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Abstract

We introduce BubbleSearch, a general approach for extending priority-based greedy heuristics. Following the frame
cently developed by Borodin et al., we considerpriority algorithms, which sequentially assign values to elements in some fixe
adaptively determined order. BubbleSearch extends priority algorithms by selectively considering additional orders near
good ordering. While many notions of nearness are possible, we explore algorithms based on the Kendall-tau distance (a
as the BubbleSort distance) between permutations. Our contribution is to elucidate the BubbleSearch paradigm and expe
demonstrate its effectiveness.
 2005 Published by Elsevier B.V.
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1. Introduction

Recently, Borodin, Nielsen, and Rackoff introduc
a framework that encompasses a large subclas
greedy algorithms, dubbedpriority algorithms [1,4].
Priority algorithms have historically been used for a
are especially effective at solving scheduling and pa
ing problems. We provide a formalization below, b
the essential contribution of the framework is to rep
sent priority algorithms with two functions: aplacement
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function that sequentially assigns values to eleme
and anordering function that determines the order
which elements are assigned values. For example
First-Fit-Decreasing algorithm for bin packing sequ
tially places items in order of decreasing size, wh
each item is placed into the lowest-numbered bin
which it will fit. Priority algorithms are commonly use
because they are simple to design and implement,
quickly, and often provide very good heuristic solutio
Additionally, many priority algorithms have been show
to have a bounded competitive ratio.

In work on heuristics and metaheuristics, the follo
ing idea has appeared in many guises: while the s
tions produced by greedy algorithms are typically qu
good, there are often better solutions “nearby” that
be found with small computational effort by pertur
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ing the greedy construction. Early work in this area w
done by Hart and Shogan [8]. This idea is also part of
basis for Greedy Randomized Adaptive Search Pr
dures, or GRASP algorithms (see, e.g., [14] and the
erences therein). GRASP algorithms have two pha
The construction phase generates solutions in a gr
fashion, introducing some randomness to obtain m
solutions. The local search phase attempts to imp
these solutions via a local search heuristic, in orde
reach a local optimum.

We introduce a generic extension to the priority
gorithm framework for specifying in which order vari
tions of the priority algorithm’s ordering should be ev
uated. This approach yields algorithms for finding be
solutions given additional running time. The GRAS
literature provides several possible methods for pert
ing the ordering that can be easily represented wi
our framework. In this paper, we focus on a differe
method for perturbing the original ordering based on
Kendall-tau distance. The Kendall-tau distance is a
known as the BubbleSort distance, which is why we
our approach BubbleSearch. Additionally, as descri
in Section 2.5, BubbleSearch allows a simple mec
nism for replacing the base ordering to perturb in fut
iterations. The mechanism substantially improves
performance of our algorithms in some of the examp
below.

BubbleSearch is domain independent: our gen
implementation treats the ordering and placement fu
tions of a priority algorithm as black boxes, and c
therefore easily extend any priority algorithm that u
these components. While the particular ordering
placement functions for a priority algorithm must
constructed to be effective in that problem doma
BubbleSearch does not require any additional dom
specific knowledge.

We provide results from case studies for seve
problems: rectangular strip packing, jobshop sche
ing, and edge crossing. (We omit results for other pr
lems for lack of space.) We show that BubbleSea
can significantly improve upon the priority algorith
it extends after evaluating only a small number of
derings. For all three problems, the average resu
randomized BubbleSearch after evaluating 100 or
ings was always at least 20% closer to the optimal t
the average result of the original priority algorith
The results continue to improve as BubbleSearch e
uates more orderings. We also compare BubbleSe
to the naïve randomized strategy that applies the pl
ment rule to permutations chosen uniformly at rand
This approach is well known but usually ineffective.
nally, BubbleSearch can also be seen as an altern
.

to the typical randomized greedy strategies used in
construction phase of GRASP algorithms. We there
compare BubbleSearch to suggested strategies from
GRASP literature. We find that BubbleSearch perfo
at least as well or better in almost all cases.

To summarize, our contributions are the following

• A consistent formalization for BubbleSearch a
priority algorithms. This formalization leads
a domain-independent implementation, as wel
several interesting and novel variations, and m
yield a base for future theoretical results.

• A code base for implementing BubbleSearch al
rithms. This code base is freely available for
search purposes.

• The introduction of a replacement mechanism t
improves both BubbleSearch and similar GRA
strategies.

• Experimental results demonstrating the effecti
ness of BubbleSearch in general, including its
fectiveness compared to similar standard heuris

2. Priority algorithms and BubbleSearch

2.1. Priority algorithms

We first introduce terminology for optimizatio
problems. Aproblemis characterized by a universeU
of elements and a universeV of values. Aproblem in-
stanceincludes a subset of elementsE ⊂ U . A solution
is a mapping of elements inE to a value inV . We use
the termpartial solutionto emphasize that only a su
set of the elements inE may have values. The proble
definition also includes a total ordering (with ties)
solutions.

Along the lines of Borodin et al., we define aplace-
ment functionf as a function which maps a partial s
lution and an element to a value for that element.

A fixed priority algorithmcan be defined from
placement functionf and anordering functiono. The
input to the priority algorithm is a problem instanceI .
The ordering function mapsI to an ordered sequenc
of the elements inI . Let o(I) be x1, . . . , xn. Let S0
be an empty mapping, and for 1� i � n, let Si be the
mapping defined by extendingSi−1 by addingv(xi) =
f (Si−1, xi). The priority algorithm returns the solutio
Sn. (In some cases, a partial solutionSk could be re-
turned; this will not be the case for any algorithms
this paper.) The key points are that a fixed priority al
rithm requires an ordering of all elements in the probl
instance; the algorithm is greedy, in that the value
signed toxi is a function only of previously assigne



N. Lesh, M. Mitzenmacher / Information Processing Letters 97 (2006) 161–169 163

de-

t
rder

of

lues
ove,

is
r-

t no
the
ol-
nd

ion,
as-
s a

he
by
lgo-
de-
that
ies

to
he
will
that
lds
-

st-
ral-
est-
ribe
ity

p; if
d

re

ri-
s to
pri-

nd-

ce-
ion

ruc-
ich
rep-
ion
ap-

h
d

-
ly

r

ach
nts
set-
t

e
e

ng

n
uni-

at

-
he
his

de-

e
.

the
re-
all-
elements; and the value of an element is fixed once
cided.

An adaptive priority algorithmis similar, except tha
elements are reordered after each placement. The o
ing functiono now takes as input a problem instanceI

and a partial solutionS, and returns an ordered list
all elements inI not assigned a value inS. Let S0 be
an empty mapping, and for 1� i � n let xi be the first
element ofo(I, Si−1). That is,xi is the first unplaced
element in the adaptive ordering based on the va
assigned to the previously placed elements. As ab
let Si be the mapping defined by extendingSi−1 with
v(xi) = f (Si−1, xi).

A simple example distinguishing these variations
provided by the well-known heuristics for vertex colo
ing. The goal is to color the vertices of a graph so tha
two endpoints of an edge have the same color with
minimum number of colors. Let the set of possible c
ors be{1,2, . . .}. Here the elements are the vertices a
the values are the colors. A natural placement funct
given a partial solution and an additional vertex, is to
sign the vertex the lowest-numbered color that yield
valid coloring consistent with the partial solution. T
standard fixed priority algorithm orders the vertices
decreasing degree. The related adaptive priority a
rithm orders the vertices by decreasing remaining
gree, which does not count edges involving a vertex
has already been colored in the partial solution. (T
can be broken in an arbitrary or random fashion.)

2.2. Anytime priority algorithms

An anytime priority algorithmis an extension of a
fixed or adaptive priority algorithm that continues
apply its placement function to new orderings of t
problem elements. It can be halted at any point and
return the best solution it has evaluated so far. Note
according to our definitions, a placement function yie
a solution if applied toanyordering of the problem ele
ments.

In fixed and adaptive priority algorithms, the highe
priority element is placed at each step. Our gene
ization is to choose elements other than the high
priority element at each step. To more easily desc
this generalization for both fixed and adaptive prior
algorithms, we introduce the notion of adecision vec-
tor (a1, a2, . . . , an). The numberaj represents which
remaining element should be considered at each ste
aj = k, then thekth-highest-priority element is place
in step j . Specifically, for 1� i � n, we modify the
above definition ofSi by lettingxi be theaj th element
of o(I) for fixed priority algorithms or ofo(I, Si−1) for
-

adaptive priority algorithms. It follows that we requi
1� ai � n − i + 1 in the decision vector.

With the above formulation, we can characterize p
ority algorithms by how they choose decision vector
evaluate. For example, standard fixed and adaptive
ority algorithms evaluate a single ordering correspo
ing to the all-ones vector 1n = (1,1, . . . ,1). A simple
anytime priority algorithm repeatedly applies the pla
ment function to random orderings. In terms of decis
vectors, this corresponds to choosing eachai indepen-
dently and uniformly at random from[1, n − i + 1].

2.3. GRASP algorithms

Although not usually described as such, the const
tion phase of many GRASP implementations, wh
generates solutions in a greedy fashion, can be
resented in our framework using an ordering funct
and a placement function. For example, a common
proach, which we call GRASP-k, is to select at eac
step one of the topk elements remaining for some fixe
constantk; usually k is two or three. In our termi
nology, a decision vector is constructed by random
choosing eachai independently and uniformly ove
min(k, n − i + 1).

Another common GRASP approach is to assign e
element ascoreafter each placement, where eleme
with high scores are more desirable. In the adaptive
ting, there is a scoring functions which takes as inpu
a problem solutionI and a partial solutionS and re-
turns a score for all elements inI not assigned a valu
in S. Often an ordering function is derived from som
scoring function, although in our framework a scori
function is not necessary. Let�i−1 andui−1 be the low-
est and highest scores afteri − 1 elements have bee
placed. Then the next element be to be placed is
formly selected from all elements whose score is
leastui−1 − α(ui−1 − �i−1), whereα < 1.0 is a pre-
determined parameter. We call this variation GRASPα.
(Alternatively, α can be changed dynamically as t
process runs. See [14] for more information.) In t
case the possible range of values for eachai depends
on the results of the scoring function, and hence the
cision vectors cannot be computed in advance.

For both GRASP-k and GRASP-α, there are som
orderings of elements which can never be evaluated

2.4. Kendall-tau distance

Our approach is to explore solutions close to
one determined by the priority algorithm, which cor
sponds to evaluating decision vectors close to the
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ones vector. While there are many notions of closen
we found Kendall-tau distance to be well justified the
retically and useful algorithmically.

The Kendall-tau distance is defined as follows. C
sider two orderingsπ andσ of an underlying set{x1,

. . . , xn}, so thatπ(i) is the position ofxi in the order-
ing π . Then

dKen(π,σ ) =
∑

1�i<j�n

I
[
π(i) < π(j) andσ(i) > σ(j)

]
,

whereI [z] is 1 if expressionz is true and 0 otherwise
The Kendall-tau distance is the minimum number
transpositions needed to transformπ to σ , and hence
it is also referred to as the BubbleSort distance.

Suppose that we have an ordering of elementsπ =
x1, . . . , xn. Consider the orderingσ determined by a de
cision vectora applied toπ . The following lemma is
easily verified.

Lemma 1. The value|a − 1n| is the Kendall-tau dis
tance betweenπ and σ where the norm is theL1 dis-
tance.

2.5. BubbleSearch

We now present BubbleSearch, a generic appro
for producing anytime priority algorithms from fixed
adaptive priority algorithms. In particular, we descr
natural exhaustive and random methods for determi
which decision vectors to evaluate.

An exhaustive anytime algorithm must eventua
consider all possiblen! decision vectors with 1� ai �
n − i + 1. We refer to this set of vectors asOn. As
considering alln! decision vectors is likely to be too e
pensive computationally, the order in which the vect
are evaluated is important to performance. Ourexhaus-
tive BubbleSearchalgorithm uses the following orde
We define a total ordering onOn: a < b if |a − 1n| <

|b − 1n|; and if |a − 1n| = |b − 1n|, thena < b if and
only if a comes beforeb in the standard lexicograph
ordering for vectors. Considering decision vectors
this order is easy to implement in practice. For the c
where |a − 1n| = |b − 1n|, alternative total ordering
could be used to determine whena < b.

Given a fixed priority algorithm, let us call the orde
ing of elements in a particular problem instance de
mined by the ordering function thebase ordering. Our
exhaustive BubbleSearch algorithm searches outw
from the base ordering in order of increasing Kend
tau distance.

For many problems, small perturbations to an e
ment ordering tend to make only a small difference
,solution quality. In this case, larger perturbations m
be more effective. This motivates ourrandomized Bub
bleSearchalgorithm, which chooses decision vectors
try at each step randomly according to some probab
distribution. A decision vectora is chosen with proba
bility proportional tog(|a − 1n|) for some functiong.
We suggest using the function(1 − p)|a−1n| for some
parameterp, which determines how near the base
dering our randomly chosen orderings tend to be. In
case of fixed priority algorithms, this has a natural
terpretation: ifτ is the base ordering, then at each s
an orderingσ is chosen with probability proportional t
(1− p)dKen(τ,σ ).

We note that a similar idea has appeared previo
in the GRASP literature. Bresina [5] considers cho
ing candidate elements from a rank ordering in a bia
fashion; one of the bias functions suggested is to ch
at each step theith ranked item with probability propor
tional to e−i . Our suggestion is an obvious generali
tion, choosing theith item with probability proportiona
to (1− p)−i for somep. In our experiments below, th
best value ofp varies by application, so our generaliz
tion improves performance. Choosing according to
distribution is easily implemented efficiently.

Both the exhaustive and randomized BubbleSea
algorithms apply equally well to dynamic priority a
gorithms. Because the ordering functiono changes a
elements are placed, we cannot directly tie this or
ing to the Kendall-tau distance between orderings
we can in the fixed priority case. We feel however t
this is approach is still quite natural for dynamic prior
algorithms.

BubbleSearch offers a great deal of flexibility. F
example, there can be several ordering functions,
the algorithm cycling though them (or running on s
eral ordering functions in parallel). Similarly, there c
be several placement functions. Local search can
done as postprocessing, as with GRASP; as a spe
example, we can truncate the lastk fields of the decision
vector, and exhaustively search over all completion
the firstn − k fields.

The most successful variant of BubbleSearch
have found applies to fixed priority algorithms. In su
algorithms, the base ordering does not need to rem
static. If an ordering leads to a new best solution
can replace the base ordering (or be used as an
tional base ordering). Decision vectors are then app
from the new base ordering. We refer to the variat
that replaces the base ordering asBubbleSearch with
replacement, which is apparently novel and perform
very well in the experiments described below. Repla
ment can be seen as a simple type of memory or le
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ing added to the BubbleSearch approach. While o
types of memory or learning have been suggested
GRASP algorithms [14], this simple but useful tec
nique does not appear to have been explored. How
it can be easily incorporated into many GRASP stra
gies.

3. Applications of BubbleSearch

We present experiments demonstrating the effect
ness of BubbleSearch. We believe these results pro
a strong case for the utility of BubbleSearch for a
problem on which a priority algorithm is currently use
While we have experimented with both exhaustive
random BubbleSearch, because random BubbleSe
performs better in all the cases below, we present o
the results for it.

For each experiment, we compare BubbleSearc
the naïve algorithm that repeatedly places the elem
in a random order, and to three variations of GRAS
GRASP-k, GRASP-k with replacement, and GRASP-α.
In all cases below, our ordering function was based o
scoring function, so GRASP-α was easily applied. No
tice that replacement cannot be applied to GRASP-α, as
it is not based on fixed priorities.

For these experiments, we use the same (uno
mized) Java implementation of BubbleSearch. We
veloped our generic BubbleSearch code using the H
Toolkit, Java middleware for rapidly prototyping inte
active optimization systems [10]. This code provides
interface for defining the domain-specific compone
for each application, including the problem definitio
placement function, and ordering functions. Our gen
BubbleSearch code treats the priority algorithm’s co
ponents as black boxes. In each iteration, BubbleSe
evaluates one ordering; it always first applies the pla
ment function to the base ordering and then consi
perturbations. When more than one ordering functio
provided, the BubbleSearch algorithm iterates thro
them in a round-robin fashion. This code is freely av
able for research or educational purposes.2

3.1. 2D strip packing

In the two-dimensional (2D) rectangular strip pac
ing problem, the input is a list ofn rectangles with
their dimensions and a target widthW . The goal is to
pack the rectangles without overlap into a single r
tangle of widthW and minimum heightH . We restrict

2 Contact lesh@merl.com for details.
,

h

ourselves to the orthogonal, fixed-orientation variati
where rectangles must be placed parallel to the h
zontal and vertical axes and the rectangles canno
rotated. (For more work on this problem, including
sults for the variation in which rectangles can be rota
by 90 degrees and for an interactive system that inclu
BubbleSearch, see [13].) For all of our test cases, al
mensions are integers. Even with these restrictions
rectangular strip packing is NP-hard.

3.1.1. Applying BubbleSearch
The Bottom-Left (BL) placement function, intro

duced in [2], is probably the most widely studied a
used heuristic for placing rectangles for the fixed-ori
tation problem. BL sequentially places rectangles fi
as close to the bottom and then as far to the left as
can fit relative the already-placed rectangles. While
cannot find the always find the optimal packing ev
if applied to every permutation of rectangles [2,6],
performs very well in practice when applied under
ordering functions (or scoring for GRASP-α) of de-
creasing height, width, perimeter, and area [9]. We r
to taking the best result from BL on all four of the
ordering functions as Bottom-Left-Decreasing (BLD
For more details see the thesis of Hopper [9].

We evaluated BubbleSearch using BL and the f
ordering functions on benchmarks recently develo
by Hopper. All instances in this benchmark can
packed with no empty space into a square with s
length 200. The instances are derived by recursiv
splitting the initial large rectangle randomly into smal
rectangles; for more details, see [9]. This benchm
set contains problems with size ranging from 17 to 1
rectangles. We use the non-guillotinable instances f
this set, collections N1 (17 rectangles) through N7 (1
rectangles), each containing 5 problem instances.
found the instances in N1–N3 easy to solve using
haustive search [12].

For all our experiments, we pack the rectangles in
strip of width 200, so that the optimal height is 200. W
score a solution by the percentage over optimal. E
entry in our tables is an average over all relevant pr
lem instances. We tuned our BubbleSearch algorit
using collections N1–N3 and tested them on N4–
We ran randomized BubbleSearch with and without
placement on N1–N3 for 10,000 iterations and w
p = 0.1 ∗ i for 1 � i � 9. As shown in Table 1, th
bestp with and without replacement was 0.6. We u
this p in our experiments on N4–N7. We also tun
the GRASP algorithms on N1–N3 and tested them
N4–N7. We ran GRASP-k with and without replace
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Table 1
Tuning the input probability for randomized BubbleSearch on Packing

Replacement BubbleSearchp value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

without 8.033 7.433 6.533 6.300 6.033 5.900 6.400 6.567 7.767
with 9.000 8.367 7.567 6.400 6.400 6.167 6.267 6.267 6.767

Table 2
BubbleSearch applied to Packing problems

Iterations Random BubbleSearch GRASP-k GRASP-α

w/o replace
p = 0.6

w/ replace
p = 0.6

w/o replace
k = 3

w/ replace
k = 2

α = 0.3

4 (base) N/A 6.25 6.25 6.25 6.25 6.25
100 12.20 4.50 4.52 4.48 4.65 4.85
500 10.65 3.92 3.97 4.05 4.18 4.33

1000 9.93 3.77 3.85 3.90 4.13 4.20
5000 8.90 3.50 3.40 3.65 3.65 3.63

10000 8.70 3.35 3.32 3.50 3.38 3.58
15000 8.40 3.30 3.22 3.48 3.35 3.50
20000 8.28 3.27 3.15 3.35 3.28 3.43
ub-
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ment for 10,000 iterations and withk = 2, . . . ,10. We
ran GRASP-α with α = 0.1∗ i for 1� i � 9.

3.1.2. Results
Table 2 shows the results for applying several B

bleSearch variations and random orderings to BL on
20 instances in the N4–N7 collections. The first r
shows the results from BLD, which requires an ite
tion for each of the four base orderings.

While using even 20,000 random orderings does
perform as well as BLD, just 100 iterations of ea
variation of BubbleSearch significantly improved up
BLD. In particular, randomized BubbleSearch witho
replacement scored 28% closer, on average, to
mal than BLD after 100 iterations. These improveme
continue, but taper off over time. BubbleSearch p
forms better than the GRASP variants over almos
iterations, although the improvement is small.

For both randomized BubbleSearch and GRASPk,
replacement offers minor gains. However, this was
the case for the training data N1–N3 above, in wh
randomized BubbleSearch performed better withou
placement. More experimentation would be require
determine if replacement is truly valuable for this pro
lem, although we believe these results are encourag

The BubbleSearch results are the best we know
for the 2D Strip Packing problem, with the exception
the results provided by our interactive system [13]. T
system allows human users to guide the BubbleSe
algorithm and modify solutions directly.
3.2. Jobshop scheduling

The Jobshopapplication is a widely-studied tas
scheduling problem. In the variation we consider
problem consists ofn jobs andm machines. Each jo
is composed ofm operations which must be perform
in a specified order. The ordered list of operations
each job is called an itinerary. Each operation mus
performed by a particular machine, and has a fixed
ration. In our variation, every job has exactly one o
eration that must be performed on each machine. E
machine can process only one operation at a time.

A solution is a jobshop schedule that specifies a
ter for each machine, which indicates the order in wh
the operations will be performed on that machine. Gi
a solution, each operation starts as soon as all pred
sors on its machine’s roster and predecessors on its
itinerary have completed. The goal is to find a sch
ule which minimizes the time that the last job finish
called the makespan.

Several priority algorithms exist for Jobshop sched
ing. These are often used to quickly find reasona
good solutions, to find near-optimal solutions for e
problems, or to find a starting solution for a more
phisticated search algorithm such as tabu search.

3.2.1. Applying BubbleSearch
While a wide variety of ordering rules have been p

posed (e.g., [3]) for jobshop scheduling, we focused
popular rule which orders operations by the Most W
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Table 3
Tuning the input probability for randomized BubbleSearch on Jobshop

Replacement BubbleSearchp value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

without 1159.00 1118.50 1114.25 1121.75 1118.50 1121.75 1129.50 1138.00 1141.25
with 1176.25 1129.50 1132.00 1104.00 1103.75 1101.50 1093.00 1102.00 1115.50
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Remaining (MWKR). The work remaining for an o
erationo is the sum of the durations of the operatio
subsequent too on its job. MWKR is a fixed ordering
function.

We experimentally compared two placement fu
tions. ThenonDelayplacement function simply sched
ules the given operationo at the earliest time possib
after the last currently-scheduled operation ono’s ma-
chine.3 The bestPlacefunction considers insertingo
at every location ino’s machine’s current roster, an
chooses the location that produces the partial sche
with minimum makespan (after repacking to elimina
any unnecessary delays in the schedule). The bestP
function is likely to produce a better schedule, but
quires more computation time per placement.

Note that the bestPlace function can change the
at which already placed operations are scheduled. H
ever, once an operation is placed its relative posi
to (i.e., before or after) all the other placed operati
on its machine never changes. Therefore, to define b
Place as a placement function, it should return a rela
value and not an absolute time for each operation. A
all operations are placed, their times can be comp
from these values.

We compared the two placement functions us
randomized BubbleSearch, without replacement,
p = 0.5. We ran the algorithm with each placeme
function for 20 minutes on the four instances of s
20×20 named yn1–yn4 [15] that are available at
OR-Library (http://www.ms.ic.ac.uk/info.html). Tab
entries present the average makespan found for the
evant problems. For these instances and algorithm
tings, BubbleSearch performed an average of 17,3
iterations with bestPlace placement and 802,516.8
erations with nonDelay in 20 minutes. However, t
average makespan of bestPlace was 1141.50 while
Delay was 1253.75. Based on this experience, we
bestPlace for the remainder of our experiments.

We then tuned the input probability for randomiz
BubbleSearch, as above, by running it on the yn1–
problems for 10,000 iterations withp = 0.1∗ i for 1 �

3 However, if schedulingo after the last scheduled operation wou
introduce a cycle, we introduce it earlier.
e

-

-

-

i � 9. As shown in Table 3, the bestp without replace-
ment was 0.3 and with replacement was 0.7. We u
the same test data and number of iterations to tune
GRASP algorithms. We ran GRASP-k with and with-
out replacement withk = 2, . . . ,10. We ran GRASP-α
with α = 0.1 ∗ i for 1 � i � 9. Based on these re
sults, it appeared that even smaller values ofα would
lead to better performance, so we also tested GRASα

with α = 0.012,0.025, and 0.05 as well. We found tha
α = 0.025 offered the best performance.

3.2.2. Results
We evaluated BubbleSearch on the 20 proble

called la21–la40, also available in the OR-Libra
These problems have sizes 15×10, 20×10, 30×10, or
15× 15. We computed a conservative lower bound
each problem by taking the maximum total duration
operations scheduled for any single job or machine.
average lower bound was 1227.9 for these problem

The results in Table 4 demonstrate the value of B
bleSearch. Even using 20,000 random orderings d
not perform as well as the priority algorithm. On t
other hand, even 100 iterations of randomized B
bleSearch significantly improved upon it. In particul
randomized BubbleSearch without replacement sc
22.3% closer, on average, to our conservative lo
bound than the priority algorithm, after 100 iteration

For this problem, we find that BubbleSearch wi
out replacement performs essentially the same as
best GRASP variation without replacement. Our
placement mechanism consistently improves both B
bleSearch and GRASP-k with GRASP-k having a slight
advantage.

3.3. Edge crossing

Edge-crossing minimization is a graph layout pro
lem [7]. A problem consists ofm levels, each withn
nodes, and edges connecting nodes on adjacent le
The goal is to rearrange nodes within their level to m
imize the number of intersections between edges.

3.3.1. Applying BubbleSearch
We used a placement function similar to bestPl

above, which positions each node in the best loca
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Table 4
BubbleSearch applied to Jobshop problems

Iterations Random BubbleSearch GRASP-k GRASP-α

w/o replace
p = 0.3

w/ replace
p = 0.7

w/o replace
k = 8

w/ replace
k = 2

α = 0.025

1 (base) N/A 1672.60 1672.60 1672.60 1672.60 1672.6
100 2220.80 1573.45 1567.95 1580.20 1562.80 1590.70
500 2147.85 1554.65 1533.60 1559.90 1529.25 1580.90

1000 2104.15 1547.15 1523.65 1546.05 1522.60 1571.75
5000 2028.75 1528.40 1502.00 1531.45 1500.50 1568.75

10000 2007.20 1523.00 1497.35 1523.70 1489.10 1566.10
15000 1984.45 1520.45 1494.55 1521.25 1486.35 1564.9
20000 1981.55 1518.30 1492.25 1517.75 1485.70 1562.35

Table 5
Tuning the input probability for randomized BubbleSearch on Crossing

Replacement BubbleSearchp value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

without 144.300 140.000 144.600 145.400 146.000 149.600 157.600 157.900 171.300
with 153.800 136.100 124.900 127.700 127.000 128.600 136.000 146.800 152.600
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will
(in its assigned level) to minimize intersections w
the previously placed nodes. We considered two fac
when developing the ordering function: the number
edges per node, and the closeness of the node to the
dle level. After a modest amount of experimentation,
determined that the best combination was to order no
by decreasing degree, breaking ties by closeness to
dle.

We evaluated BubbleSearch on ten 12×8 graphs with
110 edges that are publicly available.4 To tune thep

parameter for randomized BubbleSearch, we rando
generated 10 other, similar 12×8 graphs. As above, w
ran BubbleSearch 10,000 iterations withp = 0.1 ∗ i

for 1 � i � 9. As shown in Table 5, the bestp with-
out replacement was 0.2 and with replacement was 0.3.
Again, we used the same test data and number o
erations to tune the GRASP algorithms, trying val
k = 2, . . . ,10 for GRASP-k with and without replace
ment and valuesα = 0.1∗ i for 1� i � 9 for GRASP-α.

We also designed an adaptive priority function
this problem. After each node is placed, the rema
ing nodes are reordered in decreasing order of deg
but edges count differently if they are connected
an already-placed node. We tested variations in w
these edges count twice as much and half as much
ran 10,000 iterations of randomized BubbleSearch w
the adaptive priority function on our random grap
with p = 0.5. Counting the “half-placed” edges twic

4 At http://unix.csis.ul.ie/~grafdath/TR-testgraphs.tar.Z.
-

-

,

as much produced the best results, with an ave
of 135.5 intersections, while counting them equa
yielded an average of 147.7 intersections, and coun
them half as much produced an average of 166.1 in
sections. While these results show that the adapt
helps, we choose to emphasize the comparison am
BubbleSearch and the GRASP variants without ad
tivity, for consistency with our previous experiments

3.3.2. Results
The results in Table 6 show the average numbe

intersections of the algorithms over the 10 problem
our benchmark. (Again, all algorithms used the fix
priority function.) BubbleSearch without replaceme
has performance similar to but slightly better than
best GRASP variant without replacement. For this pr
lem, replacement provided dramatic benefits for b
BubbleSearch and GRASP-k. BubbleSearch with re
placement is the best performer (after sufficiently m
iterations).

The optimal answers to these problems are know
contain an average of 33.13 intersections [11]. Our
sults therefore suggest that our initial priority algorith
was rather weak. This also explains why replacem
offers significant advantages; being able to change
order from the priority function should be helpful if th
initial ordering is not very good. Notice that for th
problem the nodes were ordered by decreasing de
which creates a lot of ties, along with an additional
breaking procedure. We suspect that replacement
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Table 6
BubbleSearch applied to Crossing problems

Iterations Random BubbleSearch GRASP-k GRASP-α

w/o replace
p = 0.3

w/ replace
p = 0.3

w/o replace
k = 10

w/ replace
k = 4

α = 0.3

1 (base) N/A 754.90 754.90 754.90 754.90 754.90
100 868.40 414.30 378.00 408.20 378.30 429.10
500 816.30 353.40 266.40 353.40 238.90 379.30

1000 774.60 336.00 218.90 336.40 185.60 360.00
5000 699.30 263.00 139.30 277.40 147.30 325.40

10000 682.10 252.60 121.70 259.40 142.80 312.30
15000 661.30 232.40 114.40 243.20 137.60 295.60
20000 653.80 232.40 108.30 235.50 129.10 292.60
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be especially useful for many similar problems wh
the natural ordering is based on an integer-valued fu
tion (such as the degree) where there can be many
that must be broken in an ad hoc fashion. While non
the algorithms came very close to the optimal answ
a local search could again be implemented in conju
tion with them. Alternatively, we suspect that bet
ordering and placement functions would yield better
sults.

4. Conclusions and future work

We have described a black-box approach for m
fully exploiting the implicit knowledge embedded
priority functions. BubbleSearch can extend any pr
ity algorithm that fits our formulation into an anytim
algorithm. For all the problems we evaluated, Bubb
Search dramatically improved upon the original so
tion with very few iterations and continued to impro
steadily given more time. BubbleSearch compares
vorably with similar GRASP-based variations, and
simple addition of replacing the base ordering wh
a better ordering is found appears to improve per
mance, in some cases dramatically.

There is a great deal of potential future work. On
practical side, we expect that BubbleSearch and B
bleSearch with replacement could improve several o
natural priority algorithms and existing GRASP alg
rithms. On the theoretical side, it would be worthwh
to understand if using additional perturbed ordering
a manner similar to BubbleSearch can yield impro
competitive ratios for priority algorithms. A specifi
question is whether there are any problems for wh
there is a natural and effective fixed priority algorith
with competitive ratioc1, but for which the competitive
ratio can be provably reduced toc2 < c1 by trying all
orderings within Kendall-tau distance 1 (or some ot
fixed constant) from the base ordering.
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