Available at

www.ElsevierComputerScience.com Information
POWERED BY SCIENCE @DIRECT“ ProceSSlng
Letters

ELSEVIER Information Processing Letters 90 (2004) 7—14

www.elsevier.com/locatefipl

Exhaustive approaches to 2D rectangular perfect packings

N. Lesh?, J. Marks, A. McMahon®!, M. Mitzenmachef**?

@ Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA
b University of Miami, FL, USA
¢ Computer Science Department, Harvard University, Cambridge, MA, USA

Received 2 August 2003; received in revised form 18 December 2003

Communicated by S. Albers

Abstract

In this paper, we consider the two-dimensional rectangular strip packing problem, in the case where there is a perfect packing;
that is, there is no wasted space. One can think of the problem as a jigsaw puzzle with oriented rectangular pieces. Although
this comprises a quite special case for strip packing, we have found it useful as a subroutine in related work. We demonstrate
a simple pruning approach that makes a branch-and-bound-based exhaustive search extremely effective for problems with lest

than 30 rectangles.
0 2004 Published by Elsevier B.V.

Keywords:Perfect packing; Strip packing problem; Branch-and-bound; Algorithms

1. Introduction

Packing problems involve constructing an arrange-
ment of items that minimizes the total space required
by the arrangement. In this paper, we specifically con-
sider the two-dimensional (2D) rectangular strip pack-
ing problem. The input is a list of rectangles with
their dimensions and a target widii. The goal is to
pack the rectangles without overlap into a single rec-

* Corresponding author.
E-mail addressedesh@merl.com (N. Lesh),

marks@merl.com (J. Marks), adam@math.miami.edu
(A. McMahon), michaelm@eecs.harvard.edu (M. Mitzenmacher).

1 This work done while visiting Mitsubishi Electric Research
Laboratories.

2 Supported in part by NSF CAREER Grant CCR-9983832 and
an Alfred P. Sloan Research Fellowship.

0020-0190/$ — see front mattér 2004 Published by Elsevier B.V.
d0i:10.1016/j.ipl.2004.01.006

tangle of widthw and minimum height . We further
restrict ourselves to the oriented, orthogonal variation,
where rectangles must be placed parallel to the hori-
zontal and vertical axes, and the rectangles cannot be
rotated. Further, for our test cases, all dimensions are
integers. Like most packing problems, 2D rectangular
strip packing (even with these restrictions) is NP-hard.

In this paper, we focus on the case of problems
where it is known that there argerfect packings.

A perfect packing is one where the input rectangles fit
exactly into a rectangle of the appropriate width with
no empty space. One can think of the perfect packing
case as being a jigsaw puzzle with oriented rectangular
pieces.

We provide several motivations for looking at the
special case where there exist perfect packings. First,
perfect packings are natural test cases to study when
testing algorithms, as perfect packings are easy to con-

8 N. Lesh et al. / Information Processing Letters 90 (2004) 7-14

struct, and for perfect packings the optimal heifgpt Because the Bottom-Left heuristic is a foundation for
is known. Indeed, one of the most extensive bench- our work, we describe it in some detail.
mark sets for rectangular strip packing is a collection The Bottom-Left (BL) heuristic was introduced
of instances with known perfect packings constructed in [1]. To explain it, we may think of the strip being
by Hopper [9,10]. It is therefore worthwhile to deter- packed as lying in the first quadrant of the plane, with
mine how well specialized techniques can perform on the left bottom corner a0, 0) and the right bottom
these problems, in order to better gauge how difficult corner at(W, 0). Let us say a point igoveredif it
problems in this class are. Furthermore, a valuable uselies in the interior, left boundary, or bottom boundary
of our algorithm is to quickly determine if a given of a rectangle that has been placed. A painty) is
set of rectangles can be perfectly packed before run-freeif y > 0, 0< x < W, and it is not covered. The
ning more expensive or less accurate algorithms. As BL heuristic uses the reverse lexicographic ordering
an example, the best reported results of heuristics onon the space of points; that is, poities before point
the Hopper benchmarks (that we solve exactly below) B if A is belowB, or if A andB have the same height
are several percent from optimal [9]. Finally, our algo- andA is to the left of B. Given a permutation of the
rithm naturally solves a more general problem: given rectangles, the Bottom-Left heuristic places the rec-
a set of rectangles and a target rectangle, find a pack-tangles one by one, with the lower left corner of each
ing of a subset of those rectangles which gives a per- being placed at the first free point in the lexicographic
fect packing of the target. We have found in our re- ordering where it will fit within the given strip and
lated work on packing problems that such a routine does not overlap with a previously placed rectangle.
can be useful in divide-and-conquer-based approachesThere are natural worst-casén3) algorithms for the
to solving large problems. We describe this function- problem; Chazelle devised an algorithm that requires
ality more completely in [14]. O(n?) time and Qn) space in the worst case [5]. In
We present an exhaustive approach using branch-practice the algorithm runs much more quickly, since a
and-bound technigues that outperforms previous meth-rectangle can usually be placed in one of the first open
ods. For example, our implementation solves bench- spots available. When all rectangle dimensions are in-
mark problems containing 25 rectangles in under two tegers, this can also be efficiently exploited. Hopper

minutes, on average. discusses efficient implementations of this heuristic in
her thesis work [9].
1.1. Further background Perhaps the most natural permutation to choose for

the Bottom-Left heuristic is to order the rectangles

Packing problems in general are important in man- by decreasing height. This ensures that at the end of
ufacturing settings; for example, one might need the process rectangles of small height, which therefore
specific rectangular pieces of glass to put together a affect the upper boundary less, are being placed. It
certain piece of furniture, and the goal is to cut those has long been known that this heuristic performs very
pieces from the minimum height fixed-width piece of well in practice [6]. It is also natural to try sorting
glass. The more general version of the problem al- by decreasing width, area, and perimeter, and take the
lows for irregular shapes, which is required for certain best of the four solutions; while usually decreasing
manufacturing problems such as clothing production. height is best, in some instances these other heuristics
However, the rectangular case has many industrial ap-perform better.
plications [9]. Another line of research on heuristics focuses on

The 2D rectangular strip packing problem has local search methods that take substantially more time
been the subject of a great deal of research, both but have the potential for better solutions: genetic al-
by the theory community and the operations-research gorithms, taboo search, hill-climbing, and simulated
community [6,7,15]. One focus has been on heuristics annealing. The recent thesis of Hopper provides sub-
that lead to good solutions in practice. One line in this stantial detail of the work in this area [9,10], as does
area considers simple heuristics for greedily placing the recent paper [11].
an ordered list of rectangles, the most widely used Another focus has been on approximation algo-
and well-studied of which is the Bottom-Left heuristic. rithms. The Bottom-Left heuristic has been shown to

N. Lesh et al. / Information Processing Letters 90 (2004) 7-14 9

GAPS

N

formalize this Smallest-Gap heuristic more carefully
below, and consider its effectiveness in conjunction
with our approach.

2. An exhaustive branch-and-bound algorithm

We present an exhaustive branch-and-bound algo-
rithm that performs extremely well on problems with
fewer than 30 rectangles. It is especially designed for
Fig. 1. Gaps that require filling. finding perfect packings. We also discuss how the
scheme generalizes where there is no perfect packing.

be a 3-approximation when the rectangles are sorted

by decreasing width (but the heuristic is not competi- 2.1. Finding perfect packings exhaustively

tive when sorted by decreasing height) [1]. Other early

results include algorithms that give an asymptofié-5 To begin, we consider the use of BL for find-

approximation [2] and an absolute/ Bapproxima- ing perfect packings. Because our algorithms will be

tion [17]. Recently, Kenyon and Remilia have devel- €exhaustive branch-and-bound algorithms, we do not

oped an asymptotic fully polynomial approximation use Bottom-Left as a heuristic, but apply the place-

scheme [12]. ment rule used by the heuristic within our branch-and-
Finally, the work most related to our own considers bound-based algorithm, as clarified below. (We simi-

branch-and-bound algorithms. Recent work includes larly derive a placement rule from the Smallest-Gap

that of Fekete and Schepers, who suggest branch-heuristic as well.)

and-bound techniques for bin and strip packing prob- Although there are examples for which BL cannot

lems [8]. They test their general approach on the knap- produce the optimal packing undamyordering [1,4],

sack problem, and not strip packing problems, and this is not the case when the optimal packing is a

hence we are unable to provide a direct comparison. perfect packing. We have not seen the following fact

Our pruning approach appears faster but may not bein the literature, although it may simply be a folklore

as effective in some cases. Work similar to ours has result.

also been done simultaneously by Korf [13] and by

Martello et al. [16], who use branch-and-bound tech- Theorem 1. For every perfect packing, there is a

niques to determine optimal packings. Because they permutation of the rectangles that yields that perfect

consider the problem of finding optimal packings for packing using the BL heuristic.

more general cases than perfect packings, our bound-

ing techniques differ; we expect that they could rein- Proof. Sort the lower left corners of the rectangles

force each other for both types of problems. in the perfect packing lexicographically. This gives a
Well into our own work on the problem, we found permutation ordering that will yield that packing using

an idea in the branch-and-bound literature related to the BL heuristic. O

our own. A key feature that arises in placing rectangles

is gaps shown pictorially in Fig. 1. In a 1975 paper This theorem indicates that applying BL exhaus-

on branch-and-bound techniques, Bitner and Reingold tively to all possible permutations of the given rec-

suggest an approach for finding perfect packings basedtangles will find a perfect packing if one exists. Fur-

on trying to fill the smallest gap first [3]. If no thermore, it suggests an important optimization for

rectangle can be placed in the gap, their branch-and-exhaustive search because it shows that there exists

bound algorithm can backtrack, and smaller gaps are an ordering that yields a perfect packing with the BL

more likely to be found impossible to fill quickly. heuristic such that every rectangle is placed with the

Our approach is similar in that we analyze the gaps lower left corner in théfirst free pointin the lexico-

after each placed rectangle to improve pruning. We graphic ordering. (The BL heuristic generally places a

10 N. Lesh et al. / Information Processing Letters 90 (2004) 7-14

rectangle at the first free poimwhich it fits) Thus, an
ordering can be rejected as soon as any rectangle does GAP
not fit in the first free point. Even though this order-
ing could possibly yield a perfect packing with the BL
heuristic, we are guaranteed to find this perfect pack-
ing with some other ordering during our exhaustive
search. In the branch-and-bound algorithm given be-
low, we use this idea to dramatically prune the search
space.

A similar theorem holds for the Smallest-Gap (SG)
heuristic. Expanding our notation, let us call a point
(x,y) validif itis free; y < Hopt, x =0 or (x, y) lies Fig. 2. The width and height of a gap to be filled.
on the right boundary of some placed rectangle; and
y=0or(x, y) lies on the top boundary of some placed
rectangle. In the special case of integral dimensions of tangle of largest area that has neither been placed ac-
all rectangles(x, y) is valid if it is free,y < Hopt, and cording to the _current prgfix nqr has been tr_ied as the
(x —1,y) and(x, y — 1) are not free. Note thatthe BL ~ Next rectangle in the prefix; while any order is reason-
heuristic places each rectangle at the lexicographically able, we have found slightly better performance using
earliest valid point. With each valid poirit, y) we the decreasing area order. In the case where we have
associate @ap length which is the minimum value ~ several rectangles with the same dimensions, we can
of w such that(x + w, y) is not free. Note that gaps work more efficiently by associating a type with each
can arise between rectangles and the boundary of thedistinct pair of rectangle dimensions, and branching on
rectangle being packed. Given a permutation, the SG the type.
heuristic attempts to place the rectangles one by one, The algorithm computes a lower bound on the
with the lower left corner of each being placed at unused space in any completion of the current prefix.
the valid point with the smallest associated gap (ties For perfect packings, if this lower bound is greater
broken in some fixed but arbitrary fashion). If at any than zero, so that no completion of the prefix can
point such a placement is not possible, the algorithm Yield a perfect packing, then we can bypass all
fails. completions of that prefix, greatly reducing the time

As with the BL heuristic, if there is a perfect pack- for the exhaustive search.
ing, then there is some permutation of the rectangles We now describe our more powerful pruning
which yields that perfect packing under the SG heuris- method. While observing our algorithm run interac-
tic. Indeed, more generally, given any rule for choos- tively, we determined that much time was wasted in
ing a valid point based on the current placement of the the following type of scenario, demonstrated in Fig. 2.
rectangles, if there is a perfect packing, then there is a We say that a gap of width at valid point(x, y) has
permutation of the rectangles which yields that perfect heighth if i < Hopt— y is the largest value for which

packing under that rule. all points on the segment frorx, y) to (x,y + h)
lie on the right boundary of some placed rectangle or
2.2. Branch-and-bound with gap pruning x = 0; and all points on the segment fram+ w, y) to

(x 4+ w, y+ h) lie on the left boundary of some rectan-

To efficiently consider all possible permutations, gle orx +w = W. Suppose that the current placement
we use a branch-and-bound framework. Rectanglesof rectangles requires a gap of widihand height:
are placed one at a time, so that after any iteration to be filled for a perfect packing. If there is no way to
a prefix of some permutation has been placed. The combine unplaced rectangles to obtain a rectangle of
branch is on the next rectangle in the prefix of the per- width w with height at leask, then there is no way to
mutation. For perfect packings, we only need to con- obtain a perfect packing.
sider placing rectangles at the valid point determined To handle this situation, we have found it worth-
by BL (or SG). At each step we next consider the rec- while to implement a simple procedure based on dy-

N. Lesh et al. / Information Processing Letters 90 (2004) 7-14 11

namic programming that provides a loose upper bound ordering is effective in our experiments. Indeed, the
on the tallest possible rectangle of widththat can be dynamic programming step is so efficient that it can
constructed with the unplaced rectangles. Note that for be performed after each rectangle placement, within in
both the BL and SG heuristic, bounding in this fash- the innerloop, to great effect. More complex bounding
ion is more useful than bounding the widest possible techniques may prove too expensive to be as effective.
rectangles of heiglit, because we create more gaps of Our dynamic programming technique may be ap-
small width than small height early in the prefix order- plicable in other branch-and-bound algorithms that
ing. Although both can be used, our experience is that find optimal non-perfect packings by giving lower
the best performance is achieved by using only bound- bounds on the amount of wasted space when a subset

ing on the width of the gaps. of rectangles have been placed. For example, if there
Our approach is easily described as follows. Con- is a gap of widthj andB; , is 0, then the height of the
sider a list of the unplaced rectanglRs, R», ..., R, gap is a lower bound on the unused space inside the

in some order. Letv(R;) andh(R;) be the width and gap. Similarly, if the height of the gap iIsand B; ,
height ofR;. We find valuesB; ; that are upperbounds s z, then the unused space inside the gap must be at

on the maximum height rectangle of widfh> 1 that leasth — z.
can be constructed using the fifrst> 1 rectangles. Although we do not report results on branch-and-
HenceBy(r;),1 = h(R1) and B; 1 =0 if j # w(Ry). bound for non-perfect packings, we describe here how
Fork > 1, we choose: the BL-based algorithm can be used to search for
I them. (Unlike the algorithms of [13] or [16], our ap-
Bji+1=Bjk I j <w(Rt1): proach does not guarantee that it will eventually find
Bji+1=Bjx +h(Ri+1) if j =w(Ris1); an optimal packing, because BL cannot always pro-
. — B, i . duce the optimal packings. Hence is it only a heuristic
B]_’k+,1 B min(B) e s h(Rit1)) approach for finding good packings.) For non-perfect
it j > w(Rt1)- packings, the maximum allowed empty space is de-
Theorem 2 follows from an obvious induction: fined by the best packing found so far. We note that,

in general, for any packing achievable by BL, there is
Theorem 2. For all j,k > 1, Bj is an upper bound an ordering that yields that packing in which each rec-
on the maximum height rectangle of widttthat can tangle is placed at least as high as all previously placed
be constructed using1, Ro, ..., Ry. rectangles. (This is an obvious generalization of Theo-
rem 1 for non-perfect packings.) This justifies includ-
The bound above is loose, because in the caseing any unused space below a placed rectangle in the
wherej > w(Ry11), a rectangleR; with i <k may be lower bound for the unused space associated with the
contributing to both terms in the summation. However, current prefix.
note that in the case where there is no way to place
the remaining rectangles to obtain a width then in 2.3. Solution-richness
fact B, , will equal 0. Further, the bounds can depend
on the order in which the remaining rectangles are Our experience is that problems that have at least
considered following the procedure above. one perfect packing typically have a great number of
CalculatingB; , for every j up to the biggestgap them. Informally, we say that a class of problems is
after each placement and checking that all gaps cansolution-richif it has this property. Solution-rich prob-
at least potentially be filled allows the algorithm to lems are more amenable to exhaustive searches, since
avoid prefixes that cannot yield perfect packings. The there are many good solutions to find. We believe that
bound above can be improved slightly in various ways: in many cases perfect packing problems are solution-
for example, taking the best bound from different rich, since often rectangles combine into a larger rec-
orderings of the unplaced rectangles, and adding atangle that can be symmetrically reconfigured in var-
bit more sophistication to avoid overcounting caused ious ways to obtain a different perfect packing. Even
by many rectangles with small width. We have found the small problem instances we consider below have
that the technique above applied once to a random hundreds of solutions.

12 N. Lesh et al. / Information Processing Letters 90 (2004) 7-14

One class of problems that is provably solution- 2.5. Perfect packings of subregions
rich is those withguillotinable solutions. A guillotin-
able solution has the property that it can be obtained We describe briefly how we use our perfect pack-
by a sequence of cuts parallel to the axes, each ofing routine as a subroutine for finding good solutions
which crosses either the entire length or width or the to larger packing problems. More details are in [14].
remaining connected rectangular piece. Guillotinable The user (or a program) can choose a subregion to be
solutions are important for some manufacturing set- filled, and the perfect packing routine attempts to find
tings [9]. A problem with one guillotinable perfect a perfect packing for this subregion. Note that in this
packing must have many. case, there may be rectangles available that are not in-
volved in the perfect packing for the subregion. Our
algorithm works without changes in this setting; the
goal is now just to find a prefix of the available rectan-
gles that yields a perfect packing of the subregion. If a
perfect packing is not found in a reasonable amount
. .)) . of time, a good non-perfect packing can be found
F_>roof. The proof_|s a simple md_uctlon._Co_ns_lder the quickly using the general branch-and-bound method
first cut of the guillotinable solution. This divides the gescribed above. In many cases, a perfect packing can
problem into two subproblems, one wittrectangles pe found for an initial subregion, because at the be-
and one with¢ rectangles, wheré + ¢ =n. These ginning of the process the many extra available rec-
subproblems have*2' and 2~ perfect packings tangles yield great flexibility. Packing the subregion
respectively by the induction hypothesis, and there are perfectly allows more available room in packing later
two ways to put the two subproblems togethern subregions.

Theorem 3. Any guillotinable problem on n rectangles
with a perfect packing has at leag'~! perfect
packings.

We note that the non-guillotinable problems of 2.6. Experimental results
Hopper that we use as benchmarks are constructed in
such a way that they are also solution-rich. A simple ~ We now present experimental results demonstrat-
induction shows that these benchmarks have at leasting the effectiveness of our methods for finding per-
2(=1/2 perfect packings. We omit the simple details. fect packings. We use the benchmarks developed by
Hopper, since, as we have discussed, part of the moti-
vation for this work was to determine what size prob-
lems make suitable benchmarks. (Other benchmarks
for strip packing, including benchmarks with no per-

Our methods for efficiently handling perfect pack- fect packings, are currently collected at [18].) All in-
ings can be applied when the rectangle dimensions stances have perfect packings of dimension 200 by
are integers to determine if the optimal packing con- 200. The instances are derived by recursively splitting
tains only a small amount of unused space. This can the initial large rectangle randomly into smaller rec-
be achieved by simply introducing a number ok 1L tangles; for more details, see [9]. This benchmark set
squares, with the number of squares corresponding tocontains problems with size ranging from 17 to 197
the amount of unused space that needs to be filled torectangles. We evaluate our algorithms on the non-
give a perfect packing. For example, if the input con- guillotinable instances from this set, collections N1
sists of rectangles with total area 2498, and the target (17 rectangles) through N3 (29 rectangles), each con-
width is 50, one can add two it 1 squares and test taining 5 problem instances.

2.4. Near-perfect packings

whether a perfect 5& 50 packing is possible using As shown in Table 1, our branch-and-bound algo-
our algorithm. The additional rectangles increase the rithm quickly finds perfect packings for all benchmark
branching factor, although note that allx11 rectan- instances with 17 and 25 rectangles and 4 out of 5

gles can be treated as of the same type, so the branchinstances with 29 rectangles. Our table provides the
ing increase fok 1 x 1 rectangles is not as large as for number of iterations, or placed rectangles, required to
k rectangles with distinct sizes. find the perfect packings for both the BL and SG algo-

N. Lesh et al. / Information Processing Letters 90 (2004) 7-14 13

Table 1 Table 2

Exhaustive branch-and-bound for perfect packings with gap prun- Exhaustive branch-and-bound for perfect packings with gap prun-
ing, using the BL heuristic and the SG heuristic. The best- ing, using both the BL and LB heuristics in parallel and the SG and
performing previous methods produce solutions at best 5% above SVG heuristics in parallel

optimal [9] Dataset Size Num. lterations to solve lIterations to solve
Dataset Size Num. lIterations to solve Iterations to solve solved (BL-LB) (SG-SVG)
solved (BL) (S6) N1 17 95 4286 4330
N1 17 55 2590 2728 N2 25 55 9438838 5317430
N2 25 55 3,663 0886 27358412 N3 29 55 253189132 125491706
N3 29 45 17,6558005 6,7793165

We found in our experiments that our algorithm
rithms. Interms of time, the N1 instances are all solved took many more iterations to solve some prob|ems
in less than a second; the N2 instances require on averthan the average, and could not solve some prob|ems
age under two minutes; and the N3 instances that wereeven with very large numbers of iterations. We con-
solved required on average under 10 MifThe last jectured that the effectiveness of pruning a given pre-
29-rectangle problem was not solved even when the fix might depend significantly on the rule used to se-
programs were run for several hours.) As typical of |ect the valid point to place the rectangles. Although
experimental work, we expect the code could be opti- BL and SG both failed to solve the same problem
mized to run much faster. in N3, these two rules are quite similar in that they

We were significantly aided by the solution- often choose the same valid point. A more interest-
richness of the instances. Our algorithm found a so- |ng Comparison is between BL, which chooses the
lution after exploring, on average, about 1% of the pottom-most and then leftmost valid point, and the
search space. variation choosing the leftmost and then bottom-most

The gap-pruning is also extremely effective. On valid point, which we call LB. BL and LB have very
average, our algorithm requires 11,988.6 iterations to different behaviors on the same prefix and hence the
solve the N1 cases with BL and 11,621.6 iterations total amount of pruning may differ dramatically on
with SG with these pruning methods turned off, com- the same problem. Similarly, we can contrast choos-
pared to only 259.0 and 272.8 iterations, respectively, ing based on the smallest horizontal gap (which is SG)
on average with the pruning. Additionally, pruning and the smallest vertical gap, which we call SVG.
seemed necessary to solve most of the larger prob- For example, the problem in N3 which could not be

lems within a few hours. Without the pruning, our al-
gorithm was only able to solve two of the N2 cases
with BL and four with SG within an hour. Similarly,
for the N3 problems, without pruning our algorithm
solved none of the problems with BL and only one
with SG in 200,000,000 iterations (which took at least
2.5 hours to perform). Roughly speaking, the prun-

solved with BL or SG within 200,000,000 iterations
(even with pruning) was solved by LB in 2,440,331
iterations and by SVG in 4,255,661 iterations. We
experimented with an implementation that runs BL
and LB (or SG and SVG) in parallel, alternating
iterations. This approach is worse than using either
rule by itself if the number of iterations required by

ing seems to provide at least an order of magnitude each rule are within a factor of two of each other,

speedup for problems of this size.
Overall, SG seems to outperform BL. It certainly

which seems to be the typical case. However, the
performance can be dramatically better than using

requires fewer iterations to solve these benchmark one rule on the problems on which that rule does

problems. It is possible that BL is amenable to more
efficient implementation, but we suspect that SG is
slightly superior to BL for finding perfect packings.

3 All times reported in this paper are for experiments run on
a Linux machine with a 2000 MHz Pentium processor running
unoptimized Java code.

very poorly. Thus, we expect this approach to raise
the median but lower the mean number of iterations
required.

Table 2 shows results from our experiments. The
N1 problems are sufficiently easy that this two-rule
approach is worse than BL or SG alone. However,
on average, the N2 problems were solved with many

14

fewer iterations by the two-rule approach. This is
primarily due to the fact that one problem in N2 took
vastly more iterations for both BL and SG than with

two rules. For example, BL took 13,676,756 iterations
to solve the problem while LB took 411! For N3, the

two-rule approach solved all the problems.

3. Conclusion

We have described and experimented with a sim-
ple branch-and-bound approach for 2D rectangular
strip packing problems in the case of perfect packings.
The branch-and-bound algorithm is enhanced with a
dynamic programming mechanism for determining if
gaps can be filled that proves surprisingly effective on
benchmark problems. We expect that further improve-
ments to the method that may allow larger problems
to be handled with branch-and-bound techniques, ei-
ther by improving the upper bounding method used
for gaps or finding other ways to lower bound wasted
space.

References

[1] B.S. Baker, E.G. Coffman Jr., R.L. Rivest, Orthogonal pack-
ings in two dimensions, SIAM J. Comput. 9 (1980) 846-855.

[2] B.S. Baker, D.J. Brown, H.P. Katseff, A/8 algorithm for two-
dimensional packing, J. Algorithms 2 (1981) 348-368.

[3] J.R. Bitner, E.M. Reingold, Backtrack programming tech-
nigues, Comm. ACM 18 (11) (1975) 651-656.

[4] D.J. Brown, An improved BL lower bound, Inform. Process.
Lett. 11 (1980) 37-39.

[5] B. Chazelle, The bottom-left bin-packing heuristic: an efficient
implementation, IEEE Trans. Comput. 32 (8) (1983) 697-707.

N. Lesh et al. / Information Processing Letters 90 (2004) 7-14

[6] E.G. Coffman, M.R. Garey, D.S. Johnson, Approximation al-
gorithms for bin-packing: an updated survey, in: G. Ausiello,
M. Lucertini, P. Serafini (Eds.), Algorithm Design for Com-
puter Systems Design, Springer-Verlag, Berlin, 1984, pp. 49—
106.

[7] H. Dyckhoff, Typology of cutting and packing problems,
European J. Oper. Res. 44 (1990) 145-159.

[8] S.P. Fekete, J. Schepers, On more-dimensional packing IlI:
exact algorithms, available as a preprint at Mathematisches
Institut, Universitéat zu Koln, preprint key zpr97-290.

[9] E. Hopper, Two-dimensional packing utilising evolutionary
algorithms and other meta-heuristic methods, Ph.D. thesis,
Cardiff University, UK, 2000.

[10] E. Hopper, B.C.H. Turton, An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem,
European J. Oper. Res. 128 (1) (2000) 34-57.

[11] M. lori, S. Martello, M. Monaci, Metaheuristic algorithms for
the strip packing problem, in: P.M. Paradolos, V. Korotkith
(Eds.), Optimization and Industry: New Frontiers, Kluwer
Academic, Dordrecht, 2003, pp. 159-179.

[12] C. Kenyon, E. Remilia, Approximate strip-packing, in: Pro-
ceedings of the 37th Annual Symposium on Foundations of
Computer Science, 1996, pp. 31-36.

[13] R.E. Korf, Optimal rectangle packing: initial results, in: Pro-
ceedings of the International Conference on Automated Plan-
ning and Scheduling (ICAPS-03), Trento, Italy, 2003.

[14] N. Lesh, J. Marks, A. McMahon, M. Mitzenmacher, New ex-
haustive, heuristic, and interactive approaches to 2D rectangu-
lar strip packing, MERL Technical Report TR2003-05, 2003.

[15] A. Lodi, S. Martello, M. Monaci, Two-dimensional packing
problems: a survey, European J. Oper. Res. 141 (2) (2003)
241-252.

[16] S. Martello, M. Monaci, D. Vigo, An exact approach to the
strip packing problem, INFORMS J. Comput. 15 (3) (2003)
310-319.

[17] D. Sleator, A 2.5 times optimal algorithm for packing in two
dimensions, Inform. Process. Lett. 10 (1980) 37—40.

[18] http://www.or.deis.unibo.it/research_pages/ORinstances/
2sp.zip.

