
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

New Heuristic and Interactive Approaches
to 2D Rectangular Strip Packing

Neal Lesh, Joe Marks, Adam McMahon, Michael Mitzenmacher

TR2003-18 July 2003

Abstract

In this paper, we consider the two-dimensional rectangular strip packing problem.
This problem appears unamenable to standard local search techniques, such as sim-
ulated annealing or genetic algorithms. A standard simple heuristic, Bottom-Left-
Decreasing (BLD), has been shown to handily beat these more sophisticated search
techniques.

We introduce and demonstrate the effectiveness of BLD*, a stochastic search vari-
ation of BLD. While BLD places the rectangles in decreasing order of height, width,
area, and perimeter, BLD* successively tries random orderings, chosen from a dis-
tribution determined by their Kendall-tau distance from one of these fixed orderings.
Our experiments on benchmark and randomly generated problems show that BLD*
produces significantly better packings than BLD after only 1 minute of computation.

Furthermore, we observe that people seem able to reason about packing problems
extremely well. We incorporate our new algorithms in an interactive system that com-
bines the advantages of computer speed and human reasoning. Using the interactive
system, we are able to quickly produce significantly better solutions than previous
methods on benchmark problems.

To appear in IJCAI workshop on Stochastic Search Algorithms, 2003

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such
whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research
Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions
of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment
of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2003
201 Broadway, Cambridge, Massachusetts 02139



Submitted April 2003



New Heuristic and Interactive Approaches
to 2D Rectangular Strip Packing

N. Lesh1, J. Marks1, A. McMahon2, M. Mitzenmacher2,
1 Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA, 02139

lesh@merl.com, marks@merl.com
2 University of Miami, Florida.∗ adam@math.miami.edu

3 Harvard University, Computer Science Department
michaelm@eecs.harvard.edu †

Abstract

In this paper, we consider the two-dimensional rectangular
strip packing problem. This problem appears unamenable to
standard local search techniques, such as simulated annealing
or genetic algorithms. A standard simple heuristic, Bottom-
Left-Decreasing (BLD), has been shown to handily beat these
more sophisticated search techniques.
In this paper, we introduce and demonstrate the effectiveness
of BLD*, a stochastic search variation of BLD. While BLD
places the rectangles in decreasing order of height, width,
area, and perimeter, BLD* successively tries random order-
ings, chosen from a distribution determined by their Kendall-
tau distance from one of these fixed orderings. Our experi-
ments on benchmark and randomly generated problems show
that BLD* produces significantly better packings than BLD
after only 1 minute of computation.
Furthermore, we observe that people seem able to reason
about packing problems extremely well. We incorporate our
new algorithms in an interactive system that combines the
advantages of computer speed and human reasoning. Using
the interactive system, we are able to quickly produce signif-
icantly better solutions than previous methods on benchmark
problems.

1 Introduction
Packing problems involve constructing an arrangement of
items that minimizes the total space required by the arrange-
ment. In this paper, we specifically consider the two-
dimensional (2D) rectangular strip packing problem. The
input is a list of n rectangles with their dimensions and a
target width W . The goal is to pack the rectangles with-
out overlap into a single rectangle of width W and mini-
mum height H . We further restrict ourselves to the orthog-
onal variation, where rectangles must be placed parallel to
the horizontal and vertical axes. We consider two varia-
tions: fixed orientation in which the rectangles can cannot
be rotated, and variable orientation in which they can be
rotated by 90 degrees. Further, for all our test cases, all
dimensions are integers. Like most packing problems, 2D
rectangular strip packing (even with these restrictions) is
NP-hard.

∗This work done while visiting Mitsubishi Electric Research
Laboratories.

†Supported in part by NSF CAREER Grant CCR-9983832 and
an Alfred P. Sloan Research Fellowship. This work was done while
visiting Mitsubishi Electric Research Laboratories.

A common method for packing rectangles is to take an
ordered list of rectangles and greedily place them one by
one. Perhaps the best studied and most effective such heuris-
tic for the fixed orientation variation is the Bottom-Left (BL)
heuristic, where rectangles are sequentially placed first as
close to the bottom and then as far to the left as they can
fit. For some problems, BL cannot find the optimal packings
[2, 4], nor does it perform well in practice when applied to
random orderings. However, a very successful approach is
to apply BL to the rectangles ordered by decreasing height,
width, perimeter, and area and return the best of the four
packings that result [9]. We refer to this scheme as Bottom-
Left-Decreasing (BLD).

A natural alternative approach would be to find good
orderings of the rectangles for BL or other similar heuristics,
using standard search techniques such as simulated anneal-
ing, genetic algorithms, or tabu search. Despite significant
efforts in this area, the search space has not proven amenable
to such search techniques; for more details see the thesis of
Hopper [9].

In this paper, we present a variation of the BLD heuris-
tic called BLD* that considers successive random pertur-
bations of the original four decreasing orderings. We also
present an apparently novel generalization of BL, and conse-
quently of BLD and BLD*, for the variable orientation case.
Our experiments on both benchmark and randomly gener-
ated problems show that BLD* substantially outperforms
BLD as well as applying BL to randomly chosen order-
ings. For example, for the benchmarks taken from Hopper
[9] in the case of fixed orientation, BLD* reduces the pack-
ing height from an average of 9.4% over optimal by BLD to
about 5.24% over optimal after just one minute. We note that
improvements of even 1% can be very valuable for industrial
applications of this problem, such as glass and steel cutting.

This work was done as part of Human-Guided Search
(HuGS) project, an ongoing effort to develop interactive
optimization systems. The most successful results have been
obtained by allowing users to guide stochastic search algo-
rithms, in particular tabu search [13]. Determining how peo-
ple can effectively interact with powerful stochastic search
algorithms is important because it leverages people’s abili-
ties in areas in which they currently outperform computers,
such as visual perception and strategic assessment. Further-
more, involving people in the process of optimization can
help them understand and trust the produced solutions, as



well as modify them on the fly if the need arises.
For the 2D packing problem, we explored people’s ability

to guide our BLD* heuristic. We found that people can rea-
son about this problem extremely well. People can identify
particularly well-packed subregions of a given packing and
then focus a search algorithm on improving the other parts.
People can also devise multi-step repairs to a packing prob-
lem to reduce unused space, often producing packings that
could not be found by the BL heuristic for any ordering of
rectangles. Our experiments on large benchmarks show that
interactive use of BLD* can produce solutions 1% closer to
optimal in about 15 to 25 minutes than BLD* produces on
its own in 2 hours. Thus, 2D packing seems to be a problem
for which people and computers can produce better results
together than either can alone.

2 Background
Packing problems in general are important in manufacturing
settings; for example, one might need n specific rectangular
pieces of glass to put together a certain piece of furniture,
and the goal is to cut those pieces from the minimum height
fixed-width piece of glass. The more general version of the
problem allows for irregular shapes, which is required for
certain manufacturing problems such as clothing production.
However, the rectangular case has many industrial applica-
tions [9].

The 2D rectangular strip packing problem has been the
subject of a great deal of research, both by the theory com-
munity and the operations-research community [6, 8]. One
focus has been on approximation algorithms. The Bottom-
Left heuristic has been shown to be a 3-approximation
when the the rectangles are sorted by decreasing width (but
the heuristic is not competitive when sorted by decreasing
height) [2]. Other early results include algorithms that give
an asymptotic 5/4-approximation [3] and an absolute 5/2-
approximation [19]. Recently, Kenyon and Remilia have
developed a fully polynomial approximation scheme [12].

Another focus has been on heuristics that lead to good
solutions in practice. There are two main lines of research in
this area. One line considers simple heuristics such as BLD.
Another line focuses on local search methods that take sub-
stantially more time but have the potential for better solu-
tions: genetic algorithms, tabu search, hill-climbing, and
simulated annealing. The recent thesis of Hopper provides
substantial detail of the work in this area [9, 10].

The fixed orientation problem has received much more
attention than the variable orientation problem, although
some genetic algorithm approaches have allowed reorienta-
tion as one of the mutation operations (e.g., [11, 7]). We are
unaware of any previous work on adapting the BL algorithm
for the variable orientation (as we describe below).

2.1 The Bottom-Left Heuristic
The Bottom-Left (BL) heuristic, introduced in [2], is perhaps
the most widely used heuristic for placing rectangles. We
think of the points in the strip to be packed as being ordered
lexicographically, so that point A lies before point B if A
is below B or, if A and B have the same height and A is
to the left of B. Given a permutation of the rectangles, the
Bottom-Left heuristic places the rectangles one by one, with

the lower left corner of each being placed at the first point in
the lexicographic ordering where it will fit. There are natu-
ral worst-case O(n3) algorithms for the problem; Chazelle
devised an algorithm that requires O(n2) time and O(n)
space in the worst case [5]. In practice the algorithm runs
much more quickly, since a rectangle can usually be placed
in one of the first open spots available. When all rectan-
gle dimensions are integers, this can be efficiently exploited.
Hopper discusses efficient implementations of this heuristic
in her thesis work [9].

Perhaps the most natural permutation to choose for the
Bottom-Left heuristic is to order the rectangles by decreas-
ing height. This ensures that at the end of the process rectan-
gles of small height, which therefore affect the upper bound-
ary less, are being placed. It has long been known that this
heuristic performs very well in practice [6]. It is also natural
to try sorting by decreasing width, area, and perimeter, and
take the best of the four solutions; while usually decreas-
ing height is best, in some instances these other heuristics
perform better. We refer to this as BLD.

2.2 Benchmarks

In this paper, we evaluate our algorithm and interactive sys-
tem on both a set of structured benchmarks with known
optimal packings and on randomly generated test instances
without known optimal packings. The former is a set of
benchmarks recently developed by Hopper. All instances in
this benchmark have perfect packings of dimension 200 by
200. The instances are derived by recursively splitting the
initial large rectangle randomly into smaller rectangles; for
more details, see [9]. This benchmark set contains problems
with size ranging from 17 to 197 rectangles. We use the
non-guillotinable instances from this set, collections N1 (17
rectangles) through N7 (197 rectangles), each containing 5
problem instances.

The strengths of this benchmark are that a wide range of
algorithms have been tested against it, providing meaning-
ful comparisons; problem sizes vary from the small to the
very large; and the optimal solution is known by construc-
tion. Furthermore, we were unable to find any other sub-
stantial set of benchmarks in the literature. The benchmark
problems, however, are highly structured, and because all
instances have perfect packings, they yield limited insight
on the performance of algorithms when perfect packings are
not available. We note that we have developed an exhaustive
branch-and-bound algorithm which can quickly solve the
N1-N3 problem instances [15]; therefore we tend to focus
on the N4-N7 collections to evaluate our heuristic methods.

We also generated eight classes of random test instances
that vary in size, skew, and target width of the rectangles
(two variations for each). For all cases, the dimensions of the
rectangles varied from 1 to 50. Each test instance consisted
of either 50 or 100 rectangles. We compute the rectangles
in one of two ways. Our first method is to randomly choose
each dimension uniformly from 1 to 50. Our second method
skews the rectangles by choosing the width x uniformly at
random from 1 to 50. The length is determined by choosing
y uniformly at random from 1 to 50 and fixing the length to
be either y or 50− y, whichever is further from x. We refer
to the sum of the area of all the rectangle as the total area



of the problem instance. We compute the target width given
the target ratio of a rectangle that can hold the total area: the
target width equals

⌈

√

total area
ratio

⌉

.

We generated instances with ratio 1 and 2. For each class,
we randomly generated 10 problem instances.

Since we do not know the optimal answer for the ran-
domly generated benchmarks, we evaluate a packing with a
given height in terms of its percentage over ideal, where the
ideal is the nearest integer rounding up from the total area
divided by the target width.

3 Orienting rectangles
We modified the BL and BLD heuristics for the variable ori-
entation problem.

Our variation of BL considers both orientations when
placing each rectangle. For each orientation, it determines
the first point in the bottom-left lexicographic ordering
where the rectangle will fit. We experimented with three
orientation-decision methods: compare where the bottom-
left corner of the rectangle is positioned in each orientation,
compare the center of the rectangle, or compare the top-right
corner of the rectangle. In each case, we choose the orien-
tation that places the relevant point at the position that is
earlier in the bottom-left lexicographic ordering. In the case
of ties (which turn out to be very rare), we choose randomly
between the two orientations.

Because the rectangles can be reoriented, it does not make
sense to order them by decreasing width or height. Instead,
we order the rectangles by either their minimum or maxi-
mum dimension.

We ran experiments to evaluate the possible combinations
of orientation-decision methods and orderings of the rectan-
gles on the 20 instances in the N4 to N7 collections. If more
than one ordering is used, then we take the best packing pro-
duced. Table 1 shows the average percent over optimal from
the various combinations. The results indicate that the most
effective orientation-decision method is to chose the orien-
tation that places the top-right corner as early as possible in
the lexicographic ordering. The most effective ordering is to
sort the rectangles by their minimum dimension.

These results initially seemed counterintuitive. Our cur-
rent understanding of why sorting by minimum dimension
is better than by maximum dimension when the rectangles
are reorientable is best expressed by an example: a 50 × 1
rectangle can be oriented so as to only add at most 1 to the
height, and so it is reasonable to place this rectangle towards
the end. Similarly, using the top-right corner to decide ori-
entation most closely approximates the objective function
being used to evaluate an entire packing.

4 Improving the BLD Heuristic
A natural way to improve the BLD heuristic is to apply BL to
other permutation orders. At the expense of more time, more
orders besides the four suggested can be tried to attempt to
improve the best solution found. One standard technique

sort by choose by
bottom top

min max area perim. center left right
yes no no no 5.62 15.38 4.43
no yes no no 5.58 6.40 5.98
no no yes no 5.15 8.08 4.60
no no no yes 5.23 5.58 4.70
no no yes yes 5.00 6.28 4.40
no yes no yes 4.83 5.30 4.70
no yes yes no 4.85 5.82 4.53
yes no no yes 4.68 5.58 4.33
yes no yes no 4.85 8.08 4.43
yes yes no no 4.73 6.47 4.38
yes yes yes yes 4.60 6.08 4.23

Table 1: Results of BLD modified for variable orientation.
Each number is an average of the 20 problem instances in
the N4-N7 benchmark collections.

would be random-repeat: permutations are repeatedly cho-
sen uniformly at random, and the best solution found within
the desired time bound is used. Random permutations, how-
ever, are known to perform poorly [9]. We tried BL on ran-
dom permutations on the N4 through N7 benchmark collec-
tions. After 20 minutes, the average height of the best solu-
tion found was 9.6% over the optimal compared to the 6.4%
over optimal generated by the BLD heuristic in a matter of
seconds.

Instead we suggest the following stochastic variation of
BLD, which we call BLD*. Our intuition for why BLD per-
forms so much better than random BL is that the decreasing
sorted orders save smaller rectangles for the end. There-
fore, BLD* chooses random permutations that are “near” the
decreasing sorted orders used by BLD as they will also have
this property. There are many possible ways of doing this;
indeed, there is a deep theory of distance metrics for rank
orderings [16]. BLD* uses the following simple approach:
start with a fixed order (say decreasing height), and gener-
ate random permutations from this order as follows. Items
are selected in order one at a time. For each selection,
BLD* goes down the list of previously unaccepted items in
order, accepting each item with probability p, until an item
is accepted. If the last item is reached and not selected, then
we restart at the beginning of the list, again taking an item
with probability p. After an item is accepted, the next item is
selected, starting again from the beginning of the list. This
approach generates permutations that are near decreasing
sorted order, preserving the intuition behind the heuristic,
while allowing a large number of variations to be tried.

The probability starting from some fixed ordering x of
obtaining some other ordering y is proportional to (1 −

p)Ken(x,y), where Ken(x, y) is the Kendall-tau distance
between the two permutations. This is also known as
bubble-sort distance, because it counts the number of swaps
bubble-sort would make transforming x to y.

BLD* first tries the four orders used by BLD and then
permutes each of these orders in round-robin fashion.



Fixed orientation BLD* score after Variable orientation BLD* score after
problem 0(BLD) 1 m. 2 m. 5 m. 10 m. 20 m. 0(BLD) 1 m. 2 m. 5 m. 10 m. 20 m.
Hopper N1 16.40 7.12 6.40 6.40 5.90 5.40 12.50 4.88 4.90 4.60 4.20 4.10
Hopper N2 12.20 6.70 6.40 6.30 5.50 5.40 9.70 5.00 4.80 4.20 4.10 3.90
Hopper N3 12.40 6.30 6.10 5.60 5.60 5.20 10.00 4.70 4.40 4.00 4.00 3.70
Hopper N4 9.00 5.50 5.30 5.10 4.60 4.30 6.10 3.40 3.20 3.00 2.90 2.80
Hopper N5 7.60 4.80 4.50 4.20 4.20 3.90 6.60 3.10 2.80 2.70 2.60 2.60
Hopper N6 5.40 4.30 4.10 4.00 3.80 3.70 3.60 2.60 2.40 2.30 2.10 1.90
Hopper N7 4.00 2.30 2.30 2.20 2.20 2.10 1.40 1.10 1.10 1.00 0.90 0.90
Hopper N1-N7 9.43 5.24 5.01 4.83 4.54 4.29 7.12 3.50 3.37 3.11 2.97 2.84
random,size=50,r=1 9.82 5.82 5.75 5.29 5.12 4.71 6.74 3.84 3.56 3.45 3.39 3.05
random,size=50,r=1,skew 14.20 8.40 8.25 7.85 7.58 6.99 9.31 5.46 5.17 4.90 4.69 4.36
random,size=50,r=2 8.35 5.49 5.18 4.86 4.66 4.58 6.58 3.83 3.65 3.50 3.30 3.14
random,size=50,r=2,skew 13.72 8.72 8.55 7.80 7.47 7.10 11.08 6.03 6.08 5.49 4.93 4.79
random,size=100,r=1 5.14 3.96 3.97 3.70 3.70 3.62 4.33 2.87 2.82 2.62 2.62 2.46
random,size=100,r=1,skew 10.76 7.60 7.47 7.12 6.98 6.93 7.31 5.29 5.18 5.01 4.79 4.52
random,size=100,r=2 6.02 4.89 4.67 4.59 4.43 4.26 5.70 3.87 3.42 3.25 3.16 3.00
random,size=100,r=2,skew 10.75 8.17 7.68 7.26 6.96 6.67 8.70 6.36 5.95 5.40 5.34 5.01
random, all 9.84 6.63 6.44 6.06 5.86 5.61 7.47 4.74 4.48 4.20 4.03 3.79

Table 2: Average results of BLD* on the Hopper benchmarks and on randomly generated problems.

4.1 Experimental Results
We ran BLD* on the Hopper benchmarks N1-N7 and on all
our random data sets. We used p = 0.5 based on a small
amount of preliminary investigation of different values. For
the fixed orientation problem, we used all four orderings
(height, width, area, and perimeter). For the variable orien-
tation problem, we used our modified version of BLD with
using only the minimum-dimension ordering and the top-
right orientation-decision method.

The results are shown in Table 2. The table shows the
results of running BLD and the results of running BLD* at
various time increments. The numbers represent the per-
centage over ideal, as defined above. For all cases, BLD*
dramatically improves solutions over BLD even with just
one minute of computation. It continues to improve steadily,
though improvements taper off with time.

We also ran experiments on the N4-N7 collections to
measure how many permutations BLD* considered before
improving upon the best solution by BLD; it considered an
average of only 15.25 permutations to do so.

5 Interactive Packing
Human guidance has been shown to improve the perfor-
mance of stochastic optimization algorithms for a variety of
problems (e.g., [1, 13, 14] and the papers cited therein). In
order for human interaction to be justified for an optimiza-
tion problem, improvements in solution quality must have
high enough value to warrant investing human effort. This is
the case for packing problems in which manufacturing costs,
and thus potential savings, are high. In order for interac-
tion to be applicable to an optimization problem, there must
exist effective visualizations for its problems and solutions.
Fortunately, the obvious geometric visualization for packing
problems (e.g., see Figure 1) is simple and effective.

In order for human interaction to be beneficial, human
reasoning must offer some advantages over the best auto-
matic methods. We have found that people can help over-
come many of the limitations of the BLD* heuristic. Peo-

ple can identify particularly well-packed subregions of solu-
tions, and focus BLD* on improving the other parts. Fur-
thermore, people can readily envision multi-step repairs to
a packing problem to reduce unused space. These repairs
often involve producing solutions that could not be produced
by the BLD heuristic.

5.1 Interactive System
We have developed an interactive rectangle-packing system
in Java using the Human-Guided Search (HuGS) Toolkit
[14]. The toolkit provides a conceptual framework for inter-
active optimization as well as software for interacting with
a search algorithm, logging user behavior, providing his-
tory functions including undo and redo, file I/O, and some
other GUI functions. We did not however utilize the human-
guidable tabu or hill-climbing search algorithms provided in
HuGS, as we did not find them effective for this problem in
our initial explorations.

In our system, the user is always visualizing a current
solution as shown in Figure 1. Given the aspect ratio of a
computer monitor, we found it more natural to rotate the
problem by 90 degrees, so that there is a fixed height and the
goal is to minimize the width of the enclosing rectangle.

The user can manually adjust the current solution by drag-
ging one or more rectangles to a new location. The interface
contains buttons which allow the user to cause all the rect-
angles to be shifted downward or leftward. This basically
has the effect of pulling all of the rectangles in one direc-
tion until each touches its neighbor or an edge of the pos-
sible packing area. These functions also resolve overlaps
among rectangles. Additionally, the user can freeze particu-
lar rectangles. Frozen rectangles appear in red and will not
be moved by the computer. Rectangles that are not frozen
appear in green. For the variable orientation problem, the
user has the option of reorienting rectangles, manually.

The user can also invoke, monitor, and halt the BLD*
heuristic. The user specifies a target region in which to
pack rectangles, denoted by a purple rectangular outline.
The user can then invoke BLD* by pressing a Start button.



Figure 1: Interactive system: The image on the left is a screen shot of our system in use. The user has selected a region to apply
BLD* to and has frozen most of the rectangles (frozen rectangles shown in red/dark gray, unfrozen in green/light gray). The
image on the right shows a blowup of the selected portion on the packing, after BLD* has run for a few seconds and the user
has pressed the Best button to see the best solution found.

Any frozen rectangles within the region are left where they
are. BLD* then tries to fill the region using any rectangles
that are not currently frozen. The system works in the back-
ground, and uses a text display to indicate the value of the
best, i.e., most tightly packed, solution it has found so far.
The user can retrieve this solution by pressing the Best but-
ton. The user can retrieve the current solution the engine is
working on by pressing the Current button. The user can
manually modify the currently visualized solution without
disturbing the current search. When the search algorithm
finds a new best solution, the Best button changes color to
alert the user. The user can halt the search algorithm by
pressing the Stop button, or reinvoke it by pressing the Start
button again.

The user can optionally set a target for the solution she
is trying to reach. For example, the user can indicate that
the enclosing rectangle should be 200 × 204. The system
provides some visual cues for how to meet this goal. More
importantly, the target solution size affects how solutions
are ranked. Rather than using the true objective function
(i.e., the size of the enclosing rectangle), the system ranks
solutions based on the total area of the rectangles that fall
within the target solution size. We found this feature to be
extremely useful. For example, the user typically begins a
session by having BLD* try to pack the entire target region.
Because of our modification, the search algorithm might
return, for example, a packing with one rectangle that sticks
out of the target region by several units rather than a pack-
ing in which many rectangles stick out of the target region
by one unit. We usually found the former packings much
easier to repair.

5.2 Interaction Experiments
The primary goal of these experiments was to evaluate the
hypothesis that interactive use of BLD* can produce supe-
rior solutions than BLD* can on its own.

We ran our first set of experiments on the fixed-orientation
problem, using the 15 problem instances in the N4-N6 col-
lections in the Hopper benchmark suite. We ran BLD* for 2
hours on on each instance. We then performed one trial for
each instance in which a user attempted to find a solution
1% closer to optimal than the best solution found by BLD*
within 2 hours. The users were two authors of this paper. We
were careful that a user had never before seen the particular
instances on which they were tested. We logged the users’
actions, but the primary measure was how long it took the
user to reach their target.

As shown in Table 3, the users were able to reach these
targets in about 15 minutes on average. In every case, the tar-
get was reached within 30 minutes. While this is not exactly
a “head-to-head” comparison, since the users had the target
scores to reach, the fact that people were able to improve on
the solutions so quickly confirms our hypothesis. Note that
because BLD* is a random restart strategy, it is unlikely that
running it for another 2 hours would improve the solution
much.

We then ran a second set of experiments for the variable-
orientation problem. In these experiments, the users
employed our variation of BLD* that orients the rectangle
and could also manually orient them. As in the first experi-
ments, we measured how long it took the users to find solu-
tion 1% closer to optimal than the best solution found by
BLD* within 2 hours. We ran these experiments on the N4
and N5 collections, with the same test subjects as the first
experiments. Thus, in this experiment, the test subjects had



dataset number of percent over optimal time for users to find
rectangles by BLD* in two hours packing 1% closer to optimal

N4 49 4.3% 3.3% in 14 min., 21 sec.
N5 73 4.1% 3.1% in 13 min., 52 sec.
N6 97 3.3% 2.3% in 17 min., 12 sec.

Table 3: Interaction experiment results with fixed orientation: The second column shows the average percentage over optimal
achieved by BLD* in two hours. These results are at least 2%-3% closer to optimal than the best previously published results.
The third column shows the average time it took interactive use of BLD* to achieve a solution another 1% closer to optimal.
The values are averaged over the five problem instances in the corresponding collection.

Figure 2: Our solution to the D1 dataset, which is one unit
better than the best previously published solution. The solu-
tion has width 46 in our interface, or height 46 in the stan-
dard formulation.

previously worked on the problem instances in the fixed-
orientation variation. However, we believe both that there
is little transfer between the problem variations, and that it
is extremely hard to remember anything about a given prob-
lem instance. For these problems, we ran both test subjects
on each problem instance.

We thought this task might be too difficult since the tar-
gets were so much closer to optimal. However, as shown in
Table 4, the subjects were able to reach the targets almost as
quickly as in the first experiments, requiring an average of
23 minutes and 10 seconds.

The N7 problem instances presented a significant chal-
lenge because BLD* was able to produce extremely tight
packings, only 1.8% over optimal on average, even for the
fixed orientation problem. In our practice trials, we found
it difficult to improve upon these solutions, interactively,
using only BLD*. The difficulty is that the unused space is
distributed into a great number of tiny gaps throughout the
packing. This makes it harder to pack the remaining rect-

angles into the target space. We were able to make steady
progress, but it seemed like it would take hours to get a
better solution. Instead, we devised a divide-and-conquer
algorithm which produced solutions in which unused space
is more concentrated (described more fully in [15]). Using
the divide-and-conquer algorithm as well as BLD*, our test
subjects were able to produce solutions 1% over optimal (or
about 0.8% closer than BLD* could achieve on average) in
12.5 to 36 minutes of interactive use.

Finally, we also tested our interactive system on the few
other (fixed-orientation) benchmarks we could find in the lit-
erature, including in particular ones without known optimal
solutions, referred to by Hopper as D1 and D3. [9, 17, 18].
The best solutions for D1 and D3 in the literature appear to
have height 47 and 114. We were able to find a solution with
height 46 (or width 46 in our interface) in about 15 minutes,
as shown in Figure 2. We were able to match the 114 for D3
in about 20 minutes.

6 Conclusion
We have developed several new approaches for 2D rectangu-
lar strip packing problems, substantially improving the state
of the art and providing new insights into the problem. Our
BLD* algorithm outperforms previous automatic systems.

We believe our most significant contribution, however,
may be the demonstration of the utility of interaction for
packing problems. On the Hopper benchmark problems, we
come within 1%-3% of optimal in about 15 minutes of inter-
active use: this is a significant improvement over all pre-
viously reported results. We believe that for many similar
problems, humans have significant geometric insight that is
currently difficult to capture in a computer algorithm. Inter-
active systems can tap into that insight while still taking
advantage of the computer’s superior computational power.

There are two clear broad directions that could be pur-
sued based on results for interactive systems. One tack
would be to attempt to classify how human users obtain
improved results for this problem, and design an algorithm
that encodes this approach well enough to match or exceed
human performance. We believe that this could be a difficult
task; indeed, our two users seemed to pursue very different
strategies in their use of the system. Even if it is possible,
however, it highlights the utility in developing interactive
systems to inspire and refine new algorithms. A second tack
would be to design interactive systems for other geometric
problems, in order to gain insight into how to best design
systems that allow beneficial interaction to occur. This is
the spirit of ongoing HuGS project.



dataset number of percent over optimal time for users to find
rectangles by BLD* in two hours packing 1% closer to optimal

N4 49 2.9% 1.9% in 26 min., 21 sec.
N5 73 2.6% 1.6% in 19 min., 59 sec.

Table 4: Interaction experiment results with variable orientation: The second column shows the average percentage over optimal
achieved by BLD* in two hours. The third column shows the average time it took interactive use of BLD* to achieve a solution
another 1% closer to optimal. The values are averaged over the 2 trials each of five problem instances in the corresponding
collection.

7 Acknowledgments
We would like to thank Victor Milenkovic for useful discus-
sions and for sending us an excellent summer intern!

References
[1] D. Anderson, E. Anderson, N. Lesh, J. Marks, B. Mir-

tich, D. Ratajczak, and K. Ryall, Human-guided sim-
ple search. In Proceedings of AAAI 2000, 209–216,
2000.

[2] B. S. Baker, E. G. Coffman, Jr., and R. L. Rivest.
Orthogonal packings in two dimensions. SIAM Jour-
nal on Computing, 9:846-855, 1980.

[3] B. S. Baker, D. J. Brown, and H. P. Katseff. A 5/4 algo-
rithm for two-dimensional packing. Journal of Algo-
rithms, 2:348-368, 1981.

[4] D. J. Brown. An improved BL lower bound. Informa-
tion Processing Letters, 11:37-39, 1980.

[5] B. Chazelle. The Bottom-Left Bin-Packing Heuristic:
An Efficient Implementation. IEEE Transactions on
Computers, 32(8):697-707, 1983.

[6] E. G. Coffman, M. R. Garey, and D. S. John-
son. Approximation algorithms for bin-packing : an
updated survey. In: G. Ausiello, M. Lucertini, and P.
Serafini, editors , Algorithm Design for Computer Sys-
tems Design, pages 49-106, Springer-Verlag, 1984.

[7] Dagli, C. H. and Poshyanonda, P. New approaches
to nesting rectangular patterns. Journal of Intelligent
Manufacturing 8, pp. 177-190, 1997

[8] H. Dyckhoff. Typology of cutting and packing prob-
lems. European Journal of Operational Research, 44,
145-159, 1990.

[9] E. Hopper. Two-Dimensional Packing Utilising Evolu-
tionary Algorithms and other Meta-Heuristic Methods,
PhD Thesis, Cardiff University, UK. 2000.

[10] E. Hopper and B. C. H. Turton. An Empirical Investi-
gation of Meta-heuristic and Heuristic Algorithms for
a 2D Packing Problem. European Journal of Opera-
tional Research, 128(1):34-57,2000.

[11] Hwang S.M., Cheng Y.K., and Horng J. T., On solv-
ing rectangle bin packing problems using genetic algo-
rithms. In Proceedings of the IEEE International Con-
ference on Systems, Man, and Cybernetics, Part 2 (of
3), pp. 1583-1590.

[12] C. Kenyon and E. Remilia. Approximate Strip-
Packing. In Proceedings of the 37th Annual Sympo-
sium on Foundations of Computer Science, pages 31-
36, 1996.

[13] G. Klau, N. Lesh, J. Marks, and M. Mitzenmacher.
Human-Guided Tabu Search. In Proceedings of the
18th National Conference on Artificial Intelligence, pp.
41-47, 2002.

[14] G. Klau, N. Lesh, J. Marks, M. Mitzenmacher, and
G.T. Schafer. The HuGS platform: A toolkit for
interactive optimization. In Proceedings of Advanced
Visual Interfaces, pp. 324-330, 2002.

[15] N. Lesh, J. Marks, A. McMahon, and M. Mitzen-
macher. New Exhaustive, Heuristic, and Interactive
Approaches to 2D Rectangular Strip Packing MERL
Technical Report TR2003-05, 2003.

[16] J. I. Marden. Analyzing and Modeling Rank Data,
Chapman & Hall, New York, New York, 1995.

[17] K. Ratanapan and C. H. Dagli. An object-based evolu-
tionary algorithm for solving rectangular piece nesting
problems. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, pp.
989-994, 1997.

[18] K. Ratanapan and C. H. Dagli. An object-based evolu-
tionary algorithm: the nesting solution. In Proceedings
of the International Conference on Evolutionary Com-
putation, pp. 581-586, 1998.

[19] D. Sleator. A 2.5 times optimal algorithm for pack-
ing in two dimensions. Information Processing Letters,
10:37-40, 1980.


	cover.pdf
	page 2

	paper.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


