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We analyze the performance of greedy routing for array networks by
providing bounds on the average delay and the average number of
packets in the system for the dynamic routing problem. In this model
packets are generated at each node according to a Poisson process,
and each packet is sent to a destination chosen uniformly at random.
Our bounds are based on comparisons with computationally simpler
queueing networks, and the methods used are generally applicable to
other network systems. A primary contribution we provide is a new
lower bound technique that also improves on the previous lower
bounds by Stamoulis and Tsitsiklis for heavily loaded hypercube
networks. On heavily loaded array networks, our lower and upper
bounds differ by only a small constant factor. We further examine
extensions of the problem where our methods prove useful. For example,
we consider variations where edges can have different transmission
rates or the destination distribution is non-uniform. In particular, we
study to what extent optimally configured array networks outperform
the standard array network. ] 1996 Academic Press, Inc.

1. INTRODUCTION

1.1. Statement of the Problem

In this paper, we consider the important problem of
dynamic routing in an n by n array mesh network. Our
model can be described as follows: nodes (or processors) on
an array mesh generate packets at random times. Each
packet must be routed to a unique destination that is chosen
uniformly at random from the nodes on the array. (For
convenience, we allow a packet's destination to be the same
as its starting point; the arguments can be modified easily.)

We make standard assumptions about the network for
our analysis. The unit of transmission is a packet, which
transverses an edge in the network in unit time. Only one
packet can be in transit across an edge at any time, although
a node with multiple input�output connections can receive
and transmit more than one packet at any instant. Packets
are buffered when an edge on their path is busy, and nodes
are assumed to have infinite buffer capacity. We model
arrivals to the network by Poisson processes at each node.

We will analyze the greedy routing method, an intuitively
powerful paradigm whereby packets travel on natural

shortest paths between nodes. On a mesh network, greedy
routing corresponds to packets first being routed to the
correct column and then to the correct row. Greedy routing
has proven successful because it is simple to implement and
generally effective in practice. As we shall show, it also
proves amenable to theoretical analysis.

1.2. Previous Work

Leighton's previous work on greedy routing for arrays
and tori motivates this study [8, 9]. Leighton finds
probabilistic bounds on the maximum delay and buffer size,
given the following assumptions: packets are generated only
at discrete time intervals, packets are generated with a fixed
constant probability at each node at each discrete unit of
time, and packets with the furthest to travel in each
direction are sent first. His derivations also yield results for
first-in first-out (FIFO) service, but only at low arrival
rates. Recently, similar work improving on the combinatorial
analysis has been done by Kahale and Leighton [3].

Primarily we follow a different method of analysis based
on the work of Stamoulis and Tsitsiklis in [12], which uses
comparison methods. Such methods have been used for
other stochastic models, but primarily for single queues.
Some examples of various applications can be found in
[13]. Stamoulis and Tsitsiklis present sufficient conditions
for when the average delay in a network with FIFO service
and unit service times can be bounded above by a
comparison with a modified, simpler network, and then
apply their methods to greedy routing on hypercube and
butterfly networks. They also find lower bounds on the
average delay a packet experiences in these networks. Here,
we deviate from their methods and demonstrate a stronger
lower bound technique also based on comparisons that is
both powerful and easily generalizable.

Recently, this problem has been studied using the
Jackson open queueing network model in [1]. This model
differs from others in that the transmission time across an
edge, instead of being constant, is exponentially distributed
with unit mean [2]. Although this model is less realistic, it
proves easier to analyze using standard queueing theory
techniques. We shall relate our results closely to this model.

article no. 0072

317 0022-0000�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

* Supported by the ONR. E-mail: mitzen�cs.berkeley.edu.



File: 571J 145802 . By:CV . Date:12:12:96 . Time:12:31 LOP8M. V8.0. Page 01:01
Codes: 6481 Signs: 5791 . Length: 56 pic 0 pts, 236 mm

One interpretation of these results is that the average delay
given by the Jackson open queueing network model (i.e.,
when transmission times are exponentially distributed) yields
an upper bound for the average delay when transmission
takes constant time for this and other similar problems.

1.3. Summary of Results

We provide new, rigorous upper and lower bounds for
the average time a packet spends in a mesh network. The
upper bound is derived by comparing the array mesh
network to a similar network with a different service policy,
which has a computationally simple equilibrium distribu-
tion, and is based on work by Stamoulis and Tsitsiklis in
[12]. The new lower bound technique we develop is also
based on a comparison argument that does not seem to
appear in previous literature. On the array, as the network
load reaches capacity, our upper and lower bounds differ by
a factor of at most either 3 or 6, depending on whether the
array has an even or odd number of nodes. Our lower
bound technique also improves on the results of Stamoulis
and Tsitsiklis for heavily loaded hypercube networks.

The analysis also applies to interesting generalizations of
the standard problem. For example, we also examine the
problem of bounding the average delay when one can vary
the transmission rates of the wires, subject to a fixed linear
constraint that corresponds intuitively to the cost of the
network. Besides yielding an upper bound, our analysis
shows how much more traffic an optimally configured array
network can handle over the standard configuration. While
the standard configuration of an n by n array is stable for
external arrival rates up to 4�n (for even n), we prove that
the optimally configured network is stable for arrival rates
up to 6�(n+1). We also consider special situations where
the destination distribution is non-uniform, but depends on
the distance of the destination from the packet source, as
well as other common extensions.

The paper proceeds as follows: in Section 2, we provide
some basic definitions that describe the problem. In
Section 3, we apply the work of Stamoulis and Tsitsiklis to
the array and describe the relation of our result to the Jack-
son open queueing network model. In Section 4, we derive
a rigorous lower bound on the average delay as well as
provide a useful approximation. We consider generaliza-
tions of the problem in Section 5, including non-uniform
destination distributions and varying transmission times.
We conclude with a discussion of possible future directions.

2. DEFINITIONS AND BACKGROUND

2.1. Definitions for the Model

We begin with the definitions we will use throughout this
work. We first describe the topology of an array network.
The underlying graph consists of an n by n array of nodes.

(For convenience we only consider square arrays; rectangular
arrays are easily handled similarly.) Nodes are connected by
directed edges to their neighbors in the same row and
column. Note that two directed edges connect each pair of
neighbors, one in each direction. These edges correspond to
an input and an output wire for each pair in the obvious
manner. For the underlying graph G=(V, E), we shall label
the nodes by the ordered pairs (i, j), where i represents the
node row and j represents the node column, and 1�i, j�n.
We assume the node (1, 1) lies in the upper left-hand corner.
Edges are denoted by ordered pairs of nodes.

In our standard model packets are generated at the nodes
as independent Poisson processes with rate *. Their destina-
tions are uniformly distributed over all nodes in the network.
Packets travel along the directed edges, with at most one
packet on any edge at any given time. Nodes have infinite
buffer space available to hold waiting outgoing packets.
The packets are sent out according to the FIFO discipline.
Packets move to their destination greedily, first to the
correct column along only row edges and then to the correct
row along only column edges.

We model this network by considering an associated
queueing network, Q, where each directed edge is a FIFO
server with unit service time. Since edges represent queues,
we use the terms interchangeably throughout the paper.
Our upper bound uses in comparison a similar queueing
network, where the servers are Processor Sharing, or PS.
Under the PS discipline, all customers queued at a server
receive an equal proportion of the available service
simultaneously.

In order to compare networks, we require the concept
of stochastic domination. We say a random variable Y
stochastically dominates a random variable X, and write
X� st Y, if Pr[X>:]�Pr[Y>:] for all :.

Certain classes of queues will naturally arise as we
develop our bounds. For an M�D�1 queue, the arrivals to
the queue constitute a Poisson process, the service times
required by the arrivals are constant, and there is only one
server. Similarly, a queue is said to be of type M�M�1 if the
above conditions hold but the service times are exponen-
tially distributed. Notice that although the external arrivals
to each queue in the array system we have described form a
Poisson process, the arrival process of all packets to a queue
does not. Thus the queues in our standard system are
neither M�M�1 nor M�D�1 queues.

Finally, we make note of the variables we shall use. The
variable * refers to rate at which packets are generated at
each node, while *e refers to the total rate of packet arrivals
on edge e. The service rate at an edge e will be denoted by
,e ; notice that in the standard problem ,e is always 1. We
define the network load, \, to be \=maxe # E *e�,e . For
single M�M�1 and M�D�1 queues, it is well known that
when \<1 the queue is stable, meaning that there is a
unique equilibrium distribution and that such quantities as
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the average delay and queue size are well defined [6]. We
shall generally assume stability for the networks analyzed in
this paper without further concern; indeed, the upper
bounds given demonstrate the stability of the networks for
\<1.

The variable T represents the average delay, by which we
mean the average time a packet spends in the system from
generation to arrival at is destination. The average distance
a packet travels, by which we mean the number of edges it
passes through, will be denoted by n� . A simple counting
argument reveals that n� =(2�3)(n&1�n) in the two-
dimensional n by n array. Sometimes we will also wish to
refer to the average distance, excluding packets with the
same source and destination. We will refer to this average as
n� 2 , which is 2n�3 in the two-dimensional array.

2.2. Product-Form Networks
The comparison that yields the upper bound proves

useful because under the PS discipline the network becomes
a product-form network. A network is product-form if in the
equilibrium distribution each queue appears as though it
were an independent process with Poisson arrivals [14].
For the PS network, under the invariant distribution the
number of packets at each queue has a geometric distribu-
tions with mean *e�(,e&*e). The *e can be determined
either by solving a system of equations [6], or by using the
techniques of [1], so computing the expected number at
each queue (and hence in the system) is a simple exercise.
The average delay is then easily derived using Little's Law
[10]

N=T : *,

where in the above equation N is the average number of
packets in the system, T is the average time a packet spends
in the system, and � * is the overall rate at which packets
enter the system.

As it happens, the equilibrium distribution under the PS
discipline is the same as the equilibrium distribution for the
equivalent Jackson network. This relationship will be
explained more fully in Section 3.3 and used to compare the
upper and lower bounds.

3. AN UPPER BOUND

3.1. A Bounding Theorem

We begin by reviewing the results of Stamoulis and
Tsitsiklis [12], and then demonstrate that their result
applies to array networks. Before providing the relevant
theorem, we briefly explain the intuition. Stamoulis and
Tsitsiklis define a sample path of a system to be all the
information regarding packet arrival times (from outside

the system) and routing information. (Technically, they
require that this information is in a special form, such as
``the fifth packet arriving at queue 5 continues along to
queue 7.'') They show that for certain networks, the PS
network is a delayed version of a standard FIFO network.
That is, given any fixed sample path, if we look at the
ordered list of times when packets exit the system from a
queue, every time for the PS network is at least as large as
the corresponding time in the FIFO network. In this
respect, the PS network looks like a slowed-down version of
the original FIFO network. This leads to the following
theorem:

Theorem 1 (Stamoulis and Tsitsiklis). Let Q be a queueing
network satisfying the following properties with unit service
times and FIFO servers:

v The network is layered. That is, the arcs are labelled
with numbers from the set [1, ..., N] for some N, and any
packet crossing an arc labelled i thereafter only crosses arcs
with labels j >i until exiting the network.

v Routing is Markovian. In other words, the probability
distribution of the next arc to be crossed depends only on the
arc just traversed, instead of on the complete path the packet
has taken.

v The external arrival streams at each arc are independent
Poisson streams with a fixed rate (which may depend on the
arc).

Let Q� be an identical network with PS servers. Then if N(t)
(resp. N� (t)) denotes the (random) total number of packets
present in Q (resp. Q� ) at time t, then

N(t)�st N� (t), \t�0.

This theorem bounds the average number of items in the
system, and with Little's Law one can bound the average
delay. Note that, as mentioned in Section 2.2, N� (t) is easy to
compute, so the bound is also meaningful. It would be even
more desirable to bound each individual queue the same
way, but the argument only holds for the system as a whole.

3.2. The Conditions of the Theorem

We now demonstrate that the conditions of the theorem
hold for the array. In our model the packets generated at
each node are Poisson processes, and newly generated packets
correspond to external arrivals. Hence the external arrival
streams at each arc are Poisson processes, so the third
condition is trivially satisfied. We must also demonstrate
that the array is layered and the greedy routing scheme is
Markovian.

Although the array is not layered under general routing
schemes, it is under the greedy routing scheme with the
defined topology. An example of a labelling that layers
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FIG. 1. Layering the array.

the array is given in Fig. 1. The labelling suggests the follow-
ing lemma:

Lemma 2. The following labelling layers the array under
greedy routing:

Edge Label

((i, j ), (i, j+1)) j
((i, j+1), (i, j )) n&j
((i, j ), (i+1, j )) n+i&1
((i+1, j ), (i, j )) 2n&i&1

Proof. The proof is immediate, since packets first head
left or right and then only up or down. K

To show that the routing process is Markovian, we
demonstrate a Markov process that moves a packet along a
row�column such that it stops uniformly at every node.
From this is clear that there is a Markov process simultaning
greedy routing with uniform destinations.

Lemma 3. Given a linear array of n elements, there is a
Markov chain that simulates an entering packet being trans-
ferred with uniform probability to every position on the array.

Proof. Label the nodes 1, ..., n in the obvious fashion.
Suppose a packet enters at node k. It remains at its entry
point with probability 1�n; otherwise, it moves left with
probability (k&1)�n and right with probability (n&k)�n.
Now suppose the packet is moving to the left. After each
move, a packet at node j stops with probability 1�j and
continues to the left otherwise. By symmetry the case to
the right can be handled similarly. This clearly defines a

Markov process, and it is a simple to show that each packet
goes to each possible destination with probability 1�n. K

Corollary 4. Greedy routing on an array is Markovian.

From our previous discussion, we can conclude the
following theorem:

Theorem 5. The expected number of packets in an array
network with unit service times under the PS service model
yields an upper bound for the expected number of packets of
the equivalent array network with unit service times under the
FIFO model. Similarly, the same holds true for the average
delay experienced by a packet.

3.3. Relation to the Jackson Model

The Jackson open queueing network model differs from
the standard model in that transmission times (i.e., service
times) are exponentially distributed with mean 1. The equi-
librium distribution of the Jackson model is the same as the
PS service model with unit edge time. This follows from a
sequence of standard results from queueing theory [4, 6, 14].

This model was recently examined by Harchol-Balter and
Black to approximate greedy routing behavior [1]. We can
interpret our result as saying that for the array, the Jackson
model provides an upper bound on the average lifetime of
a packet in the system for the standard (unit-time trans-
mission) model. As described in [1] and noted as far back
as [7], the arrival rates at a queue edge can be easily
determined combinatorially.

Theorem 6 (Harchol-Balter and Black). The total
arrival rate of packets at an edge directed from (i, j) is given
by the following table:

Direction Rate

Left (*�n)( j&1)(n&j+1)
Right (*�n) j (n&j )

Up (*�n)(i&1)(n&i+1)
Down (*�n) i (n&i )

From Theorems 5 and 6 and Little's Law we can derive
a formula for the upper bound:

Theorem 7. The average time a packet spends in an
array network with constant unit edge transmission times is
bounded above by

T�
1

*n2 :
e # E

*e

1&*e
=

4
*n

:
n&1

i=1

1
(n�(*i(n&i)))&1

.

This relation between the upper bound and the Jackson
open network model will continue to prove useful.
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4. AN APPROXIMATION AND LOWER BOUNDS

4.1. Previous Lower Bounds Methods

Stamoulisand Tsitsiklisdevelopeda lower boundtechnique
for routing on butterfly and hypercube networks [12].
Essentially, the bounds are achieved by looking at a subset
of the edges that satisfies the condition that a packet only
crosses one edge from that subset. For example, one can
examine edges crossing a single dimension of the hypercube
or the first layer in the butterfly. Equivalent results for the
array follow by considering an appropriate subset of edges.
We state the results here, without proof:

Theorem 8. For any routing scheme on the array, the
average delay T satisfies

T�f _1+
\

2n(1&\)& ,

where f =1�2 if n is even, f =1�2&1�n2 if n is odd.
For any oblivious routing scheme, the average delay T

satisfies

T�f _1+
\

2(1&\)& ,

where f is as above.

Of course, we also have trivial lower bound T�n� . This is
immediate, since a packet experiences a unit delay at each
edge it passes through.

We develop a different method for lower bounds on
greedy routing that is easier to generalize and yields better
bounds for heavily loaded networks. The asymmetry of the
array will in fact allow us to achieve a very strong lower
bound when the network is near capacity. We begin by
examining a good approximation for the average delay.

4.2. A Useful Approximation

As discussed in Section 3.3, the upper bound we found for
the average delay in the array network derives from the
equivalent Jackson queueing network. The equilibrium
distribution of this system, as we have noted, is product-
form; it is as though the queues were independent M�M�1
queues.

Since we know the service times are actually constant, it
seems reasonable to consider an approximation where in
equilibrium each queue is an independent M�D�1 queue.
In effect, we simply assume initially that all queues are
independent; this type of idea seems to have first been
considered by Kleinrock as far back as in [5]. Of course this
assumption is unwarranted, but in practice, it proves
accurate in many situations. Moreover, this approximation

will provide a useful intermediate step in establishing our
lower bounds.

The average time a packet spends in the queue in this case
can be derived from the Pollaczek-Khinchin mean value
formula [6]. Let *d be the arrival rate at an M�D�1 queue,
Nd be the expected number of packets in the queue in
equilibrium, and S be the random variable representing the
service time for a packet. Then we have (for a stable system)

Nd=E[S] *d+
*2

dE[S 2]
2(1&*dE[S])

.

In our standard case, E[S]=1, yielding

Nd=*d+
*2

d(1+Var[S])
2(1&*d)

.

When the service time is constant, the Var[S] term
disappears, but when the service times are exponentially
distributed, the variance in the service time is 1. Thus for
small arrival rates, the expected number of packets is almost
the same, regardless of the service; for large arrival rates,
however, the expected number of packets may differ by
almost a factor of 2 between the two models. In fact, regard-
less of the value of E[S], the value of E[S2] differs by a
factor of 2 between the cases where S is constant and S is
exponentially distributed, and hence Nd differs by at most a
factor of 2 as well. Applying Little's Law, we have the
following lemma:

Lemma 9. The average delay of a packet under the
Jackson queueing network model is at most twice the average
delay of a packet in the equivalent system of independent
M�D�1 queues, where corresponding queues have the same
arrival rate.

The corresponding approximation for the array network,
based on a system of M�D�1 queues, is

Tr(4�*n) :
n&1

i=1

(*i(n&i))[(n&*i(n&i))2+n2]
2n2(n&*i(n&i))

.

In practice, simulation results suggest that this is a much
better approximation then the upper bound. Table I
compares the above estimate for T and the results from a
small set of simulations. As one might expect, the estimate
is more accurate for lightly loaded networks, where there is
less interference and hence dependence. Interestingly, in
heavily loaded networks assuming independence over-
estimates T, suggesting that the dependence inherent in the
network actually helps performance.

This suggestion has recently been borne out by the work of
Kahale and Leighton in [3]. They show that the average
delay T, for a fixed \, is at most some constant greater than n� ,
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TABLE I

Simulation vs M�D�1 Estimate

n \ T(Sim.) T(Est.)

5 0.2 3.545 3.256
0.5 4.176 3.722
0.8 6.252 5.984
0.9 8.867 8.970
0.95 12.172 12.877
0.99 20.333 21.384

10 0.2 6.929 6.711
0.5 7.748 7.641
0.8 10.652 12.183
0.9 14.718 18.444
0.95 21.034 28.014
0.99 63.950 77.309

15 0.2 10.289 10.123
0.5 11.192 11.518
0.8 14.563 18.329
0.9 19.226 27.718
0.95 28.867 41.990
0.99 68.220 103.312

20 0.2 13.649 13.523
0.5 14.589 15.383
0.8 18.191 24.465
0.9 20.041 36.983
0.95 31.771 56.015
0.99 77.283 141.127

the average distance a packet travels. The approximation
for T above yields that the difference between T and n�
is linear in n for a fixed \. In this light, the discrepancy
between the simulation results and the approximation is to
be expected. We believe that the approximation may still be
useful as a rough estimate, especially when the network size
or the arrival rate is small.

4.3. A New Lower Bound Technique

We now demonstrate a new lower bound for the average
delay under greedy routing based on a comparison with a
network of M�D�1 queues. The method can be applied to
various queueing networks and routing schemes, such as
tori, hypercubes, or butterfly networks under greedy routing
with uniformly distributed destinations. Although this
technique does not provide the best lower bounds at low
arrival rates, for high arrival rates we achieve better bounds
for both the array and the hypercube than previous
methods.

We first provide a general version of the lower bound,
and follow up with a specialization of the bound for
Markovian networks. Recalling that the upper bound was
derived from a delayed version of the network, we develop
a rushed version to find a lower bound. The trick is to send
a copy of a packet to all the queues it will visit immediately,
and have each duplicate exit the system after it has been

served by the single queue. Intuitively, this system will work
faster than the standard system, since queues receive their
packets immediately. However, the expected number of
packets in the system increases by a factor corresponding to
the number of duplicates of a packet.

Theorem 10. Let Q be a queueing network with unit
service times, FIFO servers, and Poisson external arrivals.
Let d the maximum number of distinct services required by
any packet over all possible source and destination pairs. Let
Q� be a corresponding set of queues with unit service times and
FIFO servers, each having independent Poisson arrivals at a
rate equal to the total arrival rate for the corresponding queue
in Q. If N(t) (resp. N� (t)) denotes the (random) total number
of packets in Q (resp. Q) at time t, then

E[N� (t)]�E[N(t)] d, \t�0.

Proof. The theorem will come about from a series of
comparisons of similar queueing networks. We assume
without loss of generality that a packet's complete route
through Q is determined according to the correct proba-
bilities at its generation time. For convenience we also
assume that a packet visits each queue at most once. (This
restriction could easily be removed.) Note that d can be
thought of as the maximum distance a packet travels in the
natural manner.

We first examine a new system, Q1 , associated with the
network Q. When a packet is generated in Q, for each queue
in Q that the packet will travel through a copy is generated
at each corresponding queue in Q1 . Packets do not move
from queue to queue in Q1; instead, when a packet finishes
being serviced, it simply leaves the system. Of course
different copies of a packet may complete service at their
respective queues at different times.

Each queue in Q1 , when examined in isolation, acts as an
M�D�1 queue, with arrival rate *e . The queues are not
independent; however, the expected number of packets in
each queue is just that of an M�D�1 queue with Poisson
arrivals. By the linearity of expectations, the expected
number of packets in Q1 is the same as the expected number
in Q� , that is

E[N� (t)]=E[N1(t)],

where N1(t) has the obvious meaning.
We now consider a fixed sample path, where here a

sample path consists of all information regarding packet
arrival times and destinations. We would like to say that
any packet p is finished in Q1 , in the sense that all copies of
it have been serviced at all the appropriate queues, before p
exists in Q. This statement, however, may not be true, since
packets may be serviced in different orders in the two
networks. In particular, a packet q that gets serviced after p
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at some queue in Q may arrive in the system before p does,
in which case q is serviced before p at that queue in Q1 .

To avoid this complication, we consider a new system Q2

that acts exactly as Q1 with the additional constraint that the
servers must handle packets in the same order as Q. We
allow edges in Q2 to remain idle even if there are packets
queued, if this is necessary, to satisfy this constraint. Note
that, in the worst case, Q2 services packets at the same times
that Q does. As the order in which packets are serviced does
not affect the number in the queue, and adding idle time
only increases the number of packets in the queue, the
expected number of packets in Q2 is still at least the expected
number in Q1 ; that is,

E[N1(t)]�E[N2(t)],

where N2(t) has the obvious meaning.
We now bound the expected number of packets in the

network Q. For any fixed sample path, a packet cannot be
in Q2 unless its corresponding packet is still in Q. Thus we
can think of Q as a delayed version of Q2 , except that Q2 may
contain multiple copies of a packet. As the number of copies
of each packet is at most d, the expected number of packets
in Q2 is at most d times the expected number of packets in
Q; that is,

E[N2(t)]�E[N(t)] d.

Combining the determined inequalities yields E[N� (t)]�
E[N(t)] d, as was to be shown. K

By Lemma 9 and Little's Law, this yields a lower bound
for the average delay that is within a factor of 4n&4 of the
upper bound for the array.

Although Theorem 10 is sufficient for our model, note
that the theorem can be generalized to systems that are not
FIFO and have varying service times. The same idea holds;
a similar system that immediately receives a copy of a
packet at each queue the packet visits will be faster, at the
expense of having more packets in the system. Taking into
account this factor provides a lower bound. In particular,
note that unlike the result on upper bounds, this proof also
holds for non-Markovian systems, such as toroidal meshes.

For general networks, Theorem 10 appears to be the
best possible. For a single queue, for instance, E[N� (t)]=
E[N(t)] d, and for a linear array of M�D�1 queues, E[N� (t)]
rE[N(t)] d. However, we can improve the results for
Markovian networks.

Definition 11. For each queue e in a Markovian
queueing network, let de be the expected number of distinct
services a packet queued at e has left before reaching its
destination (including the service at e). We define the maxi-
mum expected remaining distance of the network, d� , by
d� =max de , where the maximum is taken over all queues in
the network.

In an n by n array network under greedy routing, the
maximum expected remaining distance is achieved by a
packet located at node (1, 1) and headed right. In this case
d� =n&1�2.

Theorem 12. Let Q be a Markovian queueing network as
in Theorem 10, with maximum expected remaining distance d� ,
and let Q� be a corresponding set of queues as in Theorem 10.
Then

E[N� (t)]�E[N(t)] d� , \t�0.

Proof. The proof is entirely the same as Theorem 10 up
to the last paragraph, where we bounded the expected
number of packets in the network Q. We now make more
careful use of the fact that Q2 is a delayed version of Q by
noting that a packet cannot be in Q2 at queue e unless its
corresponding packet is still in Q and has not yet completed
service in e. Thus, for each packet in Q, the number of copies
in Q2 corresponding to that packet is at most the remaining
number of services that packet has yet to complete. Let R(t)
be a random variable representing the number of services
yet to complete over all packets in Q at time t. We have

E[N2(t)]�E[R(t)].

Since the network Q is Markovian, the expected remaining
number of services before a packet reaches its destination
depends only on its current location, and in particular is
independent of the number of packets in the network. In
fact, regardless of a packet's location, its expected remaining
number of services is at most d� . Thus, we have that

E[R(t)]�E[N(t)] d� .

The result follows. K

By Lemma 9 and Little's Law, this yields a lower bound
for the average delay that is within a factor of 2n&1 of the
upper bound for the array.

4.4. The Strength of the Lower Bound

For most networks, the bound given in Theorem 12 is
clearly not tight. Using the maximum expected remaining
distance to bound the expected remaining number of
services appears excessive. However, the example of a linear
array of queues again demonstrates that the bound given is
essentially the best possible in general. One might also think
that d� could be replaced by n� 2 , the expected number of
queues a packet travels through. Indeed, the author made
this mistake in an earlier version of this paper [11].
However, the remaining distance a packet has left to travel
depends on its location, and the distribution of packet
locations is not, in general, independent of the number of
packets.
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TABLE II

Simulation Measurement of r�

n n� \ r� (Sim.)

5 3.333 0.2 2.568
0.5 2.574
0.8 2.600
0.9 2.610

} 0.99 2.613
10 6.667 0.2 4.665

0.5 4.694
0.8 4.746
0.9 4.775
0.99 4.776

15 10 0.2 6.755
0.5 6.796
0.8 6.875
0.9 6.913
0.99 6.924

20 13.333 0.2 8.841
0.5 8.887
0.8 8.982
0.9 9.041
0.99 9.029

In an array network, intuition suggests that the queues on
the middle of the array should have higher expected queue
sizes, since the number of packets passing through them is
larger than for other queues. Thus one would expect that the
lower bound of Theorem 12 is very weak for the array. One
might well expect that the expected remaining number of
services per packet would be well under n� 2 . Simulations
show this to be the case. Let R be the expected remaining
number of services in equilibrium, and r� be E[R]�E[N].
Table II presents some estimates for r� for array networks of
various sizes. The simulations suggest that r� is indeed less
than n� 2 , and that r� �n� 2<0.7 for large enough n.

It seems possible that better bounds on the expected
remaining number of services could be found for the array
by making use of the underlying topology. Such a bound
would be directly translatable into a stronger lower bound
on the average delay by Theorem 12. Indeed, any results on
the distribution of the remaining number of services would
be interesting; the value corresponds to the amount of work
necessary to empty a system.

4.5. Application of the Lower Bounds

Stamoulis and Tsitsiklis make careful note of the
difference between their upper and lower bounds at high
loads, that is, as \ approaches 1. This case is significant since
it corresponds to the worst case of network performance.
Theorems 10 and 12 improve on their results for the hyper-
cube and match their result for the butterfly for this case.

Following their lead, we consider a hypercube of dimension
d, where the destination distribution is such that a node

distance k from the node of entry is a packet's destination
with probability pk(1& p)d&k. Note that when p=1�2, this
distribution is uniform over the nodes of the network. For
smaller values of p, packets tend to travel to nearer
neighbors, whereas for larger values, packets tend to reach
more distant neighbors. Under greedy routing, the system
can be thought of as a Markovian network where each
packet considers each dimension in some canonical order
and crosses an edge dimension with probability p.

The previous bounds for the hypercube yield that

p
2

� lim
\ � 1

[(1&\)(T&dp)]�dp.

In particular, since dp is fixed for a given network, in the
limit as \ approaches 1, their bounds on T for a d-dimensional
hypercube differ by a factor of 2d for all values of p. Since
this lower bound is derived by primarily examining only
edges crossing one dimension, this factor makes intuitive
sense; a factor of 2 arises from the difference between
M�M�1 and M�D�1 queues, while the factor of d
corresponds to considering only one dimension of edges.
Our lower bound improves on this result. The maximum
expected remaining distance stems from a packet that is
queued to cross an edge in the first dimension and is
1+ p(d&1). By Theorem 12, as \ approaches 1 our upper
and lower bounds differ by a factor 2(dp+1& p), which is
less than 2d for all p # (0, 1). As p approaches 0 the factor
separating the upper and lower bounds approaches 2, and
it is bounded by a constant for p=O(1�d ). In the more usual
case of p=1�2, the upper and lower bounds differ by a
factor of d+1.

For the butterfly consisting of d levels, all packets go
through d edges. By Theorem 10, in the limit as \
approaches 1 our lower bound is within a factor of 2d of the
upper bound. This matches the results of Stamoulis and
Tsitsiklis, as one would expect [12].

The lower bounds for both of these networks could be
improved by better bounds on the expected remaining
number of services in equilibrium. However, at this time we
know of no stronger bounds for these topologies.

4.6. Improving the Lower Bound in High Traffic

The lower bound of Theorem 12 is somewhat disappoint-
ing, in that its separation from the upper bound for the
array is a factor linear in n. We improve our result so that
as \ approaches 1 the difference is a constant factor. Let
us call a queue saturated if *e�,e=\ and unsaturated
otherwise. The key is that only saturated edges are impor-
tant as \ � 1. Intuitively, this is because the saturated
queues grow much larger than all the others. Examining
only saturated edges will allow us to reduce the number of
copies of a packet we consider in the network Q1 .
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We consider the subnetwork of the array network given
by the saturated edges. As in Theorem 10 and Theorem 12,
we will find a lower bound on the number of packets in the
array network; however, this time we only consider packets
that cross a saturated edge.

Definition 13. For eachqueuee in a Markovianqueueing
network, let se be the expected number of distinct services
from saturated a packet queued at e has left before reaching
its destination (including the service at e). We define the
maximum expected remaining saturated distance of the
network, s� , by s� =max se , where the maximum is taken over
all queues in the network.

Theorem 14. Let Q be a network such that for any
unsaturated queue e, *e�,e is bounded away from 1 as \ � 1.
Let s be the maximum number of saturated queues a packet
can traverse. In the limit as \ goes to 1, the expected delay is
within a factor 2s of the upper bound of Theorem 7. If the
network is Markovian, then the expected delay is within a
factor of 2s� of the upper bound.

Proof. We sketch the proof, which is similar to Theorems
10 and 12. Consider the original network Q. It is clear that
the average delay of a packet can only decrease if we assume
that crossing an unsaturated edge incurs no delay. We may
think of a modified version of Q, call it S, that offers no
delay at unsaturated edges. In this case, the number of packets
in the system can be found by examining only the queues at
the saturated edges; other edges are assumed to be empty.

We can now proceed as in Theorems 10 and 12 to lower
bound the expected number of packets in S. By Little's Law
this will provide us with a lower bound on the average delay
in S. (Keep in mind that the total arrival rate into S is still
*n2!) The modifications are simple; when a packet enters S,
we introduce a copy of the packet at each saturated edge
that it will cross in the corresponding network.

This effectively bounds the expected number of packets in
the saturated queues to within a factor of s of the expected
number if the system were composed of independent M�D�1
queues. It is simple to show that as \ goes to 1 the expected
number of packets at unsaturated M�D�1 queues is bounded,
while the expected number of packets at saturated M�D�1
queues is unbounded. For Markovian networks, one can
similarly examine the expected number of remaining
services through saturated queues to replace s by s� . By
Lemma 9 and Little's Law, the theorem follows. K

Theorem 14 applies to array networks, as the expected
number of packets at unsaturated queues is bounded by a
function of n. Whether n is even or odd makes a significant
difference in our lower bound, since a packet can go through
at most 2 saturated edges when n is even, and up to 4 when
n is odd; see Fig. 2. Indeed, by simple combinatorial calcula-
tions, one finds that s� =3�2 when n is even, and s� <3 when
n is odd. (In fact s� � 3 as n � �.) Thus under high loads the

FIG. 2. Examples of saturated edges in array networks.

upper and lower bounds we have found differ by factor of 3
when n is even and at most 6 when n is odd. Although this
difference seems unusual, it may reflect a real phenomenon
in array networks. For example, when n is even the network
is stable for *<4�n, but for odd n we must have
*<4n�(n2&1) for stability.

Note that Theorem 14 yields no improvement over
Theorem 12 for the hypercube or butterfly, since all queues
are saturated by symmetry.

As with Theorem 12, we expect that the lower bound of
Theorem 14 is far from tight, as s� overestimates the expected
remaining number of services at saturated queues per
packet. Let Rs be a random variable corresponding to the
remaining number of services at saturated queues at equi-
librium, and let rs=E[Rs]�E[N]. In Table III, some
estimates for rs found by simulation are given. The estimates
reflect the value for rs observed for \=0.99; simulations for
other values of \ suggest the dependence of rs on the arrival
rate is minimal.

5. EXTENSIONS

5.1. Variable Transmission Rates

The techniques we have used prove applicable to a
number of extensions of the original problem. The first
generalization we consider involves varying transmission
times across the wires. For example, since edges along the
periphery of the array receive less traffic, one might wish to

TABLE III

Simulation Measurement of rs

n rs (Sim)

5 1.875
10 1.250
15 2.106
20 1.230
25 2.209
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place slower wires there than in the center of the array to
build a system with a better performance to cost ratio. How
should one build the network to optimize performance?

The problem for the Jackson network model has been
considered extensively. The results yield upper bounds that
can be applied to the case where service times are constant,
using a variation of the proof of Theorem 5.

As an example, we consider the case where service rates
are bound by a linear constraint. Imagine that the cost for
a server of a given rate is linear; that is, a service rate of ,j

for the j th server costs dj,j . Assuming we have a total of D
(dollars) to spend on the network, then the service is bound
by the constraint

:
j

dj,j=D.

Theorem 15. Given a Jackson network, suppose the service
rates are subject to the overall constraint �j dj ,j=D, where
,j is the service rate of the jth queue and D>� j *j . Then if
*j is the overall arrival at queue j, the optimal allocation to
minimize the mean number of customers in the network (and
thus the average delay) is

,j=*j+
- *j dj

�k - *kdk

D&�k *k dk

dj
,

where the sum is over all queues in the network.

The theorem is a simple application of Lagrange multi-
pliers. Recall that N=�j *j �(,j&*j). One forms the
Lagrangian

N$=:
j

*j �(,j&*j)+; _:
j

dj,j&D&
and finds the solution that satisfies the equations �N$��,j

=0 for all j. (See, for example, [7] or [4].) Note that when
all the de=1, so improving any queue can be done with
equal expense, the optimal allocation corresponds to first
allocating each queue just enough service capability to
handle its arrival load, and then distributing the remaining
money proportionally to the square root of the arrival rates.

Since in equilibrium in the Jackson model all queues are
independent, one can easily determine the average number
of packets in the system in equilibrium, and hence the
average delay from Little's Law. We apply this analysis to
the array. Define D* by D*=D&�e # E *ede . An interpreta-
tion of D* is the extra money available after assigning each
queue the minimum service rate necessary for stability.
Then the average delay is given by

T=
n�

D* _ :
e # E

�*ede

* &
2

.

As previously noted, The expression for T above is an
upper bound for the case where service requirements are
discrete instead of exponentially distributed. It is not clear,
however, that the allocation described in Theorem 15
remains optimal for this case; indeed, this seems an interest-
ing open question. Using Theorem 10, one also has a lower
bound within 2n&1 of the upper bound. Note that one
cannot apply the argument of Theorem 12, since all queue
sizes become unbounded as the arrival rate increases to
capacity.

In a system with optimal service rates, the average delay
tends to infinity as D* approaches 0; however, the system is
stable for any positive value of D*. From this we show that,
as one might expect, a modified network can handle a
higher rate * of incoming packets. If all dj=1, then for
the original array network D=4n(n&1), and thus
D*=4n(n&1)&�s # E *e . We use the identity that the sum
of the arrival rates at each node equals the average distance
travelled by a packet multiplied by the total external arrival
rate. (See, for example, [7].) Thus

D*=4n(n&1)& :
e # E

*e=4n(n&1)&n� (n2*),

and hence D* is positive whenever

*<
4
n� \1&

1
n+=

6
n+1

.

If transmission capacity is optimally distributed, then the
array will remain stable under arrival rates of *<6�(n+1),
as opposed to 4�n. Since this stability condition holds when
the transmission times are exponentially distributed, it also
holds in the model where transmission times are constant,
as the first model yields an upper bound for the second. This
condition is necessary for stability for all nondeterministic
arrival schemes.

One can similarly find solutions for the problem when
other, non-linear constraints are imposed, or where costs
vary from edge to edge. Natural constraints depend on the
relationship between cost and transmission speed. Further
examples of the method can be found in [7]. In practice,
one might instead wish to choose transmission rates from a
finite set of possibilities. Although this method does not
yield an optimum solution for this problem, it can provide
a suitable first approximation.

5.2. Further Extensions

We can to some extent remove the assumption that a
packet's destination is uniform over the array. Theorem 1
requires only that the routing process can be considered
Markovian. Thus, for example, one could have the packet
move along each row�column in some direction, stopping
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movement in that direction at each point with probability
1�2, except at the edge of the array (where the packet must
stop). This corresponds to a distribution where packets are
more likely to travel to nearby destinations. Theorem 12
applies in this case, and Theorem 10 can be used when the
routing is not Markovian.

The methods presented here easily extend to array
networks in higher dimensions under the greedy routing
paradigm. The derivation seems relatively straightforward;
one can explicitly determine the arrival rates at individual
queues combinatorially or by solving a large system of
equations, as described in [1].

Finally, the results here also hold asymptotically for
slotted time, where the time axis is not continuous but
instead consists of slots of some fixed duration {. Arrivals in
this model are assumed to come in batches, the number of
arrivals at a slot being a Poisson random variable with
mean *{. It is clear that the average time in this case is
within { of the average time in the continuous case; one can
simply imagine that the packets instead arrived over the
interval as a Poisson process, already having incurred some
delay of at most {. A more detailed argument can be found
in [12].

6. OPEN PROBLEMS

Leighton also examines toroidal networks, which appear
very similar to array networks [8, 9]. Although the lower
bound techniques we describe apply to this case, the
methods of Stamoulis and Tsitsiklis do not. In fact any
network containing a ring of directed edges cannot be
layered, and the greedy routing scheme on the torus is
clearly not Markovian. An upper bound for the average
delay on toroidal networks thus remains open. Similarly,
one might consider a randomized version of greedy routing,
where packets randomly decide whether to move first to the
correct row or the correct column. The same approximation
and lower bounds given for the standard greedy routing
algorithm apply, but the upper bound argument fails. We
note that in simulations the randomized greedy routing
scheme performs slightly worse than the standard scheme;
thus further study of it may be only of academic interest.

Of course there remains room to tighten our bounds. It is
not yet clear how much better the lower bounds can be
tightened, but it seems likely that they could be improved
by a constant factor on array, hypercube and butterfly

networks by suitably bounding the expected remaining
distance the packets have left to travel. Also, it would be a
significant improvement if we could compare the original
network directly to a system of M�D�1 queues, without
introducing the copies of Theorem 12. Finally, it seems
undesirable that the bounds we achieve depend on whether
n is odd or even. Perhaps another technique could remove
this distinction.
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