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Abstract— Mirror sites enable client requests to be serviced by any of
a number of servers, reducing load at individual servers and dispersing
network load. Typically, a client requests service from a single mirror site.
We consider enabling a client to access a file from multiple mirror sites
in parallel to speed up the download. To eliminate complex client-server
negotiations that a straightforward implementation of this approach would
require, we develop a feedback-free protocol based on erasure codes. We
demonstrate that a protocol using fast Tornado codes can deliver dramatic
speedups at the expense of transmitting a moderate number of additional
packets into the network. Our scalable solution extends naturally to allow
multiple clients to access data from multiple mirror sites simultaneously.
Our approach applies naturally to wireless networks and satellite networks
as well.

I. INTRODUCTION

Downloading a large file from a heavily loaded server or
through a highly congested link can be a painfully slow expe-
rience. Similarly, clients who connect to the Internet at mo-
dem speeds often suffer through interminable waiting periods
to download web pages with graphical content. The many pro-
posed solutions for addressing these problems share a common
theme: improve performance at the bottleneck.

For modem users, there is not much that can be done; to im-
prove downloading time they must either upgrade to higher baud
rates or settle for receiving distilled, lower bandwidth versions
of the content they wish to access. But for the rest of us, for
whom the last mile is not the bottleneck, there are a wide va-
riety of techniques to improve performance in the network and
at the server. The most relevant to our discussion is the use of
mirror sites.

The mirroring approach deploys multiple servers storing the
same data at geographically distributed locations, in an effort to
both distribute the load of requests across servers and to make
network connections shorter in length, thereby reducing net-
work traffic. A limitation of current mirroring technology is
that the user must choose a single mirror site from which to
access data. While the choice of server may appear obvious
when the number of mirror sites is small, the work of [25] (and
others) indicates that the obvious choice is not always the best
choice and dramatic performance improvements can result from
more careful selection. This selection process can be automated
and improved by statistical record-keeping [25], or by dynamic
probing [7], [18].

Our first objective is to enable users to download data from
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multiple mirror sites in parallel in order to reduce downloading
time. This technique not only has the potential to improve per-
formance substantially over a single server approach, but can
eliminate the need for a complex selection process.

For some applications, such as software distribution [9], [24],
mirrored data may be requested by a vast number of autonomous
clients whose access intervals may overlap with one another. In
such a situation, rather than having each client establish a set
of point-to-point connections to multiple mirror sites in paral-
lel, we envision a more general system by which mirror sites
establish multicast groups to transmit data. Provided that the
transmissions of these multicast groups are orchestrated so as to
keep the transmission of duplicates to a minimum, a client could
subscribe to several multicast groups in parallel to retrieve the
data more quickly. The use of multicast provides scalability to
an unlimited number of clients, each of which may be subscrib-
ing to different subsets of the multicast groups.

As an example, such a system could be used by employees of
an international conglomerate to download daily financial state-
ments via their corporate intranet. Each of a number of geo-
graphically distributed mirror sites would establish a multicast
session to distribute the information. Transparent access from
thousands of clients to multiple mirror sites would be an effec-
tive mechanism to speed up download times and to balance load,
especially away from heavily accessed servers at peak usage
times. Moreover, such a scheme would be simple to automate.

Of course, it may not be obvious how to take this conceptu-
ally simple approach and derive a simple and workable imple-
mentation around it that delivers superior performance. For this
step, we utilize erasure codes (often referred to as Forward Er-
ror Correction codes) which have been widely suggested as a
means of simplifying and streamlining reliable multicast trans-
mission [6], [9], [10], [20], [22], [23], [24], [26]. The main idea
underlying this technique [14], [21] is to take an initial file con-
sisting of k packets and generate an n packet encoding of the
file with the property that the initial file can be restituted from
any k packet subset of the encoding. For the application of reli-
able multicast, the source transmits packets from this encoding,
and the encoding property ensures that different receivers can
recover from different sets of lost packets, provided they receive
a sufficiently large subset of the transmission. To enable par-
allel access to multiple mirror sites, the sources each transmit
packets from the same encoding, and the encoding property en-
sures that a receiver can recover the data once they receive a
sufficiently large subset of the transmitted packets, regardless
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of which server the packets came from. In fact, the benefits
and costs of using erasure codes for parallel access to multiple
mirror sites are analogous to the benefits and costs of using era-
sure codes for reliable multicast. For both applications, simple
schemes which do not use encoding have substantial drawbacks
in terms of complexity, scalability, and in their ability to handle
heterogeneity among both senders and receivers. Our approach
eliminates many of these drawbacks.

Ideally, using erasure codes, a receiver could gather an en-
coded file in parallel from multiple sources, and as soon as any
k packets arrive from any combination of the sources, the orig-
inal file could be restituted efficiently. In practice, however, de-
signing a system with this ideal property and with very fast en-
coding and decoding times appears difficult. Hence, although
other erasure codes could be used in this setting, we suggest
that a newly developed class of erasure codes called Tornado
codes are best suited to this application, as they have extremely
fast encoding and decoding algorithms [12]. Indeed, previously
these codes have been shown to be more effective than standard
erasure codes in the setting of reliable multicast transmission of
large files [6]. The price for the fast encoding and decoding is
that slightly more than k distinct packets are required to recon-
stitute the message. In this paper, we will use Tornado codes
as the basis for our proposed approach. We include a brief de-
scription of the properties of Tornado codes and contrast them
to standard Reed-Solomon codes in this paper in order to keep
this work self-contained.

Our general approach to accessing servers in parallel is ap-
plicable in many other situations. For example, wireless clients
could access data through multiple wired access points in paral-
lel, potentially significantly speeding up downloads. Similarly,
clients on satellite networks could obtain information from mul-
tiple satellites simultaneously. Because our solutions require lit-
tle or no feedback from the receiver to the source, they are quite
appealing for such networks. Moreover, because we generate
encoded versions of the files, our protocols are highly robust
against packet loss, including the high degree of packet loss of-
ten found in wireless networks. As a third example, clients with
access to multiple communication media, such as simultaneous
access on both an ISDN line and a modem line, can easily em-
ploy our techniques.

After describing the conceptual basis for our work, the main
focus of the paper is an analysis of the costs and benefits of
parallel access to multiple mirror sites as compared to point-to-
point connections. The primary benefit is the speedup of the
download. The main cost of our approach is bandwidth, in that
a moderate number of additional packets may be injected into
the network by the mirror sites.

An important aspect of our work is that no attempt is made to
circumvent congestion control mechanisms in any way. In fact,
we anticipate that deployment of our techniques would be used
in conjunction with TCP-friendly regulatory mechanisms. That
is, even though our general solutions could be used in situations
where no feedback from receiver to sender is possible, they can
also be easily implemented on existing network infrastructure
using TCP as well.

A. Related Work

Although the idea of parallel access to multiple mirror sites
is quite straightforward, it has apparently received little atten-
tion in the literature. The most relevant related work includes
Maxemchuk’s work on dispersity routing [14], [15] and Ra-
bin’s work on information dispersal (IDA) [21]. For example,
the idea of Rabin’s IDA scheme is to break a file into several
pieces, where each piece also includes some redundant infor-
mation. By dispersing these pieces among different nodes in the
network, one guarantees fault tolerance against link or node fail-
ures. Similarly, Maxemchuk suggests that one may send the en-
coded pieces of a file along different routes of a network; when
enough pieces arrive, the file may be reconstructed.

Although parallel access to multiple mirror sites (many-to-
one transmission) is not a well studied concept, multicast distri-
bution (or one-to-many distribution) has been widely studied. In
particular, as we have mentioned, the idea of using erasure codes
to simplify multicast transmission has recently been considered
in many works [6], [9], [10], [20], [22], [23], [24], [26]. In the
database and mobile computing literature, there has also been
similar use of erasure codes in work on broadcast disks [3], [4].
A primary benefit of using erasure codes in these contexts is that
it reduces or potentially eliminates the need for feedback from
the receivers to the sender. For both applications, receiver-to-
source feedback can often be expensive, both because the net-
works may be highly asymmetric (such as in satellite-based net-
works) and because the system needs to scale to many receivers.

Previous multicast work is also relevant since it demonstrates
another approach for removing system bottlenecks by reducing
the load on a single server. For example, Almeroth, Ammar,
and Fei suggest that servers holding heavily accessed web pages
can reduce load and improve delivery performance by servic-
ing requests in batches, rather than with separate point-to-point
connections [2]. Their work advocates queuing popular requests
at the server and establishing a multicast session over which to
service the request once the queue length reaches a threshold.
For pages which are in continuous demand, the use of reliable
multicast with erasure codes may be an even better approach.

Our work contrasts with previous work in several regards. In
particular, our focus on speed, rather than fault tolerance, high-
lights different design aspects of effective solutions. Of course,
fault tolerance remains a benefit of our approach. Second, our
consideration of the combination of multicast and parallel ac-
cess, or many-to-many distribution, also appears novel. Using
a conceptual approach from our previous work on multicast [6],
we demonstrate a simple, efficient solution to this distribution
problem. A third important difference is that virtually all pre-
vious work has utilized standard erasure codes, such as Reed-
Solomon codes. These codes generally take time quadratic in
the length of the original message to encode and decode, making
them unsuitable for many practical applications. For example,
encoding and decoding an entire file could take orders of mag-
nitude more time than the download. By making use of Tornado
codes, a new class of erasure codes developed in [12], [13], we
can develop practical schemes that employ encoding. Finally,
because we expect our approach to be useful in various domains
(including mobile wireless networks, satellite networks, and the
Internet) we develop a general approach applicable to a variety
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of media and give detailed consideration to the tradeoff between
feedback and bandwidth.

B. Assumptions

There are several assumptions that we make in the remainder
of the paper, which we describe in detail here. It is required
that each mirror site can efficiently produce a pool of encoded
packets for the source data, either in advance, or on demand.
Furthermore, encoding parameters such as file size, packet size
and encoding length must either be established in advance, or
must be easily agreed upon between client and servers.

In order for a client to derive benefit from accessing an ad-
ditional mirror site in parallel, there must be residual network
bandwidth available from the client to that site. Intuitively, if
this is not the case, then accessing that additional site will in-
duce congestion, and that new connection will interfere with the
performance of existing connections. Therefore, we require that
the set of paths from client to mirror sites are bottleneck-disjoint:
packets from one mirror site are neither slowed nor dropped be-
cause of packets from a different mirror site sent to the same
receiver.

We recognize that a drawback of our approach is that in order
to make use of our protocols, receivers must necessarily have the
capability to open multiple connections simultaneously along
bottleneck-disjoint paths (or approximately bottleneck-disjoint)
paths. For many clients, such as modem users, our approach
is not likely to be beneficial. We suggest, however, that for
people or companies with large available incoming bandwidth,
the potential increase in speed from our approach can outweigh
the potential cost of establishing multiple connections. Also,
given the subsequent analysis in this paper, we expect substan-
tial speed gains even in situations where the assumption about
bottleneck-disjoint paths is only approximately true. Hence, in
this paper we concentrate on the feasibility of simple protocols
given this assumption, a subject which is interesting in its own
right. We leave the question of how best to establish and main-
tain bottleneck-disjoint paths in various types of networks as a
question for future research.

II. INADEQUACY OF A BASIC SCHEME

We first describe a simple solution that works over TCP-style
connections without any source encoding. We use the term file
generically to represent an intact item of source data to down-
load. Consider a receiver which wants to download a file from
two mirrored sites, A and B. The receiver, upon requesting the
file, specifies a packet set for both A and B, denoting the pack-
ets they are supposed to send. For example, the receiver may
initially specify that A should send the first half of the packets
while B should send the second half. Ideally, the receiver would
obtain half the packets in the file from each of A and B, recov-
ering the entire file in half the time.1

In practice, variability and heterogeneity in end-to-end trans-
mission rates, packet loss rates, and latency between the receiver
and the various sites requires a more complex control structure.

1In the special case of only two senders, another simple solution is to “burn the
candle at both ends”: have one sender start sending packets from the beginning
of the file, and have the other start from the end. As this solution does not
naturally generalize beyond two senders, we do not consider it further here.

For example, if A can send packets at twice the rate of B, then A
will complete transmission of its designated packet set well be-
fore B. This problem can be handled by having the the receiver
renegotiate with the senders. For example, the receiver could
ask A to continue sending some of the packets not yet received
and simultaneously limit the packets to be sent by B. By using
the previous sending rate of A and B as a guide, the receiver
can attempt to balance the size of the new packet sets for A
and B appropriately. Note that the receiver may even allow the
packet sets for A and B to overlap. This increases the likelihood
of receiving all the necessary packets quickly at the expense of
possibly receiving duplicate packets and thereby wasting band-
width.

Alternatively, the file could initially be divided into sev-
eral fixed size blocks. Suppose, for example, the receiver in-
structs the senders to divide the file into ten equally sized dis-
joint blocks. Then when a sender finishes sending a block, the
renegotiation stage would consist of the receiver requesting the
sender to send a block that has not yet been received from any
sender.

While these approaches are conceptually feasible, they intro-
duce a number of technical and logistical problems that make
them problematic in practice. For example, if transmission rates
vary significantly over time, several renegotiations may be re-
quired to obtain the file at the fastest rate. Packet loss also in-
troduces potential problems: how should the contract be rene-
gotiated if certain packets from a packet set have not yet ar-
rived? Reliable retransmission-based protocols such as TCP
handle renegotiations at the granularity of a packet, but in this
general setting, there is a tradeoff between the overhead asso-
ciated with fine-grained renegotiation granularity and download
time. These problems grow more significant with the number
of senders a receiver uses, suggesting that this approach, while
implementable, may not scale well to many senders. Moreover,
this solution appears completely inadequate for many-to-many
distribution.

III. A DIGITAL FOUNTAIN SOLUTION

In this section, we outline an idealized solution to the down-
loading from multiple mirrors problem, based on a similar ap-
proach to reliable multicast presented in [6]. A client wishes to
obtain a file consisting of k packets from a collection of mirrored
servers. In an idealized solution, each server sends out a stream
of distinct packets, called encoding packets, which constitute an
encoding of the file. A client accepts encoding packets from all
servers in the collection until it obtains exactly k packets. In this
idealized solution, the file can then be reconstructed regardless
of which k encoding packets the client obtains. Therefore, once
the client receives any k encoding packets, it can then disconnect
from the servers. We assume that this solution requires negligi-
ble processing time by the servers to produce the encoding pack-
ets packets and by the client while merging data received from
the various servers and recovering the source data from the k
encoding packets. A consequence of this approach is that there
is no need for feedback from the receiver to the senders aside
from initiating and terminating the connections; in particular,
no renegotiation is ever necessary.

We metaphorically describe the stream of encoding packets
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produced by a server in this idealized solution as a digital foun-
tain, as we did in a similar approach to reliable bulk transfers
presented in [6]. The digital fountain has properties similar to a
fountain of water for quenching thirst: drinking a glass of water,
irrespective of the particular drops that fill the glass, quenches
one’s thirst.

IV. BUILDING A DIGITAL FOUNTAIN WITH ERASURE CODES

Erasure codes can provide close approximations to the ideal
properties of a digital fountain. Given input parameters k and
n, erasure codes are typically designed to take a set of k pack-
ets and produce a set of � redundant packets for a total of
n = ck = k + � encoding packets all of a fixed length P . We
will subsequently refer to the ratio c = n/k as the stretch factor
of an erasure code.

Theoretically, it is possible to take a source file, choose a very
large stretch factor and divide the encoding packets among the
senders in such a way so that no duplicates are sent. In this
case, the probability of failure due to packet loss could be made
vanishingly small. However, using such a large stretch factor
can dramatically slow both encoding and decoding. In fact,
the encoding and decoding processing times for standard Reed-
Solomon erasure codes are prohibitive even for moderate values
of k and n. Thus, in order to efficiently encode and decode large
files with moderate stretch factors, we use the recently devel-
oped Tornado codes [12]. Of course there is an associated cost
for this solution, in that smaller stretch factors increase the like-
lihood of duplicates and thus may require additional bandwidth.
One of our main findings, which we demonstrate with simula-
tion results, is that the overhead in terms of extra bandwidth used
appears quite reasonable considering the potential speed gains.

In [6], we provide a detailed comparative analysis between
Reed-Solomon and Tornado code implementations of digital
fountains. In this paper, we will use the latter implementation,
and refer the reader to [6] for our justification of this choice. To
keep the paper self-contained, we briefly describe the relevant
properties and the performance of Tornado erasure codes. A
more detailed, technical description of Tornado codes and their
theoretical properties is provided in [12] and [13].

A. Tornado Code Overview

As with standard erasure codes, Tornado codes produce an
n packet encoding from a k packet source. However, Tornado
codes relax the decoding guarantee as follows: to reconstruct
the source data, it is necessary to recover εk of the n encoding
packets, where ε > 1. We then say that ε is the decoding inef-
ficiency.2 The advantage of Tornado codes over standard codes
(which do not relax the decoding guarantee and have ε = 1)
is that Tornado codes trade off a small increase in decoding in-
efficiency for a substantial decrease in encoding and decoding
times, thus making them far more attractive for large values of
n and k. As with standard codes, the Tornado decoding algo-
rithm can detect when it has received enough encoding packets
to reconstruct the original file. Thus, a client can perform decod-
ing in real-time as the encoding packets arrive, and reconstruct

2Because our codes are constructed using randomization, a given code does
not have a fixed decoding inefficiency threshold ε; however, the variance in de-
coding inefficiency is generally very small. For more details see [6].

Tornado Reed-Solomon

Decoding inefficiency 1 + ε required 1
Encoding times (k + �) ln(1/ε)P k�P
Decoding times (k + �) ln(1/ε)P k�P
Basic operation XOR Field operations

TABLE I

PROPERTIES OF TORNADO VS. REED-SOLOMON CODES

Decoding Benchmarks
SIZE Tornado Z

250 KB 0.18 seconds
500 KB 0.24 seconds

1 MB 0.31 seconds
2 MB 0.44 seconds
4 MB 0.74 seconds
8 MB 1.28 seconds

16 MB 2.27 seconds

TABLE II

TORNADO DECODING TIMES.

the original file as soon as it determines that sufficiently many
packets have arrived.

While fast implementations of standard codes have quadratic
encoding and decoding times for this application, Tornado
codes have encoding and decoding times proportional to (k +
�) ln(1/(ε − 1))P , where ε is the decoding inefficiency. More-
over, Tornado codes are simple to implement and use only
exclusive-or operations. A comparison between the properties
of Tornado codes and standard codes is given in Table I.

In practice, Tornado codes where values of k and � are on the
order of tens of thousands can be encoded and decoded in just
a few seconds. Decoding times for a specific code called Tor-
nado Z on a Sun 167 MHz UltraSPARC 1 with 64 megabytes of
RAM are provided in Table II. (Encoding times and further sim-
ulation results for this code are available in [6].) This code was
used with packet length P = 1KB and stretched files consist-
ing of k packets into n = 2k encoding packets, i.e., the stretch
factor is 2. For the decoding, we assume that 1/2 the packets
received are original file packets and 1/2 are redundant packets
when recovering the original file. In 10,000 trials the average
decoding inefficiency for Tornado Z was 1.0536, the maximum
inefficiency was 1.10, and the standard deviation was 0.0073.
As the variance in the decoding inefficiency for Tornado Z is
very small, we will frequently consider only the average decod-
ing inefficiency in the rest of this paper, which we overestimate
slightly as ε = 1.055.

We note that one can trade off speed against inefficiency in
designing Tornado codes. In particular, slower codes with re-
duced decoding inefficiency can be constructed; see [12], [13].
Throughout this paper, we will adopt Tornado Z as a suitably
representative example.
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V. TORNADO CODE SOLUTIONS

A. Feedback-free Tornado solution

We begin with an approach in which there is no feedback
from the receiver to the senders, except for connection set-up
and connection teardown. A feedback-free scheme such as this
is appropriate when communicating over asymmetric channels
in which sending control information from the receiver to the
senders is expensive. This is often the case in satellite-based
networks, in which bandwidth on the back channel is extremely
limited. Minimizing the amount of feedback from receivers to
a source can also be important in avoiding feedback implosion
for multicast transmissions. Even the simple no feedback pro-
tocol which we develop under these constraints has substantial
advantages over a single access approach.

In this protocol, each sender encodes the file using a Tornado
code, and randomly permutes the packets comprising the encod-
ing before sending. Note that each sender uses a different per-
mutation to determine the order in which to send out packets,
but the packets that make up the encoding are the same for all
senders. A client collects packets from multiple senders in par-
allel until sufficiently many packets arrive to restitute the file.
In rare cases (caused by extremely high packet loss rates), a
sender may send out all of its packets before the receiver ob-
tains enough packets to decode; in this case the sender continues
to send by cycling through the packets in the same order. The
receiver may receive duplicate packets, most commonly when
identical copies of the same packet arrive from more than one
sender, or more rarely in the event that a sender cycles through
the encoding. We will generally assume in the analysis in this
section that the stretch factor is chosen sufficiently large so that
cycling does not occur.

Our performance measure is the reception inefficiency, which
we define to be η if the receiver receives a total of ηk packets
from the servers before it can reconstruct the file. The recep-
tion efficiency comprises two separate sources of inefficiency:
the decoding inefficiency of Tornado codes outlined in the pre-
vious section, and the distinctness inefficiency due to the arrival
of duplicate packets. We define the distinctness inefficiency to
be δ where δ is the average number of copies of each packet re-
ceived by the receiver prior to reconstruction. The reception in-
efficiency η is then just the product of the decoding inefficiency
ε of the Tornado code and the distinctness inefficiency δ; that is,
η = δε.

While the decoding efficiency is approximately a fixed quan-
tity (a function only of the encoding), the distinctness ineffi-
ciency varies with the number of senders and the stretch factor.
Increasing the number of senders increases the likelihood of re-
ceiving duplicates, while increasing the stretch factor increases
the number of distinct packets, and thus decreases the likeli-
hood of receiving duplicates. We also note that the number of
duplicate packets is maximized when the receiver obtains pack-
ets from each sender at the same rate, as can be shown using a
symmetry-based argument.

A.1 Mathematical models

One can write explicit equations to determine the distribution
of the total number of packets that must be received before de-

coding, and in turn the distribution of the reception inefficiency.
For example, consider a file with k packets initially, encoded
into a form with n = ck packets, where c is the stretch fac-
tor. Suppose that there are two senders, packets arrive from
the senders at an equal rate, and that the receiver must receive
m = εk distinct packets in order to reconstruct the file, where
ε is the decoding inefficiency. (For convenience here we ignore
the variance in the decoding inefficiency and treat it as a con-
stant; the equations can be modified accordingly.) Let � be the
number of packets sent by each sender. We assume that the
stretch factor is large enough so that a sender does not send the
same packet more than once. Let i represent the number of pack-
ets from the second sender that are distinct from those sent by
the first sender. The probability that 2� received packets include
at least m distinct packets is

∑
i≤�:i+�≥m

(
1(
n
l

)
)2(

n

�

)(
�

� − i

)(
n − �

i

)
.

This expression can be written more succinctly using multi-
nomial coefficients:

∑
i≤�:i+�≥m

(
1(
n
l

)
)2(

n

� − i; i; i

)

Similarly, expressions for situations with more receivers and
variable arrival rates can be determined, although they are not
simple to evaluate. These complex expressions completely de-
scribe the distribution of distinctness inefficiency, but simpler
calculations can give us an indication of expected performance.
That simpler calculation involves successively calculating the
number of expected non-duplicate packets from each sender.
That is, suppose we have senders S1, S2, . . . , Sk. Let the ratio of
the number of packets received from S i to the number received
from S1 be ri. Let zi be the expected number of distinct pack-
ets received from the first i receivers. Consider the (i + 1)st
sender. For each of the ri+1z1 packets this sender sends, the
probability that the packet is distinct from the z i obtained from
the first i senders is approximately

(
1 − zi

n

)
. Note that this is

only an approximation, as we have assumed that the number of
distinct packets actually received from the first i senders equals
its expected value. This assumption holds true exactly only for
the first sender. Hence, we have the following recursion:

zi+1 ≈ zi + (ri+1z1)
(
1 − zi

n

)
. (1)

As an example of how to use equation (1), suppose there are
two senders that send at equal rates (with no losses). We wish
to find the number of packets z that must be sent by each sender
so that m distinct packets arrive at the receiver. Then we wish
z2 to be m, so (using equation (1) as an equality)

m = z + z
(
1 − z

n

)
,

z2

n
− 2z + m = 0.
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Fig. 1. Reception Efficiency and Speedup vs. Stretch Factor, packets arrive at an equal rate from each sender, average of 1000 trials
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Fig. 2. Reception Efficiency and Speedup vs. Stretch Factor, packets arrive at different rates from two senders, average of 1000 trials

We then solve for z, finding z = n
(
1 −√1 − m

n

)
. The ex-

pected total number of packets sent is then 2z, where

expected packets sent = 2z = 2n

(
1 −

√
1 − m

n

)

≈ m

(
1 +

m

4n
+

m2

8n2
+ . . .

)
,

where the second equation follows from the Taylor series ex-
pansion of

√
1 − x. Note that m

n = ε
c , where ε is the decoding

inefficiency and c is the stretch factor, so the (approximate) re-
ception inefficiency η can be expressed in terms of ε and c:

η ≈ ε

(
1 +

ε

4c
+

ε2

8c2
+ . . .

)
.

Similarly, if there are three senders of equal rate, then we wish
z3 to be m. Again, using equation (1) as an equality, we find

m = z + z
(
1 − z

n

)
+ z

(
1 − z + z

(
1 − z

n

)
n

)
, or

z3

n2
− 3

z2

n
+ 3z − m = 0.

Some simple algebra yields that in this case z =
n
(
1 − 3

√
1 − m

n

)
.

More generally, it is easy to prove by induction that if there
are i senders sending at the same rate, then by using equation (1)

as an equality, we find that on average each sender will send
z = n

(
1 − i

√
1 − m

n

)
packets. Hence, when the sending rates

are equal for i senders, a good approximation for the reception
inefficiency is

η ≈ ic

(
1 − i

√
1 − ε

c

)
. (2)

As an example, with 4 senders and a stretch factor of 2, this for-
mula predicts η = 1.368, which closely matches our simulation
results in the next section.

A.2 Simulation results

To gauge the performance of the no feedback protocol,
we examine the results from simulations in Figures 1 and 2.
These plots quantify the cost (reception inefficiency) and benefit
(speedup) of using the no feedback protocol while varying the
stretch factor, the number of senders, and the relative transmis-
sion rates. Each data point represents the average of 1000 sim-
ulated trials. In each trial, we assume a file comprised of 1000
packets can be decoded once 1055 distinct packets arrive at the
receiver. That is, for simplicity we assume a flat 5.5% overhead
associated with the Tornado code, and ignore the small variation
in the decoding inefficiency. (In Figure 1, this is depicted by the
1 sender line in the plot.) We justify this simplification further
shortly. Note that these speedup results include only the time to
obtain the packets, and not the decoding time to reconstruct the
file, which is minimal.
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In Figures 1 and 2, we vary the stretch factor and the number
of senders, assuming packets arrive from each sender at an equal
rate. Recall that equal rate transmission maximizes the number
of duplicate packets received, and is thus a worst-case assump-
tion for reception inefficiency. The main point these two plots
depict is that beyond a moderate stretch factor of c = 3, adding
additional sources dramatically speeds up downloads with min-
imal additional reception inefficiency. At c = 4, using two
senders instead of one almost halves download time, with an
overhead of approximately 14%. Using four senders instead of
two almost halves download time again with an additional loss
in efficiency of less than 4%.

These speedup results hold also in the case where there are
losses, in the following sense. Suppose that the packet loss
rate along every path is fixed and steady, so that for example
one out of every ten packets is dropped. Then the actual ar-
rival rate from each processor remains the same, and as long as
the stretch factor is high enough so that a sender need not cy-
cle through its packets multiple times, the same speedup results
will hold. Moreover, the presence of burst losses over small
timescales also does not substantially alter the speedup results.
In the case where a sender does cycle, a receiver may obtain
the same packet multiple times from the same sender; we do
not consider this here, as we would expect this scenario to be a
rare case using a reasonable stretch factor. It is also worth not-
ing that using equation (2) to calculate the reception inefficiency
matches the results of our simulations to the nearest thousandth.

In Figure 2, we consider the common case where packets ar-
rive at different rates from two senders. This may happen for
a variety of reasons. One server may be more heavily loaded,
or one of the paths from server to receiver may be more heavily
congested, triggering congestion control mechanisms and low-
ering the packet transmission rate along that route. Alterna-
tively, the receiver may be using two different media, such as
simultaneous use of a modem and an ISDN line. The label 4:1
in Figure 2 means packets from one sender arrive at four times
the rate of the other sender. One effect is that the receiver ob-
tains fewer duplicate packets, so the reception inefficiency is
reduced by virtue of a reduction in the distinctness inefficiency.
Of course, in cases where a second sender provides packets at
a much lower rate, the speedup is much less significant. In
Figure 2, the speedup given is that over a receiver with a sin-
gle connection to the faster sender. Even in a case where one
sender sends packets at a much higher rate, we obtain reasonable
speedups accessing multiple senders in parallel.

Figure 3 provides similar simulation results for the case of
three senders with differing sending rates. The label 2:2:1, for
example, means that there are two fast senders that send at twice
the rate of a slower sender. Again, the speedup given is in com-
parison to a receiver using a single access protocol to attach to
the fastest of the senders.

These plots also depict the marginal cost and marginal bene-
fit of a receiver accessing a third sender in addition to the two
which it is currently accessing. For example, one would com-
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Fig. 5. Worst Case Reception Efficiency and Speedup vs. Receivers, packets arrive at an equal rate from each sender (average of the worst case for 3 trials)

pare the speedup of three senders in a 2:2:1 sending pattern to
the speedup of two senders in a 1:1 sending pattern to quantify
the benefit of adding a third sender with sending rate half that
of the other two. As one would expect, the marginal gain from
utilizing a third, slower sender is much less significant than the
marginal gain of using two senders instead of one. Still, even in
situations where sending rates are disparate, additional senders
can still impact downloading performance significantly.

We now justify that when studying quantities such as the av-
erage reception inefficiency and average speedup, using the av-
erage decoding inefficiency of 5.5% provides an acceptable ap-
proximation. Figure 4 shows how the average reception ineffi-
ciency and average speedup vary with the decoding inefficiency
in the case of two senders sending at equal rates. The variation
is relatively minor; this alone somewhat justifies the approxima-
tion. Moreover, the reception inefficiency and speedup grow
roughly linearly in the decoding inefficiency over this range.
This implies that the average reception inefficiency as the decod-
ing inefficiency varies is approximately equal to the reception
inefficiency at the average decoding inefficiency, and similarly
for the average speedup. Hence using the average decoding in-
efficiency in our simulations provides good approximations for
the actual behavior of the average reception inefficiency and av-
erage speedup. The situation is similar for three or four senders
as well.

B. Many-to-many distribution

Because of the lack of control information required, the no
feedback parallel access approach provides a simple and ele-
gant solution to the many-to-many distribution problem. For ex-
ample, suppose that hundreds or thousands of Internet users all
wish to download a new file, and multiple servers are available
to send encoded versions of it. Instead of using point-to-point
connections, all the senders can cycle through and multicast
their encoded version of the file. Each receiver may listen to any
number of those transmissions, terminating membership in the
sessions when it has obtained enough packets to decode. 3 Be-
cause the protocol is stateless and since the receivers can gather
packets independently over time and over senders, the protocol
scales easily to a vast number of receivers. The use of scal-

3In fact, a network-friendly termination strategy would be to disconnect from
all but the highest bandwidth transmission slightly before completion.

able multicast ensures that the bandwidth requirements of the
protocol would be significantly lower than approaches built on
point-to-point connections, even if the reception inefficiency of
the scheme is moderate. Moreover, congestion control can be
implemented with this approach using ideas from layered mul-
ticast of [26] and [6].

We demonstrate the scalability and utility of this protocol by
measuring worst-case efficiency and speedups in simulations of
between 100 and 100,000 users. In Figure 5, we give the worst
reception inefficiency and speedup seen for various numbers of
receivers, averaged over three trials, using a stretch factor of c =
3. That is, for example, we took the average of three different
trials of 100,000 users; for each trial, we use the lowest speedup
or highest reception inefficiency obtained by any receiver. It is
evident that this method scales well to large numbers of users.
Indeed, the worst case values are not markedly different from the
average values presented in Figure 1. In practice, there would be
somewhat more variation in speedup and reception inefficiency
due to the fact that the decoding inefficiency is not fixed at 5.5%
as we had assumed.

C. Extensions: Solutions with minimal control information

One limitation of the stateless transmission protocols we have
described so far is that the lack of coordination between the
sources can result in duplicate transmissions and hence distinct-
ness inefficiency. In this section, we describe additional tech-
niques which can be used in conjunction with the existing pro-
tocol to limit the magnitude of distinctness inefficiency. The
first of these techniques requires a negotiation step at connection
set-up time; the second makes use of additional renegotiations
during transmission. If it is practical to incorporate these negoti-
ation steps into the implementation, improved performance will
result, but they are not essential.

The first enhancement requires all sources to use the same
encoding and the same random permutation in transmitting the
data associated with a given file. Then, at connection establish-
ment, receivers may request that a given source begin transmis-
sion of the source data at a particular offset into the permuta-
tion. In the event that the number of sources s that will be used
is known to the receiver, a natural way to use this enhancement
would have the receiver request offsets corresponding to sepa-
rate 1/s portions of the encoding. The obvious upshot of this
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approach is that when sources transmit at roughly equal rates,
the data which they collectively transmit is guaranteed to con-
tain no duplicates for a significant period of time.

But when sending rates vary, distinctness may drop signif-
icantly once one source “laps” another. This drawback can be
remedied in part by having a receiver request both a start and end
offset at connection set-up time. With this modification, once
the source transmits all packets in that range, it is then free to
transmit additional packets in a random order of its own choos-
ing. While this extension could significantly improve perfor-
mance for individual receivers, it appears unsuitable for many-
to-many distribution.

A second enhancement uses explicit renegotiations in addi-
tion to the initial establishment of offsets. After transmitting all
packets from a specified initial range, a source would transmit
packets next from a new range sent in a renegotiation message
from the receiver, rather than transmitting packets at random.
This renegotiation process can be much simpler and more flex-
ible than renegotiation in algorithms which do not use encod-
ing at all, because the receiver does not need to obtain specific
packets, but just a sufficiently large set of distinct packets for
decoding. A substantial advantage of this approach is that re-
covery from moderate packet loss is handled explicitly by the
protocol, since the encoding itself enables us to recover the file
in the event of loss.

Even for a larger number of senders, the rates have to be
widely disparate for renegotiations to be necessary. The point is
that the redundancy in the encoding immediately gives each of s
senders the ability to send a separate c/s fraction of the encoded
file; whereas without encoding, each sender is initially respon-
sible for just a 1/s fraction of the file, leading to renegotiations
under disparate arrival rates. Here, if c ≥ εs, where ε is the
decoding inefficiency, then any one sender can supply enough
packets for the receiver to reconstruct the message, in the event
that there is no packet loss. In this case, the other senders can be
arbitrarily slow compared to one fast sender. Of course, this is
only possible for reasonable values of s, since excessively large
values of c will introduce large memory requirements and slow
down the decoding process. In practice, we expect small values
of s to be the norm, so this may well be the common case.

VI. CONCLUSION

We have considered parallel access to multiple mirror sites
and related many-to-many distribution problems. Our approach
introduced protocols for these problems using erasure codes,
based on the idea of a digital fountain. We suggest that erasure
codes are essential for building efficient, scalable protocols for
these problems and that Tornado codes in particular provide the
necessary encoding and decoding performance to make these
protocols viable in practice. The variety of protocols and tun-
able parameters we describe demonstrates that one can develop
a spectrum of solutions that trade off the need for feedback, the
bandwidth requirements, the download time, the memory re-
quirements, and the engineering complexity of the solution in
various ways. We therefore believe that our straightforward ap-
proach will be effective in a variety of settings, including on the
Internet and for mobile wireless receivers.
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