, as one would expect. The additive gap between
with high probability, and the result follows. m the worst-case code and both the 2DGC and 2BGC

We emphasize that for any specific valuegpiTheo- also declines witty, but the multiplicative gap actually
rem 2 does not state that the 3DGC is the optimal codappears to increase. That is, assuming that the lifetime
Indeed, Gray codes can be layered in different ways 6 dominated by the time between reset operations and
obtain possible codes, and the parameters in any givéirat our model is suitable, the percentage increase in
circumstance might determine which performs best. lifetime by using 2DGC or 2DGE as the underlying

code is increasing witla.

C. Calculations and comparisons
00 01 11 10
10 00 01 11
11 10 00 01
01 11 10 11

We now present some results based on calculating
the performance of our codes in Table I. We com-
pare three different codes, in the setting whére
¢ =n=2. First, we consider the 2-dimensional Gray
Code (2DGC) previously described. We also ConSId%rig. 4. The 2DGG-. Changing the lower right corner gives a
a modified version, 2DGE, described below. Finally, slight improvement.
we consider the worst-case optimal code (2DWC),
from [12]. The resulting average long-term costs, cor- Similar results are obtained with the 3DGC, also
responding to equation (1), are obtained by runningresented in Table I. Again, we see significant im-
the appropriate Markov chain for 10WD0,000 steps. provements over the worst case code across the entire
(While we could have instead determined the valugmnge of p. Hence, while our results for these codes
by explicitly computing the equilibrium distribution for are asymptotic, and they may in fact not be optimal,

TABLE |
AVERAGE LONG-TERM COST(RESET$MOVES) OF VARIOUS FLOATING CODES ASp VARIES.

Scheme| 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2DWC (@=4) || 0.2088 | 0.2104 | 0.2134| 0.2175| 0.2222| 0.2273| 0.2324| 0.2379| 0.2438
2DGC (@=4) || 0.2119| 0.2146| 0.2165| 0.2176| 0.2180| 0.2175| 0.2164 | 0.2146 | 0.2120
2DGC+ (q=4) || 0.1763| 0.1831| 0.1874| 0.1897| 0.1905| 0.1898 | 0.1874 | 0.1831| 0.1763
2DWC (@=28) || 0.0919 | 0.0926 | 0.0935| 0.0944 | 0.0952| 0.0962| 0.0971| 0.0980| 0.1000
2DGC @=38) || 0.0797| 0.0811| 0.0820| 0.0825| 0.0827 | 0.0826 | 0.0820 | 0.0811 | 0.0797
2DGC+ (q=8) || 0.0753| 0.0771| 0.0780| 0.0785| 0.0787| 0.0786| 0.0780| 0.0771| 0.0753
2DWC (@=12) || 0.0592| 0.0595| 0.0599 | 0.0602 | 0.0606 | 0.0610| 0.0613| 0.0617 | 0.0625
2DGC @=12) || 0.0491 | 0.0499| 0.0504 | 0.0506 | 0.0507 | 0.0506 | 0.0504 | 0.0499 | 0.0491
2DGC+ (q=12) || 0.0476 | 0.0484 | 0.0489 | 0.0492| 0.0492| 0.0491| 0.0489| 0.0484| 0.0476
3DWC (Q=4) || 0.1460| 0.1466 | 0.1473 | 0.1480| 0.1481| 0.1479| 0.1474| 0.1466 | 0.1460
3DGC @=4) || 0.1287 | 0.1310| 0.1326| 0.1334| 0.1333| 0.1322| 0.1300| 0.1273 | 0.1243
3DWC (Q=38) || 0.0596 | 0.0601| 0.0607 | 0.0611| 0.0615| 0.0619| 0.0622| 0.0625 | 0.0629
3DGC @=38) || 0.0514| 0.0521| 0.0526 | 0.0528 | 0.0528 | 0.0525| 0.0521| 0.0514 | 0.0505
3DWC (@=12) || 0.0374| 0.0378| 0.0382| 0.0385| 0.0388 | 0.0391| 0.0394 | 0.0397 | 0.0400
3DGC @=12) || 0.0321 | 0.0324 | 0.0327 | 0.0328| 0.0328 | 0.0327| 0.0325| 0.0322 | 0.0317

the principle behind their design yields demonstrablynore detail below) is the standard move to the nearest
better performance over worst-case codes given oswitable cell. Notice that now, by necessity, we can
assumptions. not arrange to move only to an adjacent cell on a
Finally, while this feature may not matter dramatitransition; with our Gray code design, some transitions
cally in practice, we believe the simplicity of 2DGC require moving three cells down or to the right. For

and 3DGC are clear advantages. convenience, we refer to this code as 2DGC-3. By
classifying these transitions, we obtain the following
IV. THE CASEOFk=3,/=2,n=2 result:

Theorem 3: The number of transitions before a reset
000 100 101 001 011 111 110 010 forthe 2DGC-3is 2q—1)/(2— p1) —o(q) with high
010 000 100 101 001 011 111 110 probability (ing).
110 010 000 100 101 001 O11 111 Proof: Upon examination, away from the bound-
111 110 010 000 100 101 001 011 aries, there are four types of cell states that for conve-
011 111 110 010 000 100 101 001 nience we label aw,X,Y, andZ.

001 011 111 110 010 000 100 101 « W: move right 1 when first bit flips, down 1 when

101 001 011 111 110 010 000 100 second bit flips, right 3 when third bit flips;

100 101 001 011 111 110 010 000 « X: move down 1 when first bit flips, down 3 when
second bit flips, right 1 when third bit flips;

« Y: move right 1 when first bit flips, right 3 when
second bit flips, down 1 when third bit flips;

While more general results for expected performance ® Z: move down 1 when first bit flips, right 1 when
of floating codes rate to be more challenging, the use S&cond bit flips, down 3 when third bit flips.
of Gray codes may be useful beyond the cases we halBe 2DGC-3 code consists of repeated blocks of the
considered thus far. We here show how to utilize Grafprm given in Figure 6.
codes to obtain a code that seems to perform well for
the case otk =3, / =2, n= 2. Our model for the
three bits of data is that at each time step the first
is the next to change with probability;, the second
with probability p2, and the third with probabilityps.
We again consider the_asympto_tlc behaV.IOIq.EQIOWS Fig. 6. An alternative view of the the basic building block for the
large, where our decoding function fQe=8 is given by >pgc.3.
Figure 5 and for largeq is obtained by cycling in each
dimension. Also, the transition function (described in ConsideMW, X,Y, andZ as states of a Markov chain.

Fig. 5. The basic building block for the 2DGC-3, wheke- 3
andl =2

X < NS
<N = X
NS X <
S X <N

Then the Markov process on how value bits changeombining simplicity with strong performance. Our
induces the following Markov chain on these fourinitial work suggests that designing floating codes for

states:

o W: moves toX with probability p;, moves toZ
with probability (1 — py);

o X: moves toW with probability p;, moves toY
with probability (1 — p1);

« Y: moves toZ with probability p;, moves toX
with probability (1— p1);

o Z: moves toY with probability p;, moves tow
with probability (1— p1).

expected performance is a potentially feasible approach
that could improve practical performance.
We conclude with a large number of open questions.

« Are there versions of the code optimization prob-
lem we have described that are NP-hard or harder?

« Can one find efficient approaches to find opti-
mal floating codes for expected performance? Or
approaches that are at least efficient for small
parameters?

A straightforward analysis gives that, for any constant « Our Gray code constructions are vulnerable to

c, over the firstc(q— 1) — g?/® transitions after a

patterned sequences of bit changes. Can we mod-

reset, regardless of the initial starting point, with high ify our codes to avoid this problem with little

probabilityc(q—1)/2+0(g%'3) of the steps are spent in
each of the state&/, X,Y andZ as long as no boundary

additional cost?
« Can we find expressions for lower bounds on the

is reached. Following the same reasoning as in Theo- COSst as a function dk,/, n, and the Markov chain
rem 1, the expected number of total spaces moved down ©on the value variables? Can we find specific lower

or to the right in the firstc(q— 1) — g% transitions
is ¢(2—p1)(g—1)/2—o0(q) with high probability (in
g). Choosingc = 2/(2— p1), we obtain that we avoid
the boundary and a reset fofc2-1)/(2— p1) — 0(Q)
transitions with high probability.]

bounds for the Markov chain where thih bit is
the next to flip with probabilityp;?

« Under what circumstances is there wasted space,
in the sense that there are cell state vectors that are
never reached in the optimal solution? Are there

Similar analyses can be performed for larger values ~ Other possible utilizations for such cell states?
of k; however, we do not have a proof that such codes ® What gains are possible considering small families

are asymptotically optimal fok > 2, as we do not at
this point have an upper bound.

of codes, instead of single codes, where one of the
codes from the family can be chosen each time a

As with the standard 2DGC, one can possibly im- reset OCC_UFS? _
prove the performance slightly in practice by changing Can we find constructions for Iarger values of the
values along the boundary. For example, changing the parameters,/, andn?

lower right corner from 000 to 110 will give slightly
better performance.

« What results can we obtained for expected per-
formance in similar settings using error-correction

An interesting consideration brought on by this result ~ [11] or buffer coding [3].

is the idea that we could want multiple codes; here, we

REFERENCES

could have three similar but distinct codes, with the

ith code taking 29— 1)/(2— pi) — o(q) transitions with

high probability. We could then dynamically choose the 2

[1] R. Ahlswede and Z. Zhang, “Coding for write-efficient mem-
ory,” Information and Computation, pp. 80-97, 1989.
R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti,

code based on recent behavior, so that if the relative " «ntroduction to flash memory.Proceedings of the IEEE,
frequency of each bit flipping changes, our code could, 91(4):489-502, 2003.

after a reset, conceivably change with it.

V. CONCLUSIONS

[3] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding for
asymmetric multi-level memory,” ifProc. |EEE International
Symposium on Information Theory, pp. 1186-1190, 2007.

[4] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes

We have argued for the study of average-case per- for multi-level flash memories: correcting asymmetric limited-

formance of floating codes, suggesting a general model
and refining it in order to obtain some specific initial 5

magnitude errros,” ifProc. |EEE International Symposium on
Information Theory, pp. 1176-1180, 2007.
A. Fiat and A. Shamir, “Generalized 'write-once’ memories,”

results. We have found simple, asymptotically optimal = |EEE Transactions on Information Theory, vol. 1T-30, pp.
codes for storing two bit values under the model that 470-480, 1984.

the first bit is the next to flip with probabilitp. We

[6] F. Fu and A. J. Han Vinck, “On the capacity of general-
ized write-once memory with state transitions described by

have also found that Gray codes provide a potentially an arbitrary directed acyclic graphiEEE Transactions on
useful building block in the design of such codes, Information Theory, vol. 45, no. 1, pp. 308-313, 1999.

(7]

(8]
9]

[10]

[11]

[12]

[13]

F. Fu and R. W. Yeung, “On the capacity and error-correcting
codes of write-efficient memories/EEE Transactions on
Information Theory, vol. 46, no. 7, pp. 2299-2314, 2000.

F. Gray. “Pulse code communications,” U.S. Patent 263205814]
March 1953.

C. Heegard, “On the capacity of permanent memotigEE
Transactions on Information Theory, vol. 1T-31, pp. 34-42,
1985. [15]
C. Heegard and A. El Gamal, “On the capacity of computer
memory with defects,”IEEE Transactions on Information
Theory, vol. IT-29, pp. 731-739, 1983.

A. Jiang, “On the generalization of error-correcting WOM
codes,” inProc. |IEEE International Symposium on Informa-
tion Theory, pp. 1391-1395, 2007. [17]
A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for
joint information storage in write asymmetric memories,” in
Proc. IEEE International Symposium on Information Theory,

pp. 1166-1170, 2007.

A. Jiang and J. Bruck, “Joint coding for flash memory stor-

[16]

[18]

age,” Technical Report (CaltechParadise, ETR087), 2008. To
appear irProc. |EEE International Symposium on Information
Theory, 2008.

A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank
modulation for flash memories,” Technical Report (Caltech-
Paradise, ETR086), 2008. To appearFroc. |IEEE Interna-
tional Symposium on Information Theory, 2008.

M. Mitzenmacher and E. UpfaRrobability and Computing:
Randomized Algorithms and Probabilistic Analysis, Cam-
bridge University Press, Cambridge, UK, 2005.

R. L. Rivest and A. Shamir, “How to reuse a 'write-once”
memory,” Information and Control, vol. 55, pp. 227-231,
1984.

G. Simonyi, “On write-unidirectional memory codesEEE
Transactions on Information Theory, vol. 35, no.3, pp. 663-
669, 1989.

J. K. Wolf, A.D. Wyner, J. Ziv, and J. Korner, “Coding for
a write-once memory,”AT& T Bell Laboratories Technical
Journal, vol. 63, no. 6, pp. 1089-1112, 1984.

