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Abstract

We introduce BubbleSearch, a general approach for extending priority-based greedy heuristics. Following the framework re-
cently developed by Borodin et al., we consigeority algorithms which sequentially assign values to elements in some fixed or
adaptively determined order. BubbleSearch extends priority algorithms by selectively considering additional orders near an initial
good ordering. While many notions of nearness are possible, we explore algorithms based on the Kendall-tau distance (also know
as the BubbleSort distance) between permutations. Our contribution is to elucidate the BubbleSearch paradigm and experimentall
demonstrate its effectiveness.
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1. Introduction function that sequentially assigns values to elements,
and anordering function that determines the order in
Recently, Borodin, Nielsen, and Rackoff introduced which elements are assigned values. For example, the
a framework that encompasses a large subclass ofFirst-Fit-Decreasing algorithm for bin packing sequen-
greedy algorithms, dubbegriority algorithms [1,4]. tially places items in order of decreasing size, where
Priority algorithms haVe historica”y been Used fOI’ al’ld each |tem is p|aced into the |Owest_numbered b|n in
are especially effective at solving scheduling and pack- \yhjch it will fit. Priority algorithms are commonly used
ing problems. We provide a formalization below, but peacayse they are simple to design and implement, run
the essential contribution of the framework is to repre- o ,ickjy and often provide very good heuristic solutions.
sent priority algorithms with two functions:sacement Additionally, many priority algorithms have been shown
to have a bounded competitive ratio.
* Corresponding author. In work on heuristics and metaheuristics, the follow-

, 'E'mla” addresiegEShd@’:e”-com, (N. LeShr)]' ing idea has appeared in many guises: while the solu-
”Tcsizg?;eicns'p;rt"g; Nes; g\:h'\é'g: rgr]:rcu Z%R-9983832 and an_ tiONS produced by greedy algorithms are typically quite
Alfred P. Sloan Research Fellowship. This work was done while vis- 900d, there are often better solutions “nearby” that can
iting Mitsubishi Electric Research Laboratories. be found with small computational effort by perturb-
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ing the greedy construction. Early work in this area was to the typical randomized greedy strategies used in the
done by Hart and Shogan [8]. This idea is also part of the construction phase of GRASP algorithms. We therefore
basis for Greedy Randomized Adaptive Search Proce- compare BubbleSearch to suggested strategies from the
dures, or GRASP algorithms (see, e.g., [14] and the ref- GRASP literature. We find that BubbleSearch performs
erences therein). GRASP algorithms have two phases.at least as well or better in almost all cases.

The construction phase generates solutions in a greedy To summarize, our contributions are the following:
fashion, introducing some randomness to obtain many

solutions. The local search phase attempts to improve e A consistent formalization for BubbleSearch and
these solutions via a local search heuristic, in order to priority algorithms. This formalization leads to

reach a local optimum. a domain-independent implementation, as well as
We introduce a generic extension to the priority al- several interesting and novel variations, and may
gorithm framework for specifying in which order varia- yield a base for future theoretical results.

tions of the priority algorithm’s ordering should be eval- e A code base for implementing BubbleSearch algo-
uated. This approach yields algorithms for finding better rithms. This code base is freely available for re-

solutions given additional running time. The GRASP search purposes.

literature provides several possible methods for perturb- e The introduction of a replacement mechanism that
ing the ordering that can be easily represented within improves both BubbleSearch and similar GRASP
our framework. In this paper, we focus on a different strategies.

method for perturbing the original ordering based onthe e Experimental results demonstrating the effective-

Kendall-tau distance. The Kendall-tau distance is also ness of BubbleSearch in general, including its ef-

known as the BubbleSort distance, which is why we call fectiveness compared to similar standard heuristics.

our approach BubbleSearch. Additionally, as described

in Section 2.5, BubbleSearch allows a simple mecha- 2. Priority algorithms and BubbleSearch

nism for replacing the base ordering to perturb in future

iterations. The mechanism substantially improves the 2.1. Priority algorithms

performance of our algorithms in some of the examples

below. We first introduce terminology for optimization
BubbleSearch is domain independent: our generic problems. Aproblemis characterized by a univergé

implementation treats the ordering and placement func- of elements and a univerdé of values. Aproblem in-

tions of a priority algorithm as black boxes, and can stanceincludes a subset of elemerfisc U. A solution

therefore easily extend any priority algorithm that uses is a mapping of elements if to a value inV. We use

these components. While the particular ordering and the termpartial solutionto emphasize that only a sub-

placement functions for a priority algorithm must be set of the elements iF may have values. The problem

constructed to be effective in that problem domain, definition also includes a total ordering (with ties) on

BubbleSearch does not require any additional domain- solutions.

specific knowledge. Along the lines of Borodin et al., we defingpéace-
We provide results from case studies for several ment functionf as a function which maps a partial so-

problems: rectangular strip packing, jobshop schedul- lution and an element to a value for that element.

ing, and edge crossing. (We omit results for other prob- A fixed priority algorithmcan be defined from a

lems for lack of space.) We show that BubbleSearch placement functiory and anordering functiono. The

can significantly improve upon the priority algorithm input to the priority algorithm is a problem instante

it extends after evaluating only a small number of or- The ordering function maps to an ordered sequence

derings. For all three problems, the average result of of the elements inf. Let o(I) be x1,...,x,. Let So

randomized BubbleSearch after evaluating 100 order- be an empty mapping, and for<li < n, let S; be the

ings was always at least 20% closer to the optimal than mapping defined by extendingj_; by addingv(x;) =

the average result of the original priority algorithm. f(S;_1, x;). The priority algorithm returns the solution

The results continue to improve as BubbleSearch eval- S,. (In some cases, a partial solutidh could be re-

uates more orderings. We also compare BubbleSearchturned; this will not be the case for any algorithms in

to the naive randomized strategy that applies the place-this paper.) The key points are that a fixed priority algo-

ment rule to permutations chosen uniformly at random. rithm requires an ordering of all elements in the problem

This approach is well known but usually ineffective. Fi- instance; the algorithm is greedy, in that the value as-

nally, BubbleSearch can also be seen as an alternativesigned tox; is a function only of previously assigned
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elements; and the value of an element is fixed once de-adaptive priority algorithms. It follows that we require
cided. 1< a; <n—i+1inthe decision vector.

An adaptive priority algorithrris similar, except that With the above formulation, we can characterize pri-
elements are reordered after each placement. The ordereority algorithms by how they choose decision vectors to
ing functiono now takes as input a problem instance  evaluate. For example, standard fixed and adaptive pri-
and a partial solutiors, and returns an ordered list of ority algorithms evaluate a single ordering correspond-
all elements in/ not assigned a value ifi. Let So be ing to the all-ones vector,1= (1,1,...,1). A simple
an empty mapping, and for<d i < n let x; be the first anytime priority algorithm repeatedly applies the place-
element ofo(1, S;_1). That is,x; is the first unplaced ment function to random orderings. In terms of decision
element in the adaptive ordering based on the valuesvectors, this corresponds to choosing eacindepen-
assigned to the previously placed elements. As above,dently and uniformly at random frofd, n —i + 1].
let S; be the mapping defined by extendi§g.; with

v(x;) = f(Si—1, x;). 2.3. GRASP algorithms
A simple example distinguishing these variations is
provided by the well-known heuristics for vertex color- Although not usually described as such, the construc-

ing. The goal is to color the vertices of a graph so that no tion phase of many GRASP implementations, which
two endpoints of an edge have the same color with the generates solutions in a greedy fashion, can be rep-
minimum number of colors. Let the set of possible col- resented in our framework using an ordering function
ors be(l, 2, ...}. Here the elements are the vertices and and a placement function. For example, a common ap-
the values are the colors. A natural placement function, proach, which we call GRASR; is to select at each
given a partial solution and an additional vertex, is to as- step one of the top elements remaining for some fixed
sign the vertex the lowest-numbered color that yields a constantk; usually k is two or three. In our termi-
valid coloring consistent with the partial solution. The nology, a decision vector is constructed by randomly
standard fixed priority algorithm orders the vertices by choosing eachy; independently and uniformly over
decreasing degree. The related adaptive priority algo- min(k,n —i + 1).

rithm orders the vertices by decreasing remaining de-  Another common GRASP approach is to assign each
gree, which does not count edges involving a vertex that element ascoreafter each placement, where elements
has already been colored in the partial solution. (Ties with high scores are more desirable. In the adaptive set-

can be broken in an arbitrary or random fashion.) ting, there is a scoring functionwhich takes as input
a problem solution/ and a partial solutiors and re-
2.2. Anytime priority algorithms turns a score for all elements Innot assigned a value

in S. Often an ordering function is derived from some
An anytime priority algorithmis an extension of a  scoring function, although in our framework a scoring
fixed or adaptive priority algorithm that continues to function is not necessary. Lét_; andu;_1 be the low-
apply its placement function to new orderings of the est and highest scores after 1 elements have been
problem elements. It can be halted at any point and will placed. Then the next element be to be placed is uni-
return the best solution it has evaluated so far. Note that formly selected from all elements whose score is at
according to our definitions, a placement function yields leastu; 1 — a(u;—1 — ¢;_1), wherea < 1.0 is a pre-
a solution if applied t@nyordering of the problem ele-  determined parameter. We call this variation GRAGP-
ments. (Alternatively, « can be changed dynamically as the
In fixed and adaptive priority algorithms, the highest- process runs. See [14] for more information.) In this
priority element is placed at each step. Our general- case the possible range of values for eachiepends
ization is to choose elements other than the highest- on the results of the scoring function, and hence the de-
priority element at each step. To more easily describe cision vectors cannot be computed in advance.
this generalization for both fixed and adaptive priority For both GRASP: and GRASPw, there are some
algorithms, we introduce the notion ofdecision vec- orderings of elements which can never be evaluated.
tor (ai,az, ...,a,). The number; represents which
remaining element should be considered at each step; if2.4. Kendall-tau distance
aj = k, then thekth-highest-priority element is placed
in step j. Specifically, for 1< i < n, we modify the Our approach is to explore solutions close to the
above definition ofS; by letting x; be thea;th element one determined by the priority algorithm, which corre-
of o(I) for fixed priority algorithms or ob(7, S;_1) for sponds to evaluating decision vectors close to the all-



164

N. Lesh, M. Mitzenmacher / Information Processing Letters 97 (2006) 161-169

ones vector. While there are many notions of closeness,solution quality. In this case, larger perturbations may

we found Kendall-tau distance to be well justified theo-
retically and useful algorithmically.

The Kendall-tau distance is defined as follows. Con-
sider two orderingsr ando of an underlying sefx1,

., X}, SO thatr (i) is the position ofx; in the order-
ing . Then

den(m,0) =Y I[x(@i) <7 (j)ando (i) > o (j)],

1<i<j<n

wherel[z] is 1 if expressiory is true and 0 otherwise.

The Kendall-tau distance is the minimum number of

transpositions needed to transformto o, and hence

it is also referred to as the BubbleSort distance.
Suppose that we have an ordering of elements

X1, ..., xp. Consider the ordering determined by a de-

cision vectora applied torwr. The following lemma is

easily verified.

Lemma 1. The valuela — 1, is the Kendall-tau dis-
tance betweemwr and o where the norm is théq dis-
tance.

2.5. BubbleSearch

be more effective. This motivates osandomized Bub-
bleSearctalgorithm, which chooses decision vectors to
try at each step randomly according to some probability
distribution. A decision vectas is chosen with proba-
bility proportional tog(la — 1,|) for some functiong.

We suggest using the functiad — p)!“—1! for some
parameterp, which determines how near the base or-
dering our randomly chosen orderings tend to be. In the
case of fixed priority algorithms, this has a natural in-
terpretation: ifr is the base ordering, then at each step
an orderingr is chosen with probability proportional to
(1— p)dKen(TaU)_

We note that a similar idea has appeared previously
in the GRASP literature. Bresina [5] considers choos-
ing candidate elements from a rank ordering in a biased
fashion; one of the bias functions suggested is to chose
at each step thith ranked item with probability propor-
tional to €. Our suggestion is an obvious generaliza-
tion, choosing theéth item with probability proportional
to (1 — p)~* for somep. In our experiments below, the
best value o varies by application, so our generaliza-
tion improves performance. Choosing according to this
distribution is easily implemented efficiently.

Both the exhaustive and randomized BubbleSearch

We now present BubbleSearch, a generic approachalgorithms apply equally well to dynamic priority al-

for producing anytime priority algorithms from fixed or
adaptive priority algorithms. In particular, we describe

gorithms. Because the ordering functiorchanges as
elements are placed, we cannot directly tie this order-

natural exhaustive and random methods for determining ing to the Kendall-tau distance between orderings, as

which decision vectors to evaluate.

An exhaustive anytime algorithm must eventually
consider all possible! decision vectors with X a; <
n — i+ 1. We refer to this set of vectors &3,. As
considering alk! decision vectors is likely to be too ex-
pensive computationally, the order in which the vectors
are evaluated is important to performance. @xinaus-
tive BubbleSearclalgorithm uses the following order.
We define a total ordering o8,,: a < b if |a — 1,,| <
|b —1,|; and if |a — 1,| = |b — 1,|, thena < b if and
only if a comes beforé in the standard lexicographic
ordering for vectors. Considering decision vectors in

this order is easy to implement in practice. For the case

where|a — 1,| = |b — 1,]|, alternative total orderings
could be used to determine whenc b.
Given a fixed priority algorithm, let us call the order-

we can in the fixed priority case. We feel however that
this is approach is still quite natural for dynamic priority
algorithms.

BubbleSearch offers a great deal of flexibility. For
example, there can be several ordering functions, with
the algorithm cycling though them (or running on sev-
eral ordering functions in parallel). Similarly, there can
be several placement functions. Local search can be
done as postprocessing, as with GRASP; as a specific
example, we can truncate the ladtelds of the decision
vector, and exhaustively search over all completions of
the firstn — k fields.

The most successful variant of BubbleSearch we
have found applies to fixed priority algorithms. In such
algorithms, the base ordering does not need to remain
static. If an ordering leads to a new best solution, it

ing of elements in a particular problem instance deter- can replace the base ordering (or be used as an addi-

mined by the ordering function tHease orderingOur

tional base ordering). Decision vectors are then applied

exhaustive BubbleSearch algorithm searches outwardfrom the new base ordering. We refer to the variation

from the base ordering in order of increasing Kendall-
tau distance.

For many problems, small perturbations to an ele-
ment ordering tend to make only a small difference in

that replaces the base ordering 8sibbleSearch with
replacementwhich is apparently novel and performs
very well in the experiments described below. Replace-
ment can be seen as a simple type of memory or learn-
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ing added to the BubbleSearch approach. While other ourselves to the orthogonal, fixed-orientation variation,
types of memory or learning have been suggested for where rectangles must be placed parallel to the hori-
GRASP algorithms [14], this simple but useful tech- zontal and vertical axes and the rectangles cannot be
nique does not appear to have been explored. However,rotated. (For more work on this problem, including re-
it can be easily incorporated into many GRASP strate- sults for the variation in which rectangles can be rotated

gies. by 90 degrees and for an interactive system that includes
BubbleSearch, see [13].) For all of our test cases, all di-
3. Applications of BubbleSearch mensions are integers. Even with these restrictions, 2D

rectangular strip packing is NP-hard.
We present experiments demonstrating the effective-
ness of BubbleSearch. We believe these results providez 1.1, Applying BubbleSearch

a strong case for the utility of BubbleSearch for any  The Bottom-Left (BL) placement function, intro-

proplem onwhich a priority algorithm is currently.used. duced in [2], is probably the most widely studied and
While we have experimented with both exhaustive and ysed heuristic for placing rectangles for the fixed-orien-

random BubbleSearch, because random BubbleSearchyiion problem. BL sequentially places rectangles first

performs better in all the cases below, we present only 5q close to the bottom and then as far to the left as they

the results forit. can fit relative the already-placed rectangles. While BL
For each experiment, we compare BubbleSearch t0 .annot find the always find the optimal packing even

Fhe naive algorithm that repeatedly plapes the elements;¢ applied to every permutation of rectangles [2,6], it
in a random order, aqd to three variations of GRASP: performs very well in practice when applied under the
GRASP#, GRASP# with replacement, and GRASP- o qering functions (or scoring for GRASPr of de-

In all cases below, our ordering function was based on a ¢ g a5ing height, width, perimeter, and area [9]. We refer
scoring function, so GRASR-was easily applied. No-

e th : i to taking the best result from BL on all four of these
quet atrep acemgnt can.nolt .be applied to GRAGRS ordering functions as Bottom-Left-Decreasing (BLD).
it is not based on fixed priorities.

. For more details see the thesis of Hopper [9].

_FoC: t?ese.ex?erlments., Wef lésebbtlhes samﬁ \(/l\J/nodpt" We evaluated BubbleSearch using BL and the four
mized) Java implementation of BubbleSearch. We de- ordering functions on benchmarks recently developed

velopgd ourger_leric BubeeSeargh code using th? HUGSby Hopper. All instances in this benchmark can be
Toqlk|t, J"’.‘V"’? m@dleware for rap|dly'prototypmg'mter- packed with no empty space into a square with side
gctlve opt|m|zat|pq systems [10].' This cp_de provides an length 200. The instances are derived by recursively
interface for defining the domain-specific components splitting the initial large rectangle randomly into smaller

for each apphcgﬂon, mcludlng the prqblem deflnltlon., rectangles; for more details, see [9]. This benchmark
placement function, and ordering functions. Our generic ; o "
. o set contains problems with size ranging from 17 to 197
BubbleSearch code treats the priority algorithm’s com- —_ :
. . rectangles. We use the non-guillotinable instances from
ponents as black boxes. In each iteration, BubbleSearch,, . .
o : : this set, collections N1 (17 rectangles) through N7 (197
evaluates one ordering; it always first applies the place- L )
. . : rectangles), each containing 5 problem instances. We
ment function to the base ordering and then considers ; : .
. : .. _found the instances in N1-N3 easy to solve using ex-
perturbations. When more than one ordering function is .
haustive search [12].

rovi he Bubbl rch algorithm iter hrough . .
provided, the BubbleSearch algorit terates throug For all our experiments, we pack the rectangles into a

g‘b?;nflonr ?ers EL; ;rihr%?lg cjiscglt?(?n ;_Ihplzri)%%eelss? freely avail strip of width 200, so that the optimal height is 200. We

score a solution by the percentage over optimal. Each
entry in our tables is an average over all relevant prob-
lem instances. We tuned our BubbleSearch algorithms
using collections N1-N3 and tested them on N4-N7.
We ran randomized BubbleSearch with and without re-
placement on N1-N3 for 10,000 iterations and with
p=021xi for 1 <i <9. As shown in Table 1, the
bestp with and without replacement was 0.6. We use
this p in our experiments on N4-N7. We also tuned
the GRASP algorithms on N1-N3 and tested them on
2 Contact lesh@merl.com for details. N4-N7. We ran GRASR-with and without replace-

3.1. 2D strip packing

In the two-dimensional (2D) rectangular strip pack-
ing problem, the input is a list ofi rectangles with
their dimensions and a target widi. The goal is to
pack the rectangles without overlap into a single rec-
tangle of widthW and minimum height{. We restrict
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Table 1
Tuning the input probability for randomized BubbleSearch on Packing
Replacement BubbleSearphvalue
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
without 8033 7433 6533 6300 6033 5900 6400 6567 7767
with 9.000 8367 7567 6400 6400 6167 6267 6267 6767
Table 2
BubbleSearch applied to Packing problems
Iterations Random BubbleSearch GRABP- GRASP«
w/o replace w/ replace w/o replace w/ replace =03
p=06 p=06 k=3 k=2
4 (base) NA 6.25 625 625 625 625
100 1220 450 452 448 465 485
500 1065 392 397 405 418 433
1000 993 377 385 390 413 420
5000 890 350 340 365 365 363
10000 870 335 332 350 338 358
15000 840 330 322 348 335 350
20000 828 327 315 335 328 343

ment for 10,000 iterations and with= 2, ...,10. We 3.2. Jobshop scheduling
ran GRASPa with o =0.1xi for 1 <i < 9.
The Jobshopapplication is a widely-studied task
3.1.2. Results scheduling problem. In the variation we consider, a
Table 2 shows the results for applying several Bub- problem consists of jobs andm machines. Each job
bleSearch variations and random orderings to BL on the is composed of: operations which must be performed
20 instances in the N4-N7 collections. The first row in a specified order. The ordered list of operations for
shows the results from BLD, which requires an itera- each job is called an itinerary. Each operation must be
tion for each of the four base orderings. performed by a particular machine, and has a fixed du-
While using even 20,000 random orderings does not ration. In our variation, every job has exactly one op-
perform as well as BLD, just 100 iterations of each eration that must be performed on each machine. Each
variation of BubbleSearch significantly improved upon machine can process only one operation at a time.
BLD. In particular, randomized BubbleSearch without A solution is a jobshop schedule that specifies a ros-
replacement scored 28% closer, on average, to opti-ter for each machine, which indicates the order in which
mal than BLD after 100 iterations. These improvements the operations will be performed on that machine. Given
continue, but taper off over time. BubbleSearch per- a solution, each operation starts as soon as all predeces-
forms better than the GRASP variants over almost all sors on its machine’s roster and predecessors on its job’s
iterations, although the improvement is small. itinerary have completed. The goal is to find a sched-
For both randomized BubbleSearch and GRASP- ule which minimizes the time that the last job finishes,
replacement offers minor gains. However, this was not called the makespan.
the case for the training data N1-N3 above, in which Several priority algorithms exist for Jobshop schedul-
randomized BubbleSearch performed better without re- ing. These are often used to quickly find reasonably-
placement. More experimentation would be required to good solutions, to find near-optimal solutions for easy
determine if replacement is truly valuable for this prob- problems, or to find a starting solution for a more so-
lem, although we believe these results are encouraging. phisticated search algorithm such as tabu search.
The BubbleSearch results are the best we know of
for the 2D Strip Packing problem, with the exception of 3.2.1. Applying BubbleSearch
the results provided by our interactive system [13]. This ~ While a wide variety of ordering rules have been pro-
system allows human users to guide the BubbleSearchposed (e.g., [3]) for jobshop scheduling, we focused the
algorithm and modify solutions directly. popular rule which orders operations by the Most Work
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Egliﬁggthe input probability for randomized BubbleSearch on Jobshop
Replacement BubbleSearphvalue

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
without 115900 111850 111425 112175 111850 112175 112950 113800 114125
with 117625 112950 113200 110400 110375 110150 109300 110200 111550

Remaining (MWKR). The work remaining for an op- i < 9. As shown in Table 3, the begtwithout replace-
erationo is the sum of the durations of the operations ment was 0.3 and with replacement was 0.7. We used
subsequent to on its job. MWKR is a fixed ordering  the same test data and number of iterations to tune the
function. GRASP algorithms. We ran GRASPwith and with-

We experimentally compared two placement func- out replacement with = 2, ...,10. We ran GRASRr
tions. ThenonDelayplacement function simply sched- with « = 0.1xi for 1 <i < 9. Based on these re-
ules the given operation at the earliest time possible sults, it appeared that even smaller values:afould
after the last currently-scheduled operationasma- lead to better performance, so we also tested GRASP-
chine® The bestPlacefunction considers inserting with o« = 0.012 0.025 and Q05 as well. We found that
at every location ino’s machine’s current roster, and « = 0.025 offered the best performance.
chooses the location that produces the partial schedule
with minimum makespan (after repacking to eliminate 3.2.2. Results
any unnecessary delays in the schedule). The bestPlace We evaluated BubbleSearch on the 20 problems
function is likely to produce a better schedule, but re- called 1a21-1a40, also available in the OR-Library.
quires more Computa’[ion time per p|acement_ These problems have sizesx80, 20x 10, 30x 10, or

Note that the bestPlace function can change the time 15 x 15. We computed a conservative lower bound for
at which already placed operations are scheduled. How-€ach problem by taking the maximum total duration of
ever, once an operation is placed its relative position Operations scheduled for any single job or machine. The
to (i.e., before or after) all the other placed operations average lower bound was 1227.9 for these problems.
on its machine never changes. Therefore, to define best-  The results in Table 4 demonstrate the value of Bub-
Place as a placement function, it should return a relative PléSearch. Even using 20,000 random orderings does
value and not an absolute time for each operation. After N0t perform as well as the priority algorithm. On the

all operations are placed, their times can be computed Other hand, even 100 iterations of randomized Bub-
from these values. bleSearch significantly improved upon it. In particular,

We compared the two placement functions using randomized BubbleSearch without replaceme_nt scored
randomized BubbleSearch, without replacement, and 22-3% closer, on average, to our conservative lower
p = 0.5. We ran the algorithm with each placement bound thgn the priority aIg_onthm, after 100 |terat|on.s.
function for 20 minutes on the four instances of size  FOr this problem, we find that BubbleSearch with-
20x20 named ynl-yn4 [15] that are available at the out replacement performg essentially the same as the
OR-Library (http:/Aww.ms.ic.ac.uk/info.html). Table P€St GRASP variation without replacement. Our re-
entries present the average makespan found for the rel-Placeément mechanism consistently improves both Bub-
evant problems. For these instances and algorithm set-Pl€Search and GRASPwith GRASP4 having a slight
tings, BubbleSearch performed an average of 17,343.32dvantage.
iterations with bestPlace placement and 802,516.8 it-
erations with nonDelay in 20 minutes. However, the
average makespan of bestPlace was 1141.50 while non-
Delay was 1253.75. Based on this experience, we use
bestPlace for the remainder of our experiments.

We then tuned the input probability for randomized
BubbleSearch, as above, by running it on the ynl-yn4
problems for 10,000 iterations with = 0.1 % i for 1 <

3.3. Edge crossing

Edge-crossing minimization is a graph layout prob-
lem [7]. A problem consists of: levels, each with:
nodes, and edges connecting nodes on adjacent levels.
The goal is to rearrange nodes within their level to min-
imize the number of intersections between edges.

3.3.1. Applying BubbleSearch
3 However, if scheduling after the last scheduled operation would We used a placement function similar to bestPlace
introduce a cycle, we introduce it earlier. above, which positions each node in the best location
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Table 4
BubbleSearch applied to Jobshop problems
Iterations Random BubbleSearch GRABP- GRASP«
w/o replace w/ replace w/o replace w/ replace a=0.025
p=03 p=07 k=8 k=2
1 (base) NA 167260 167260 167260 167260 16726
100 222080 157345 156795 158020 156280 159070
500 214785 155465 153360 155990 152925 158090
1000 210415 154715 152365 154605 152260 157175
5000 202875 152840 150200 153145 150050 156875
10000 200720 152300 149735 152370 148910 156610
15000 19845 152045 149455 152125 148635 15649
20000 198155 151830 149225 151775 148570 156235
Table 5
Tuning the input probability for randomized BubbleSearch on Crossing
Replacement BubbleSearphvalue
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
without 144300 140000 144600 145400 146000 149600 157600 157900 171300
with 153800 136100 124900 127700 127000 128600 136000 146800 152600

(in its assigned level) to minimize intersections with as much produced the best results, with an average
the previously placed nodes. We considered two factors of 135.5 intersections, while counting them equally

when developing the ordering function: the number of yielded an average of 147.7 intersections, and counting
edges per node, and the closeness of the node to the midthem half as much produced an average of 166.1 inter-
dle level. After a modest amount of experimentation, we sections. While these results show that the adaptivity
determined that the best combination was to order nodeshelps, we choose to emphasize the comparison among
by decreasing degree, breaking ties by closeness to mid-BubbleSearch and the GRASP variants without adap-

dle. tivity, for consistency with our previous experiments.
We evaluated BubbleSearch on tenkBgraphs with

110 edges that are publicly availaflidio tune thep 3.3.2. Results
parameter for randomized BubbleSearch, we randomly  The results in Table 6 show the average number of

generated 10 other, similar £3 graphs. As above, e jntersections of the algorithms over the 10 problems in
ran BubbleSearch 10,000 iterations with= 0.1 x i our benchmark. (Again, all algorithms used the fixed
for 1<i <9. As shown in Table 5, the begt with- priority function.) BubbleSearch without replacement
out replacement was Dand with replacement was) has performance similar to but slightly better than the

Again, we used the same test data and number of it- post GRASP variant without replacement. For this prob-

erations to tune the GRASP algorithms, trying values g replacement provided dramatic benefits for both

k=2,...,10 for GRASPk with and without replace-  gppleSearch and GRASR-BubbleSearch with re-

mentand valueq = 0.1x{ for 1 SES 9.fo.r GRASP“' placement is the best performer (after sufficiently many
We also designed an adaptive priority function for iterations).

Fh's prgblem. Afterdeac;_nodde IS pI_aced,dthe ;edmaln- The optimal answers to these problems are known to
Il:?g n% es are reo:ﬁ?re 'T _?crr(]aasmg order o zgree'contain an average of 33.13 intersections [11]. Our re-
ut edges count ditferently If they are connected 10 o, therefore suggest that our initial priority algorithm

an already-placed no_de. We tested variations in which was rather weak. This also explains why replacement
these edges count twice as much and half as much. We

. . ) ... offers significant advantages; being able to change the
ran 10’00(.) |teraj[|o_ns of ran_domlzed BubbleSearch with order from the priority function should be helpful if the
the adaptive priority function on our random graphs

. - 4 B i ! initial ordering is not very good. Notice that for this
with p = 0.5. Counting the *half-placed” edges twice problem the nodes were ordered by decreasing degree,

which creates a lot of ties, along with an additional tie-
4 At http://unix.csis.ul.ie/~grafdath/TR-testgraphs.tar.Z. breaking procedure. We suspect that replacement will



N. Lesh, M. Mitzenmacher / Information Processing Letters 97 (2006) 161-169 169
Table 6
BubbleSearch applied to Crossing problems
Iterations Random BubbleSearch GRABP- GRASP«
w/o replace w/ replace w/o replace w/ replace a=03
p=03 p=03 k=10 k=4
1 (base) NA 754.90 75490 75490 75490 75490
100 86840 41430 37800 40820 37830 42910
500 81630 35340 26640 35340 23890 37930
1000 77460 33600 21890 33640 18560 36000
5000 69930 26300 13930 27740 14730 32540
10000 68210 25260 12170 25940 14280 31230
15000 66130 23240 11440 24320 13760 29560
20000 65330 23240 10830 23550 12910 29260
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