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Abstract 

Stochastic coding is used to design X-tolerant 
signature analyzers that can detect defective chips even in 
the presence of unknown logic values (X’s).  These 
signature analyzers can be used for Built-In-Self-Test 
applications and test data compression.  Application of this 
technique to industrial designs shows that thousands of X’s 
can be tolerated while reducing test response data volume 
by 50 to 2,000 times compared to traditional scan, with 
practically no impact on test quality. 
 

1.  Introduction 
Scan Design for Testability (DFT) techniques have 

become de facto test standards in the industry.  The major 
contributors to scan test cost are:  (1) test data volume, 
which translates to tester memory requirement; and (2) test 
time, which also translates to the maximum number of flip-
flops in a scan chain.  The number of scan chains is 
constrained by the number of scan channels on the tester, 
the number of pins available for scan purposes, and also 
scan routing.  For large designs with several millions of 
logic gates, the cost of traditional scan has become 
prohibitively high [McCluskey 03].  Built-In-Self-Test 
(BIST) and test compression techniques target scan test 
cost reduction by obtaining massive reductions in test data 
volume and test time.  Any such solution consists of two 
basic components – test stimulus compression and test 
response compaction.  Depending on the situation and 
characteristics of a design, either or both of them may be 
employed.  The major differences between BIST and test 
compression is that the former requires minimal support of 
external test equipment.  Hence, BIST is often described as 
the ultimate test compression technique.  This paper 

focuses on signature analyzer designs for test response 
compaction using stochastic coding.  These signature 
analyzers can be used for both BIST and test compression 
purposes.  Unlike traditional BIST, these signature 
analyzers are tolerant to unknown logic values (X’s) in test 
responses with practically no impact on test quality.  
Unlike conventional test compression approaches, these 
signature analyzers require minimal external tester support. 

Classical signature analyzers such as Multiple Input 
Signature Registers (MISRs) are probably the best 
response compactors.  The major problem with classical 
signature analysis is that the signature can be corrupted by 
signals whose logic values are not known during fault-free 
simulation, also called X’s.  Sources of X’s include un-
initialized and uncontrollable sequential elements, bus 
contention, floating buses, interactions among multiple 
clock domains, and modeling inaccuracies.  Figure 1.1 
illustrates the problem.  The outputs of four scan chains are 
connected to the inputs of the MISR.  The initial MISR 
state is 0000.  The states of the MISR during the first four 
clock cycles are shown in Fig. 1.1.  Unknown logic values 
(X’s) appearing at scan chain outputs corrupt the MISR 
contents.  After four clock cycles, the expected MISR 
signature obtained from fault-free simulation consists of all 
X’s.  Signature bits whose expected values are X’s are 
ignored during comparison of the expected signature with 
the actual signature.  In this example, no comparison can 
be made.  Note that, for this example, there are eight 
possible expected MISR signatures since there are three 
X’s entering the MISR, and each X may be 0 or 1. 
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Figure 1.1. MISR example. 
 



 
 

Sources of X’s must be minimized by employing DFT 

techniques.  However, it is not practical to eliminate all X-

sources due to timing constraints, area overhead, 

inefficiencies of the simulation engine used for fault-free 

simulation (e.g., 0-delay), and inaccuracies in modeling the 
behaviors of certain circuit blocks (e.g., memory blocks, 

custom logic blocks, analog circuit blocks).  Some of these 

problems become visible late in the design, or after the ICs 

have already been manufactured, when it is very difficult 

or impossible to insert additional DFT structures. 

Any response compaction technique must be able to 

detect a defective chip in the presence of the residual X’s 

that cannot be eliminated by DFT or by accurate modeling.  

There are three ways of addressing this problem: (1) fixing 

the X’s to 0s and 1s before they enter the compaction 

hardware [Barnhart 01, Rajski 02, Naruse 03, Wohl 03a, 
Volkerink 03]; (2) post-processing the response data to 
determine whether the tested IC is defective [Patel 03]; 
and, (3) designing compaction hardware that can tolerate 
X’s and identify defective parts without requiring any 
fixing of X’s or any post-processing [Mitra 02, Mitra 04].  
The first two approaches require significant tester support 
and knowledge of the exact positions of X’s in test 
responses.  The third approach imposes no such 
requirements, and is ideal for BIST and test compression 
purposes.  Hence, it serves as the fundamental principle 
behind the signature analysis techniques described in this 

paper.  Of course, other techniques and tester features can 
complement the presented techniques. 

The X-Compact technique [Mitra 02, Mitra 04] was 
the first published work on designing X-tolerant response 
compactors.  X-Compactors are combinational circuits that 
are used to compact the scan chain outputs at every scan 
cycle.  An application of the scan clock to perform a shift 

operation is referred to as a scan cycle.  Hence, the test 
equipment is required to collect the X-Compactor outputs 
at every scan cycle and compare with the expected 
response.  The X-tolerant signature analyzers described in 
this paper are sequential circuits that can be used for 
compacting test responses over multiple scan cycles, 
similar to Single-Input-Signature-Registers (SISRs) and 
Multiple-Input-Signature-Registers (MISRs).  However, 
unlike SISRs and MISRs, these signature analyzers provide 
a high degree of tolerance to X’s.  After the test responses 
from multiple scan cycles are compacted into a signature, 
the tester compares the actual signature with the expected 
signature.  During comparison, the bit positions that are 
X’s in the fault-free signature are ignored.  This 
comparison can be performed on the tester or on-chip.  
Hence, these signature analyzers are useful for BIST 
applications with minimal tester support. 

Depending on the number of X’s in a design, test 
response data volume can be reduced by up to three orders 
of magnitude.  No assumptions about defect behaviors are 
necessary (e.g., “all defects behave as single stuck-at 
faults”).  Hence, the design techniques are independent of 
any fault models, and the compaction hardware is 

unaffected by any engineering change orders or changes in 
test patterns after tape-out. 

The major contributions of this paper are: (1) a 
probabilistic analysis of the relationships between the 
amount of X-tolerance and the amount of compaction that 
can be achieved using stochastic coding, which forms the 
basis for X-tolerant signature analyzer designs; (2) simple 
yet effective X-tolerant signature analyzer designs using 
stochastic coding; (3) an analysis of the effectiveness of 
these techniques for profiles of X’s obtained from actual 
industrial designs; and, (4) test compression and BIST 
architectures using X-tolerant signature analyzers. 

As will be clear to the reader, the benefits of stochastic 
coding for X-tolerant signature analyzer designs include: 
(1) simple hardware; (2) practically no impact on test 
quality; (3) no complex algorithms for construction of 
deterministic codes is required; and (4) any mistakes in the 
compaction hardware design can be easily overcome. 

Section 2 of this paper presents a theoretical 
framework that forms the basis for X-tolerant signature 
analyzer designs.  Section 3 describes X-tolerant signature 
analyzer designs.  Section 4 discusses design of scan and 
BIST architectures using X-tolerant signature analyzers.  
An overview of previously published test response 
compaction techniques together with comparisons with our 
techniques are presented in Sec. 5. 

 

2.  X-Tolerance and Stochastic Codes 
Suppose that n bits of test response are to be 

compacted into m bits.  This situation can be represented 
by a matrix with n rows and m columns, where each row 
represents a bit in the uncompacted test response and each 
column represents a bit in the compacted test response.  
The matrix entry corresponding to row i and column j is 1 
if and only if bit j of the compacted test response depends 
on bit i of the uncompacted test response.  Otherwise, the 
entry is 0.  For consistency with earlier publications, we 
call this matrix an X-Compact Matrix [Mitra 02, Mitra 04].  
A bit in the compacted response is obtained by calculating 
the XOR of those bits in the uncompacted test response 
that have 1s in the compacted response bit’s column. 

The fundamental problem in designing response 
compactors is to determine how to fill the X-Compact 
matrix entries with 1s and 0s.  Here, we consider a 
stochastic coding approach, in which we fill the entries in 
the matrix with 1s and 0s at random, such that the 
probability of assigning 1 to an entry is p  and the 

probability of assigning 0 to an entry is p�1 .  The 

expected number of 1s in a row, the expected weight of the 
row, is then pm u . 

A bit in the compacted response is a non-X bit if the 
logic value of that bit in the expected compacted response 
is not X.  An error in the uncompacted test response is 
masked if none of the non-X bits in the compacted 
response are erroneous. Next, we ask the following 
question: what is the probability that an error in an 



   

uncompacted test response bit gets masked when there are 
X’s in k other uncompacted test response bits?  This 
probability is given by the following expression:   

mkpp ])1(1[ �u�        (1) 
 

Expression (1) is derived from the fact that if an entry 
in the row corresponding to the erroneous bit is 0, the error 
does not affect the corresponding bit in the compacted 
response.  If an entry in this row is 1, the error affects the 
corresponding compacted response bit (column) if and only 
if none of the k rows producing X’s have 1s in that column 
– otherwise, the error is masked.  An error must affect at 
least one of the non-X bits in the compacted response in 
order to detect a defective part. 

As shown below, expression (1) reaches its minimum 

when the following relationship is satisfied: 
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where 
m
n

r   is the compaction ratio, and 
n
k

d   is the 

proportion of X’s, which is often referred to as the X-
density. 

If there are t error bits and k X’s in the uncompacted 
test response, the probability that no non-X bit of the 
compacted response is erroneous is: 
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The derivation of expression (2) is similar to that of 
expression (1).  The only difference is that, a bit in the 
compacted response is erroneous if and only if it is derived 
from an odd number of error bits in the uncompacted 
response, and it doesn’t depend on any bit producing X in 
the uncompacted response.  An even number of error bits 
affecting a given output is not detectable, a phenomenon 
called error cancellation.  From practical experience, a 
pessimistic value of t is between 3 and 5. 

Let us look at these parameters for some industrial 
ASIC designs, as shown in Table 2.1.  The X-density in the 
test response is calculated from fault-free simulation of 
single stuck-at test patterns.  Tables 2.2a, 2.2b, 2.2c and 
2.2d show the corresponding probability that errors in the 
test response get masked due to the presence of X’s, using 
expressions (1) and (2) with the value of p for which 
expression (1) results in the minimum error masking 
probability. 

Using our approach, even the design with ill-managed 
X’s (Design 4) achieves more than 50x reduction in test 
response data volume.  For designs with well-managed 
X’s, reduction by three orders of magnitude is possible.  
Section 3 presents techniques for designing X-tolerant 
signature analyzers using this principle.  Although not 
discussed in this paper, the stochastic coding approach can 
also be used for designing X-tolerant combinational 
compactors for which deterministic codes are either 
unknown or are too expensive to construct systematically 
(e.g., solutions to NP-complete problems are required). 

 

 
 
 

Table 2.1.  X-densities in industrial ASIC designs. 
 

Name X-management X-density (% test 
response bits with X’s) 

Average number of test response 
bits per X (= 1/X-density) 

Design 1 Well-managed 0.004% 25,000 

Design 2 Moderately-managed 0.02% 5,000 

Design 3 Ill-managed 0.15% 666 

Design 4 Ill-managed 0.3% 333 
 



   

Table 2.2a.  Response compaction for Design 1 (well managed X’s). 

Probability of errors masked by X’s Number of 
response 

bits 

Number 
of X’s 

Number of 
compacted 

bits 

Compaction 
ratio 

Average 
compacted 

bits per X 
t = 1 t = 3 t = 5 

100,000 4 100 1,000 25 2 u 10
-4

 2.5 u 10
-8

 8 u 10
-10

 

  50 2,000 12.5 1.3 u 10
-2

 1.5 u 10
-4

 3 u 10
-5

 

  2,000 500 50 1.2 u 10
-8

 < 10
-22

 < 10
-36

 

1,000,000 40 1,000 1,000 25 10
-4

 < 10
-11

 < 10
-18

 

  500 2,000 12.5 10
-2

 1.9 u 10
-6

 < 10
-9

 
 

Table 2.2b.  Response compaction for Design 2 (moderately managed X’s). 

Probability of errors masked by X’s Number of 
response 

bits 

Number of 
X’s 

Number of 
compacted 

bits 

Compaction 
ratio 

Average 
compacted 

bits per X  
t = 1 t = 3 t = 5 

  600 170 30 2 u 10
-5

 < 10
-13

 < 10
-20

 

100,000 20 250 400 12.5 10
-2

 3.6 u 10
-6

 < 10
-8

 

  125 800 6.25 10
-1

 1.9 u 10
-3

 6 u 10
-5

 

  6,500 153 32.5 6.5 u 10
-6

 < 10
-15

 < 10
-25

 

1,000,000 200 2,400 420 12 10
-2

 2 u 10
-6

 < 10
-9

 

  1,250 800 6.25 10
-1

 10
-3

 1.2 u 10
-5

 
 

Table 2.2c.  Response compaction for Design 3 (ill-managed X’s). 

Probability of errors masked by X’s Number of 
response 

bits 

Number of 
X’s 

Number of 
compacted 

bits 

Compaction 
ratio 

Average 
compacted 

bits per X 
t = 1 t = 3 t = 5 

  4,000 25 26.7 5 u 10
-5

 < 10
-12

 < 10
-20

 

100,000 150 1,700 60 11.3 10
-2

 4 u 10
-6

 < 10
-8

 

  900 110 6 1.1 u 10
-1

 1.4 u 10
-3

 2 u 10
-5

 

  38,000 26 25.3 8 u 10
-5

 < 10
-12

 < 10
-20

 

1,000,000 1,500 16,000 63 10.6 2 u 10
-2

 < 10
-5

 < 10
-8

 

  9,000 110 6 1.1 u 10
-1

 1.3 u 10
-3

 1.6 u 10
-5

 
 

Table 2.2d.  Response compaction for Design 4 (ill-managed X’s). 

Probability of errors masked by X’s Number of 
response 

bits 

Number of 
X’s 

Number of 
compacted 

bits 

Compaction 
ratio 

Average 
compacted 

bits per X 
t = 1 t = 3 t = 5 

  8,000 13 26.6 5 u 10
-5

 < 10
-12

 < 10
-21

 

100,000 300 3,000 34 10 2.5 u 10
-2

 1.7 u 10
-5

 1.2 u  10
-8

 

  1,800 56 6 1.1 u 10
-1

 1.4 u 10
-3

 1.8 u 10
-5

 

  76,000 13 25.3 8 u 10
-5

 < 10
-12

 < 10
-20

 

1,000,000 3,000 30,000 34 10 2.5 u 10
-2

 1.6 u 10
-5

 < 10
-8

 

  18,000 56 6 1.1 u 10
-1

 1.3 u 10
-3

 1.6 u 10
-5

 
 

 



 
 

3.  X-Tolerant Signature Analyzer Design using 
Stochastic Codes 

For simplicity, we first consider the case of serial 
signature analysis in which case test response bits from a 
single source (e.g., a single scan chain) are compacted into 
a signature.  We call this structure an X-SISR, which 
stands for X-tolerant Single Input Signature Register.  
Next, we describe the design of an X-MISR – X-tolerant 
Multiple Input Signature Register. 

 

3.1.  X-SISR Design 
Suppose that there is a source producing n bits of test 

response data serially and that the signature consists of m 
bits.  Here n and m are design parameters.  As explained in 
Sec. 2, the stochastic coding approach fills the X-Compact 
matrix (with n rows and m columns) with 1s and 0s – the 
probability of assigning 1 is p, a parameter based on the X-
density of the design. 

The next question is: How can such a coding scheme 
be implemented in hardware?  Given the parameter p, a 
simple weighted-random pattern generator can be used to 
generate 1s with probability p.  Design of logic structures 
to generate weighted random patterns has been extensively 
covered in testing literature [Eichelberger 91] and is not 
repeated here.  The X-SISR design is shown in Fig. 3.1. 

At each clock cycle, a test response bit is AND-ed 
with the weighted random pattern generator outputs.  
Depending on where the 1s appeared, the corresponding 
signature bits will depend on this particular test response 
bit – the XOR gate and feedback loop achieves that.  The 
reader can prove the equivalence between this structure and 
the matrix structure. 

The area overhead of the X-SISR structure is analyzed 
next.  Each signature bit has a flip-flop, one two-input 
XOR gate, and one two-input AND gate associated with it.  

This results in m flip-flops, m two-input XOR gates and m 
two-input AND gates.  In addition, there is area overhead 
due to the LFSR, the phase shifter and the weight logic.  
For the designs analyzed in Sec. 2, the minimum weight 

used is of the order of 
3000

1
.  This implies that 

approximately 12 random bits (with probability of 1 = 0.5) 
will be AND-ed generate a single bit of the given weight 
for those designs.  Hence, the size of LFSR is required to 

be greater than roughly )12(2log nu , where n is the 

number of uncompacted test response bits.  Hence, the 
maximum length of an LFSR that is required for the 
previously analyzed designs is roughly 24 bits for 1 million 
uncompacted test response bits.  The area overhead of the 
weight logic will be of the order of 12 two-input gates for 
each signature bit.  This adds extra area of roughly 12m 
two-input gates for all outputs.  There is a fanout of m from 
the serial test data input. 

For designs using LFSRs and/or phase shifters for data 
compression or test pattern generation for Built-In-Self-
Test, the same LFSRs and phase-shifters can be reused for 
X-SISR designs. 

The unique features of the X-SISR design are: (1) no 
complicated controller is required to implement the 
signature analysis – no complex seed computation is 
required and the LFSR can start from any non-zero state; 
(2) properties of LFSR are utilized to achieve the effect of 
random filling of the X-Compact matrix; (3) unlike 
traditional weighted-random testing, a single weight is 
enough; however, multiple weights can always be built in 
to create programmability; (4) depending on the design, 
thousands of X’s are tolerated with high probability. 
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Figure 3.1. X-SISR design. 



 
 

Depending on the value m, the fanout in Fig. 3.1 may 
be a cause of concern.  For example, suppose that the value 
of m is 20.  Implementation of the design of Fig. 3.1 means 
that we need a fanout of 20.  Generally scan chain outputs 
are compacted and scan shifting is performed at slow 
speed.  Hence, this may not be problem because signal 
paths to the response compaction circuitry aren’t timing 
critical.  However, simple pipelining minimizes the fanout 
problem.  Figure 3.2 shows such an example where four 
flip-flops are added and the output of each of these flip-
flops fans out to a group of five signature flip-flops.  This 
organization reduces the fanout problem.  The fanout 
associated with the weighted random generators can be 
reduced by using multiple weighted random pattern 
generator circuits. 

3.2.  X-MISR Design 
The X-SISR design of Sec. 3.1 is converted into an X-

MISR design in the following way.  Suppose that there are 
s parallel test response inputs (which can be scan chains).  
For each parallel test response input, there are m AND 
gates as shown in Fig. 3.1 – this structure is referred to as 
the AND-box.  However, unlike Fig. 3.1, for each flip-flop 
corresponding to each signature bit, there is an (s+1)-input 
XOR gate instead of a 2-input XOR gate.  The overall 
design is shown in Fig. 3.3.  Relative to the X-SISR design, 
the X-MISR requires s 2-input XOR gates for each 
signature bit, and m 2-input AND gates for each AND box. 
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Figure 3.3. X-MISR design. 
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Figure 3.4.  Scan architecture with local X-MISRs and intermediate signatures. 

 

 
Depending on where the signature analyzer is 

implemented (e.g., on the tester to reduce test response 
data volume or on-chip to reduce test data volume, test 
time, and test pins), the routing overhead must be suitably 
managed.  One way of accomplishing this is to use local X-
MISRs and intermediate signatures.  We illustrate this 
point using an actual design example – the Design 3 of Sec. 
2.  Suppose that Design 3 has 1,000 scan chains and each 
chain is 1,000 bits long.  We break the design into 500 
clusters, for example, such that each cluster contains two 
scan chains.  For each cluster, we build an X-MISR of nine 
bits.  Next, we run the X-MISR for 500 cycles – this 
corresponds to 1,000 response bits per cluster, which can 
be compacted into nine bits of signature with a high error 
detection probability (Table 2.2c).  Every 500 cycles, these 
nine-bit intermediate signatures from each cluster are 
transferred to a shadow register.  The shadow registers of 
all clusters are configured into nine scan chains.  It takes 
500 cycles to scan these intermediate signature bits from 
all clusters out of the nine scan chains before another 
intermediate signature from the clusters is loaded into the 
shadow register.  The overall scan architecture is shown in 
Fig. 3.4.  This approach leads to an X-tolerant signature 
analysis technique that tolerates thousands of X’s but 
outputs only nine bits of response for observation on the 
tester in every scan cycle, although there are 1,000 scan 
chains.  Thus, the test data volume and test time reduction 
obtained is more than two orders of magnitude even for a 

design with ill-managed X’s.  The shadow scan chains of 
Fig. 3.4 do not necessarily need to be connected in the way 
shown in the figure.  For example, all bits of the first X-
MISR can be connected in a single scan chain, followed by 
the bits in the second X-MISR, and so on. 

 

4.  Scan and BIST Architecture Design with X-Tolerant 
Signature Analyzers 

In this section, we show how the probabilistic analysis 
of Sec. 2 can be used to make decisions about designing 
test architectures using X-tolerant signature analyzers.  
Suppose that we decide to use a certain signature register 
design, which is characterized by the number of signature 
bits (m) and the weight logic.  For a specified maximum 
probability of error masking, the number of X’s (k) that can 
be tolerated can be derived directly from this signature 
analyzer design using expression (1) of Sec. 2.  The X-
density and the distribution of X’s in the design then decide 
the number of uncompressed response bits (n) that contain 
k X’s.  This result implies that the signature register 
contents must be scanned out for every n uncompressed 
signature bits.  Hence, the compaction ratio is n/m. 

The graph in Fig. 4.1 illustrates the associated trade-
offs.  For X-tolerant signature analyzers with between 50 
and 500 bits and several weights, the graph presents the 
compacted response volume per X in the uncompacted 
response as a function of the probability of not detecting an 
error.  This makes the graph independent of X-density. 



   

Each line in the graph corresponds to designs with a 
specific signature length, but combines several weight 
values.  The weighting, which decides the average number 
of 1s in every row of the X-Compact matrix, is restricted to 
inverse powers of two (1/2, 1/4, etc.), as they are readily 
generated from a pseudo-random source using only AND 
gates.  The curves in the graph are then obtained by 
selecting the optimal weight for each error masking 
probability.   

The analysis used to generate the graph of Fig. 4.1 
treats uncompressed response bits as independent random 
variables for the purposes of calculating the exact number 
of X’s.  In particular, given an expected number of X’s, O, 
we use a Poisson distribution to calculate the probability of 
seeing each possible value of k. The probability of having k 

X’s is thus given by 
!k

ke OO�
.  For signature register 

length (m) and weighting p, expression (2) of Sec. 2 gives 
the error masking probability due to X’s.  The value of t, 
the number of error bits, is assumed to be 3.  The total 
expected error masking probability for a given expected 

number of X’s (O) is: 

¦f
 

u
�

0

sX’   withmasking error of Prob.
!

k

k
k

ke OO
.  

The log-scale horizontal axis of Fig. 4.1 represents the total 
expected error masking probability.   

For a given signature analyzer design, each point 

corresponds to a certain value of O, ranging from 0 to about 
73 (the rightmost point on the 500-bit signature). 

Since the X-SISR and X-MISR structures allow 
dynamic generation of random X-Compact matrices, test 
responses with too many X's can easily be repeated (by 
applying the same test set or vector multiple times) to 
allow targeted reduction of failure probabilities.  Each such 
run creates independent X-Compact matrices and, hence, 
the probability of error masking due to X’s is given by the 
product of error masking probabilities from individual 
runs.  Any dependence of the weighted-random generator 
on initial seeds can be eliminated by loading multiple seeds 
into the generator during these runs.  Depending on the 
application (e.g., tester supported or BIST in the field), the 
number of cycles of compaction between intermediate 
signatures may or may not be fixed in advance.  
Controlling this timing more carefully based on the X’s in 
the uncompacted response reduces the error masking 
probability to those given by expressions (1) and (2) by 
eliminating the need for a Poisson distribution. 

The curves in Fig. 4.1 can be used to select an 
appropriate signature size and to guide the application of 
DFT techniques to reduce X-density to an acceptable level.  
For example, consider the use of a 100-flip-flop design 
with an assumption of three errors when a defect is 
detected (t=3).  Suppose that the target probability of not 
detecting the errors is set to one in ten million.  In Fig. 4.1, 

this corresponds to the 10
-7

 point on the horizontal axis.  

The best weight in this case is 1/8, and the design requires 
a compacted response volume of 50 bits per X in the 
uncompacted test response.  If the compacted response 
volume must be limited to 10,000 bits, X-density must be 
reduced to the point that the input contains no more than 
200 X's.  If the goal is instead a compaction ratio of 100, 
X-density must be reduced to about 0.02%, because 1 X 
per 50 bits of compacted response translates to 1 X every 

50 u 100 = 5,000 bits of uncompacted test response – this 
value corresponds to the X-density of Design 2 discussed 
earlier. 

It is important to note that selecting such a design does 
not fix the operating point, which can be scaled as 
necessary (after the chip is manufactured) by simply 
modifying the scanout interval between intermediate 
signatures.  Using the same X-tolerant design just 
discussed, for example, the probability can be further 
reduced to less than two in a billion by doubling the 
number of intermediate signatures loaded into the shadow 
register.  Such retroactive changes are difficult with the 
deterministic X-Compact matrices, forcing designers to 
estimate X-density much more carefully in advance. 

The overall advantages of stochastic coding for 
designing X-tolerant signature analyzers are: (1) the 
compaction hardware consisting of weighted random 
generators is simple; (2) no complicated sequential 
controllers need to be designed, unlike deterministic 
approaches; (3) a huge number of independent X-Compact 
matrices can be generated out of a single compaction 
hardware; repeating the same stimulus for response 
compaction with multiple independent X-Compact 
matrices can efficiently reduce the error masking 
probability; (4) no complicated and time-consuming 
deterministic algorithms need to be executed to construct 
X-Compact matrices; and (5) any mistakes in the design of 
the compaction hardware can be easily overcome. 

Application of X-MISR for built-in-self-test in the 
field might involve the use of an on-chip memory (e.g., 
cache memory or other storage areas available for BIST 
use) that can be preloaded with test response data from an 
off-chip store.  This test response data would both indicate 
which bits should be masked as well as the expected 
responses for the remaining bits, allowing the chip itself to 
compute a pass/fail result with no need to output any test 
data whatsoever.  As with other types of test data, the pre-
loaded data could also be compressed for storage in a small 
ROM or FLASH memory. 

 

5.  Related Work 
Previous work on response compaction can be 

classified into two broad categories: response compaction 
in the absence of any X’s, and response compaction in the 
presence of X’s.  Several publications belonging to the first 
category that discuss signature analysis and combinational 
compaction include [Bardell 87, Chakrabarty 95, 
Chakrabarty 98, McCluskey 86, Pradhan 91, Saluja 83, 



   

Saxena 92, Saxena 97].  These techniques do not address 
X’s.  Some of them assume that actual defects behave as 
faults from a chosen fault model that is not supported by 
experimental data [McCluskey 04]. 

Recent publications discuss response compaction in 
the presence of X’s.  The X-Compact technique described 
in [Mitra 02, Mitra 04] uses combinational circuits for X-
tolerant response compaction.  The techniques presented in 
[Rajski 03 Wang 03, Wohl 03b] build on the X-Compact 
concept.  These techniques guarantee tolerance of a single 
X.  The techniques in [Rajski 03, Wang 03] use the X-
Compactor circuitry as the basic combinational logic block 
but reduce the number of bits to be observed at the expense 
of the number of X’s tolerated over multiple scan cycles.  
The technique in [Wohl 03b] introduces a graph-theoretic 
formulation, in contrast with the matrix-theoretic 
formulation used in [Mitra 02, Mitra 04], to generate X-
Compact matrices such that each row of the X-Compact 
matrix contains two 1s.  The response compaction 
technique in [Sinanoglu 03] uses a parity bit for every scan 
chain in addition to XOR-trees – however, a single X in a 
scan chain will corrupt the parity bit. 

The technique presented in this paper is unique for the 
following reasons: (1) It is capable of tolerating even 
thousands of X’s; (2) uses signature analysis to tolerate 

X’s; (3) presents a novel architecture that can dynamically 
generate response compaction circuits without requiring 
circuit implementations with high controller overhead in 
signature analysis applications; and, (4) extends the 
concept of weight distribution in coding theory and aliasing 
analysis to include X’s. 

Techniques such as those presented in [Barnhart 01, 
Naruse 03, Rajski 02, Wohl 03a, Volkerink 03] use DFT 
and/or active masking from the tester to reduce the number 
of X’s.  Of course, these techniques can be used in 
conjunction with the X-tolerant signature analysis 
technique presented in this paper. 

The I-Compact technique in [Patel 03] treats X’s as 
erasures and performs post-processing of the compacted 
responses on the tester to identify defective parts.  The 
architecture described in this paper is entirely compatible 
with the I-Compact approach.  Combinations of the two 
techniques can also be used, even within a single test 
vector, by treating some X's as erasures and others as 
unknowns that corrupt certain outputs.  This approach can 
further reduce the probability that the errors are masked by 
unknowns, compared to the X-tolerant signature analysis 
approach alone, at the expense of extra processing on the 
tester. 
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Figure 4.1. Pareto curve for X-tolerant signature analyzer designs. 

 



 
 

6.  Conclusions 
X-tolerant signature analyzer designs using stochastic 

coding approaches are capable of massive reduction in test 
response data volume with negligible impact on test 
quality.  For the industrial designs analyzed in this paper, 
these signature analyzers have capabilities of tolerating 
thousands of X’s while reducing test response data volume 
by 50 to 2,000 times.  These signature analyzer designs are 
independent of test sets, fault models, engineering change 
orders and do not impose any restrictions on the accuracy 
of fault models.  Several novel test compression and BIST 
architectures can be designed using such signature 
analyzers.  In conclusion, X-tolerant signature analyzers 
provide a novel solution for test compression and Built-In-
Self-Test. 
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