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Abstract. Recently, several researchers have developed equations for modeling TCP behaviors, such as
the expected throughput or latency, based on Markov chains derived from TCP with additional simpli-
fying assumptions. In this paper, we suggest new directions for Markov chain analyses of TCP. Our first
contribution is to closely examine not just the expectation but the entire cumulative distribution func-
tion of transfer times under various models. Particularly for short or medium transfers, the distribution
is likely to be more useful than the expectation in terms of measuring end-user satisfaction. We find
that the shapes of TCP cumulative distribution functions are remarkably robust to small changes in the
model. Our results suggest that simplifying Markov analyses can be extended to yield approximations
for the entire distribution as well as for the expectation.

Our second contribution is to consider correction procedures to enhance these models. A correction
procedure is a rule of thumb that allows equations from one model to be used in other situations. As
an example, several analyses use a Drop-Tail loss model. We determine correction procedures for the
deviation between this model and other natural loss models based on simulations. The existence of a
simple correction procedure in this instance suggests that the high-level behavior of TCP is robust against
changes in the loss model.

Keywords: TCP latency, TCP throughput, Markov chains, Drop-Tail model

1. Introduction

Understanding and predicting TCP behavior remains a challenging problem, both
because of the complexity of the protocol itself and the inherent complexity of the
interactions between the protocol and the network.
Two important techniques have developed for understanding TCP behavior. The

first is to use an event-driven simulation tool, such as ns [26], to simulate TCP
behavior under preset conditions (e.g., [10, 13]). The ns simulator provides an
infrastructure allowing realistic simulations of networks using TCP and other pro-
tocols, including aspects such as buffers with various queueing and drop policies,
random delays corresponding to processing, and interaction among multiple flows.
Data derived from such simulations can be studied to gain high-level insight into
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TCP behavior. The simulation-based approach, however, does not provide an analyt-
ical and mathematical framework for studying TCP, making it difficult to extrapolate
results or gauge the effect of changes.
Hence a second widely used approach is to study TCP by analyzing the event-

driven process as a Markov process [7, 18, 20, 21, 24, 28]. This approach begins by
developing a simplified model of TCP, with the goal of generating equations that
describe the behavior of the model. For example, a natural goal is to derive an
equation describing the functional relationship between the throughput rate, the
round-trip time, and the loss probability; such relationships have been proposed as
key features in designing other congestion control schemes that are fair to TCP
traffic [6, 11]. Because of the inherent complexity of TCP and its environment, in
order to derive a succinct equation, various simplifying assumptions are generally
made to make the mathematics tractable. For example, a single stream is considered
in isolation; all acknowledgments are assumed to arrive; losses or sequences of losses
occur independently and randomly with some fixed probability; and packets are sent
in groups over rounds.
In this paper, we suggest new directions for TCP analyses based on Markov

processes. At this point, the work is primarily exploratory and based on simulations;
we expect related mathematical analyses to follow in future work.
Our first direction is to expand the information sought from the TCP models.

Thus far, the equation-based approach has primarily focused on finding expected
throughput rates or transfer times. The expected transfer time may not be a reliable
measure of important criteria such as end-user satisfaction, however. As a recent
Fortune article (citing a Keynote systems study) states: “Everyone has a breaking
point. For most Web surfers these days, it’s about eight seconds: If a page takes
longer than that to load, most users won’t stick around” [8]. We therefore suggest
that in order to compare properly various TCP models, it is imperative to study
the distribution of the transfer time as well as the expectation, as different mod-
els might yield similar expectations but entirely different distributions. Hence, in
our comparisons of various models, we primarily examine cumulative distribution
curves.
One of our findings is that TCP distribution curves have robust shapes, in that in

many cases varying the assumptions does not significantly change the overall shape
of the distribution curve. We attempt to offer insight into why this is the case.
We believe these results suggest that the equation-based models derived thus far
will, with further work, extend to provide reasonable approximations of the entire
distribution curve.
Our second related direction is to consider correction procedures that allow us to

better understand the effect of various simplifying assumptions made for analysis.
A potential problem with previous work based on the equation-based approach is
that several simplifying assumptions are made, but their individual effects are not
examined. Instead, the results of the end equation are tested against simulations.
In this framework it is difficult to tell whether all the simplifying assumptions have
a small effect, or whether the effects of various simplifications tend to cancel each
other out.
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Our goal is to consider the deviations introduced by the various simplifications
in isolation to quantify what sort of errors they may cause. We emphasize that the
purpose of this exercise is not to diminish the validity of the approach of determin-
ing TCP equations. Rather, we hope to enhance the TCP equations by recognizing
what kinds of corrections may apply. Correction procedures can help us in several
ways. For example, if we know that one simplifying assumption tends to increase
the transfer time, while another tends to decrease the transfer time, we can take
advantage of the fact that the effects tend to cancel each other. As a more spe-
cific example, we consider how the transfer time varies with the percentage of lost
acknowledgments. This insight may allow us to use more faithfully a model where
acknowledgments are not lost to predict behavior when acknowledgments are lost.
In general, we find that there can be non-trivial differences between transfer rates
for different models, suggesting that correction procedures or some other mecha-
nisms are necessary to have accurate estimates of TCP behavior.
The idea of a correction procedure is also useful in understanding the complexity

of TCP behavior. A simple correction procedure suggests that there is a feature of
TCP that is robust to changes in the model. For example, we show that there appears
to be a natural correction procedure among different loss models. We believe this
should direct future equation-based work toward a universal analysis that holds
for a variety of loss models. In contrast, the lack of a simple correction procedure
between models would suggest a complex interaction between the TCP protocol
and the underlying model that would need to be understood.
The remainder of this paper is organized as follows. Section 2 reviews previous

work on TCP dynamics. Section 3 describes the loss models that we evaluate in
our simulations. Section 4 presents the simulation environments used in our study.
Section 5 presents our main results concerning the impact of different loss mod-
els on TCP performance. Section 6 considers the effect of lost acknowledgments.
Section 7 studies the variance of transfer times for large bulk transfers. Finally,
Section 8 presents concluding remarks and directions for future research.

2. Previous work

A significant amount of the traffic on the Internet currently uses TCP as the trans-
port protocol. Even for applications for which TCP is not the transport protocol
of choice, such as multicast and continuous media delivery, there is an increas-
ing trend toward designing TCP-friendly transport protocols. Consequently, several
simulation and analytical studies have been conducted to understand the start-up
dynamics and the steady-state behavior of TCP bulk transfer and to quantify the
TCP-friendliness of other transport protocols.
Earlier studies of TCP include the analysis of the basic congestion avoidance

and control algorithms [9, 14] and simulations and trace-based analyses that detect
phenomena such as ACK-compression, out-of-packet delivery, synchronization of
losses, and pathological connections [17, 19, 30]. Analytical models developed in
[15, 16] study the long-term behavior of a TCP connection. Consequently, they do
not attempt to capture the impact of bursty losses, timeouts, slow start, and other
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TCP characteristics. The start-up dynamics of TCP Reno are studied in [13], which
also suggests changes to the implementation to improve its performance during the
start-up epoch. The simulation-based study of [10] compares a number of different
TCP implementations with respect to their response to multiple packet drops in a
single window. One of the main results of the preceding study is that all of the most
common TCP implementations that use cumulative acknowledgments react poorly
to multiple packet drops in a single window since the TCP sender frequently incurs
a timeout even if as few as two packets are dropped.
The significant difference in the effects of the two loss indications used by

TCP, namely timeouts and triple duplicates, is a focus of [20, 21], which present a
stochastic model for TCP congestion control and derive formulae for the expected
steady-state throughput in terms of latency and packet loss. This model is further
extended in [7] and [24] to include startup effects such as connection establishment
and slow start, which have a significant impact on the latencies of short TCP trans-
fers. All of these analytical studies [7, 21, 22, 24] adopt the Drop-Tail packet loss
model described in Section 3. Recently, different models of packet loss have been
proposed. One such model is presented in [18], which discards the “source-centric”
model of parametrizing the individual packet loss probabilities and instead mod-
els the loss indications received by the source as a Poisson stream. More closely
related to our work is the recent study in [28], which analyzes unicast and multi-
cast packet loss measurements and evaluates the accuracy of multiple state Markov
chain models for packet loss.
Models for analyzing TCP throughput that consider correlated packet losses have

been recently studied in [2] and [31]. The correlated losses are represented by a
Markovian process in [31], while [2] adopts a stationary ergodic random process.
The emphasis of both studies, however, is on bounding the average throughput in
terms of parameters characterizing the packet loss process; in contrast, our focus
is on evaluating the impact of different loss models on the distribution of download
times.
The assumptions in our model (and those made in earlier studies of TCP) have

been influenced by a number of studies based on large-scale Internet measurements
[5, 23, 25, 30]. For example, a key observation made in these studies is that packet
losses are correlated. The Correlated model, described in Section 3, is largely moti-
vated by the observations of [23] and [30]. In [30], it is argued that packet losses
can be modeled by Bernoulli distribution of loss episodes, in which each loss episode
is a sequence of consecutive losses, the length of which is drawn from a geometric
distribution.

3. The loss model

The selection of a loss model is a key question in designing simplified models of
TCP performance. In this section, we examine the most common loss models.
In all of the loss models we study, we make the assumption that packets and

acknowledgments are sent in groups over rounds, and that losses are independent
from round to round. This assumption, which is made in most analytical studies
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[7, 22], is partially justifiable with the understanding that TCP tends to send packets
in bursts in a manner similar to how our models send packets in rounds, and the
round-trip time between rounds may be sufficient for most congestion to clear. The
independence of packet losses occurring in different rounds is especially likely to
hold for connections with moderate to high round-trip times since the time needed
to send all the packets in a window is then much smaller than the round-trip time
[2, 22]. We note that this assumption is not essential for our modeling approach;
we adopt it for testing purposes in keeping with the main point of our study, which
is to examine variations from the simplified Markov models studied thus far.
We focus on the following models:

— Bernoulli: Each data packet is independently lost with a fixed probability p.
— Drop-Tail: In each round, we consider the data packets sequentially. The first

packet in the round is lost with probability p; for every other packet, if the
previous packet was not lost, the packet is lost with probability p; if a packet is
lost, then all subsequent packets in the round are lost.

— Correlated: In each round, we consider the data packets sequentially. The first
packet in the round is lost with probability p; for every other packet, if the
previous packet was not lost, the packet is lost with probability p; otherwise, it
is lost with probability q.

The Bernoulli model is arguably the most basic model for packet loss. Owing to
its simplicity, it lends an easier analysis than the other loss models. The Bernoulli
model may be appropriate for modeling congestion arising in queues that imple-
ment the random early detection (RED) policy [11], since such queues respond to
congestion by dropping packets uniformly at random. The Drop-Tail model is an
idealization of the packet loss dynamics associated with a FIFO drop-tail queue.
It is assumed in this model that during congestion, queues drop packets in bursts
[4, 23], thus causing packets in the “tail” of a round to be lost. The Correlated model
is somewhat less stringent. It characterizes the loss pattern as a Bernoulli distribu-
tion of loss episodes, each episode consisting of a group of consecutive packets, the
length of which is approximated by a geometric distribution. Recent evidence for
such correlated packet loss includes [23, 30]. We note that the Correlated model
actually includes both the Bernoulli case (when q = p) and the Drop-Tail model
(q = 1) as extreme cases. For each of the above models, we refer to p as the loss
episode parameter.

4. Experimental setup

We used two simulation environments for our study: one a round-based TCP sim-
ulator that we have written, and the other the UCB/LBL/VINT simulator ns. The
notion of a round, which is intrinsic to the Markov chain approach and is not cap-
tured in ns, defines the unit of time in the round-based simulator. In our sim-
ulator, a round is broken into sequential phases: the sender sends the round’s
worth of packets; packets are passed through a filter that may introduce loss; the
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receiver receives packets, and sends appropriate acknowledgments; acknowledg-
ments are passed through a filter that may introduce loss; and the sender receives
acknowledgments. The round-based simulator faithfully captures the analytic mod-
els proposed in [7, 21, 22]. Consequently, we are able to directly compare the dif-
ferent cumulative distribution functions obtained over a wide range of loss models.
Furthermore, the simplicity of the round-based simulator allows us to vary param-
eters and models for testing with relative ease.
We use the round-based simulator to study the dynamics of file transfers, primarily

focusing on transfers of 64 and 1024 packets from a TCP Reno source under various
loss models. The two transfer sizes chosen are representative of short-to-medium
size downloads. In our simulation, the receiver issues delayed acknowledgments; it
sends an acknowledgment for every other packet or in the next round, whichever
occurs earlier. We omit the effects of round-trip time smoothing calculations and the
connection establishment phase. All experiments conducted with the round-based
simulator involved 10,000 trials for each setting of the variables. In all our exper-
iments, we assume that the maximum window and the initial slow start threshold
are 24 and 42 packets, respectively.
We validate our round-based simulator by comparing the distributions obtained

for the Bernoulli loss model with those obtained in ns. For this purpose, we modify
the ns simulation to set the duration of the first timeout in any sequence of consec-
utive timeouts to match the corresponding value set in the round-based simulator,
which is 4 times the round-trip time. (We note that the exponential backoff protocol
used for setting the retransmission timers in the event of a sequence of consecutive
timeouts is the same in both round-based and ns TCP simulations.) The ns experi-
ments simulate a TCP Reno sender and a DelAckSink receiver, which sends an ack
for every other packet or when a 100 ms timer expires, whichever occurs earlier.
Our data for the ns simulations are based on 1,000 trials. Figures 1 and 2 compare
the cumulative distribution plots for the number of rounds needed to transfer 64
packets and 1024 packets, respectively, under different Bernoulli packet loss prob-
abilities. For the data obtained from ns simulations, the y-axis represents the ratio
of the transfer time to the round-trip time. We note that the relative error between
the two plots is less than 3%. Figure 3 gives the cumulative distributions of timeouts
for 1024 packet transfers, which also match very closely.
The small discrepancy between the round-based and ns distributions in the

Bernoulli model is due to some subtle differences in the two simulations. We dis-
cuss one such difference here. During the fast recovery phase in TCP Reno, a
sender artificially inflates the congestion window in response to duplicate acknowl-
edgments to account for the fact that packets have left the network. In the
round-based simulator, if the TCP sender is in fast recovery and incurs a timeout,
then the slow-start threshold (ssthresh) is set to half the inflated congestion win-
dow (cwnd); in this we have followed Wright and Stevens [27]. On the other hand,
in the ns version, the threshold is set to half the uninflated congestion window,
which corresponds to half of the congestion window at the instant that the fast
recovery phase was initiated. This appears to follow RFC 2581 [1]. Discrepancies
also arise due to minor differences in the particular implementation of delayed
acknowledgments. (As an aside, we note that seemingly minor differences can have
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Figure 1. Comparison between ns and round-based simulations for the Bernoulli loss model with respect
to rounds; 64 packets, packet loss 1–5%.

Figure 2. Comparison between ns and round-based simulations for the Bernoulli loss model with respect
to rounds; 1024 packets, packet loss 1–5%.
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Figure 3. Comparison between ns and round-based simulations for the Bernoulli loss model with respect
to timeouts; 1024 packets, packet loss 1–5%.

a significant impact. For example, in [1], it is stated that when deciding whether to
use slow start or congestion avoidance, the case where cwnd equals ssthresh is an
ambiguous case. We have found that the specific choice makes a small but clearly
noticeable difference.)
A similar validation for the Correlated and Drop-Tail models poses problems.

A plausible approach to implement these models in ns is to use a variant of the
two-state Markov chain, that is, the TwoState link error model offered in ns. The
two states in this model represent the error and error-free states. The parameters
of the model are the duration of time that a link spends in a particular state before
switching to the other state. A significant drawback of the model thus described
is that it is oblivious to the notion of rounds, and consequently, introduces depen-
dencies between losses across rounds. Independence of packet loss across rounds
is an important assumption made in previous models [7, 20, 21], and has also been
observed in measurement studies [4]. To address the above problem, we modified
the ns implementation to introduce the notion of a round by maintaining a round
number that is incremented whenever the time difference between the sending of
two consecutive packets exceeds the current smoothed round-trip time value. With
this we can approximately capture the behavior of the Correlated and Drop-Tail
models, although there is variance in the round-trip time as measured by the TCP
sender because of delayed acknowledgments. A comparison of the cumulative dis-
tribution plots of the number of rounds for transfers of 64 and 1024 packets is given
in Figures 4 and 5, respectively.
To summarize, we have developed our own round-based implementation of

TCP, which we use in all further experiments. The primary reason to prefer our
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Figure 4. Comparison between ns and round-based simulations for the Correlated and Drop-Tail models
with respect to rounds, 64 packets.

Figure 5. Comparison between ns and round-based simulations for the Correlated and Drop-Tail models
with respect to rounds, 1024 packets.
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implementation over ns is that our purpose is to study round-based Markov mod-
els. Our implementation is more faithful to these Markov models, and offers us
more control and flexibility in experimenting with variations of these models. Our
implementations differ a small amount but not significantly from ns. It is worth
noting that the resolution of seemingly small ambiguities in the TCP protocol can
lead to noticeable deviations in TCP performance, highlighting the difficulty of
accurately modeling TCP.

5. Analysis of the loss models

In this section we examine the impact of the loss models discussed in Section 3 on
the cumulative distributions of transfer times. In keeping with our goal of isolating
the effects of various assumptions, we assume in this section that there are no losses
of acknowledgment packets and focus on the effect of lost data packets.
We begin by considering the graphs showing the behavior of the cumulative distri-

bution function when p = 0�05 for all three of the models, namely, Bernoulli, Cor-
related, and Drop-Tail; this is representative of the behavior of loss rates between 1
and 10%. (We focus on this range of loss rates, as it is most likely to lead to inter-
esting behavior, and it appears representative in practice [23].) For the Correlated
model, we show the behavior for q = 0�25� 0�5 and 0�75. To the first order (bar-
ring boundary effects), this equalizes the number of loss episodes seen by all three
models. As one might expect, the greater the correlation, the greater the time; this
seems natural since the same number of loss episodes leads to more overall losses
and timeouts when there is correlation. (See Figures 6 and 7.) However, it is inter-
esting to note that although the expected transfer time changes with the models,
the distributions all have the same approximate shape.
We now consider a correction procedure for the relationship of the expected

transfer time among the various models over the range of p from 1 to 10%. We
have determined the ratio between the average transfer time for each model with
the Bernoulli model for these loss probabilities. We call this ratio the correction fac-
tor. The correction factor provides a way of translating the results from one loss
model to another. For example, using the equations determined in [20] for the
expected goodput of the Drop-Tail model, we can use the correction factors to esti-
mate the expected goodput for other models. The correction factors are charted
in Figure 8. We note that the differences between the models are fairly significant,
especially between the Bernoulli and Drop-Tail models, where the difference ranges
from roughly 30% to 50% in this range of p. This fact suggests that understanding
which loss model is appropriate and relevant is important for accurately predicting
TCP behavior. Unfortunately, the correction factor does not appear to have a sim-
ple functional form; currently we can only estimate the correction factor through
experimentation.
Interestingly, although we determined the correction factor simply from the aver-

age transfer time, the correction factor appears closely tied to the entire cumulative
transfer distributions. Indeed, if we consider the distribution curve for 1024 pack-
ets and loss episode parameter p = 0�05 from Figure 7, but rescale all the transfer
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Figure 8. The correction factor versus p.

times downward for all of the models (besides the Bernoulli model) according to
the appropriate correction factor, then the distributions themselves are remarkably
close, as seen in Figures 9, 10, and 11. Hence our initial determination that the
distribution curves have the same shape has now taken a concrete form: the differ-
ence between pairs of models can be succinctly summarized by a single number, the
correction factor.
We attempt to explain this observation. Our data suggest (not surprisingly) that

the transfer times are highly correlated with the number of timeouts in a linear
relationship for all of the loss models. For example, we examined the correlation
coefficient between the number of timeouts and the transfer time. For the Bernoulli
model, the correlation coefficients for 1024 packets are 0.81, 0.94, and 0.90 with
loss episode parameters 0.2, 0.5, and 0.8, respectively. For the Drop-Tail model, the
corresponding numbers are 0.96, 0.94, and 0.81 respectively. These numbers remain
relatively constant as the number of packets varies. Hence, for a fixed loss episode
parameter, the transfer time is roughly a linear function in the number of timeouts.
In all of the models, the number of timeouts has a nearly normal distribution, as
seen in Figure 12, suggesting that each loss episode has some near-fixed probability
of leading to a timeout. Hence it is reasonable for all of the loss models to have
the same shape distribution, and for these distributions to scale.
An interesting line for future research is to try to approximate timeout charac-

teristics with an appropriate normal model; this would allow a simplified Markov
model that be used to derive not only approximate expected transfer times
under TCP, but also approximations for the full distribution. Indeed, although we
are working with simplified models, the utility of understanding the variance is
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highlighted by recent work by Barford and Crovella, who suggest that for short and
medium downloads, the variability of timeouts is the primary cause of variability in
transfer time [3].
Also, we believe further understanding of the correction factors would be very

useful, as they relate the Drop-Tail model and the perhaps more realistic Correlated
model. We note some caveats. Our experiments suggest that the correction factor
must be increased for shorter transfers, and slightly decreased for larger transfers.
This behavior is interesting, since it suggests that the convergence of the throughput
rate to its expectation may require significantly long transfers; we explore this fur-
ther in Section 7 where we return to the question of variance. Also, these correction
factors depend on parameter choices in the model; when delayed acknowledgments
are not used, for instance, the appropriate correction factors increase substantially.
Because starting with the same loss episode parameter p leads to more losses

when losses are correlated, it may seem more fair to attempt to equalize the models
for the same overall fraction of lost packets, instead of equalizing for loss episodes.
As shown in Figure 13, which compares the Drop-Tail model with the Bernoulli
model, such accounting dramatically punishes the Bernoulli model. When p = 0�02
for the Drop-Tail model, for example, the total fraction of lost packets is 7.02%;
for the correlated model with p = 0�05 and q = 0�5, the total fraction of lost
packets is about 6.91%. Comparing the cumulative distribution curves for transfer
times for these two situations with the Bernoulli model with p = 0�07, we see
that the correlated models appear much better when we equate the packet loss
probability. The explanation is that TCP Reno handles very well long sequences of
losses such as those that occur with the Drop-Tail model; a contiguous sequence
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of losses occurring within a single window tends to cause a single retransmission
timeout, after which all the lost packets are resent. The same number of randomly
distributed losses, however, is likely to spread over multiple windows and may cause
multiple timeouts.
Our conclusion is that the choice of loss model has a significant effect on the

expected transfer time and throughput rate. If we equalize the models so that a
loss episode begins at any point according to the same loss episode parameter p,
models with correlated losses have noticeably longer transfer times. The shapes of
the corresponding cumulative distribution functions, however, are quite similar. In
particular, we have shown that a correction factor based on the expected transfer
time appears to correct for the differences between the entire distribution. We
believe this suggests a richer model yielding approximate distributions for certain
loss models will be possible.

6. Lost acknowledgments

In most analyses of TCP based on Markov processes, acknowledgments are assumed
to arrive so that effects of lost acknowledgments can be ignored in the analysis.
In this section we attempt to determine the effect of this assumption. We focus
here on the model with Bernoulli data packet and acknowledgment losses. More
highly correlated losses will have similar effects, depending on the loss parameters.
(The same loss episode parameter p will lead to more severe effects with more
correlated models, since a larger number of packets will be lost.)
We begin by examining the cumulative distribution curves for transfers of 64 and

1024 packets and a 5% data packet loss rate with varying acknowledgment loss rates
in Figures 14 and 15. Although the distribution curves keep the same overall shape,
the effect of acknowledgment losses is to noticeably slow the transfer. The difference
between no acknowledgment loss and a 5% acknowledgment loss is a 21% increase
in the average time for 64 packet transfers and a 19% increase in the average time
for 1024 packet transfers. Since smaller downloads spend proportionally more time
in slow start, it is reasonable that acknowledgment losses would have a slightly larger
effect.
It is interesting to determine how the lost acknowledgments affect performance,

since they affect the system in multiple ways. In some cases, a lost acknowledgment
can directly lead to a timeout in an instance where the arrival of the acknowledg-
ment might have led to a normal continuation or a fast retransmit. For example,
if the first pair of packets sent are received but the acknowledgment is lost, the
sender will continue to wait for an acknowledgment until a timeout occurs. Lost
acknowledgments also slow down the overall rate at which the sending window
size increases. Note that this effect may indirectly lead to additional timeouts, as
a smaller window may preclude a fast retransmit for a lost packet later on in the
process. To see the impact of each of these effects, we modified our TCP simula-
tion so that when an acknowledgment was lost, the simulation would act as though
the acknowledgment arrived, except that it would not increase the cwnd parame-
ter. That is, we removed the possibility of a lost acknowledgment directly causing
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Figure 14. Cumulative distribution functions as lost acknowledgments increase: 64 packets.

Figure 15. Cumulative distribution functions as lost acknowledgments increase: 1024 packets.
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Figure 16. The effects of lost acknowledgments versus pseudo-ack loss.

a timeout, while keeping the failure to increase the sending window. We call this a
pseudo-ack loss.
In Figure 16, we compare the increase in the average transfer time from acknowl-

edgment loss for lost acknowledgments and pseudo-ack loss. We show results for
data packet loss probabilities p = 0�02� 0�05, and 0�08. As can be seen, pseudo-ack
loss causes only a small increase in the transfer time, suggesting that the important
effect of lost acknowledgments is to increase the number of timeouts. The relative
importance of this effect grows with the packet loss probability. Again, this offers
some corroboration of the suggestion of [3] that timeouts are the significant cause
of variability in short and medium downloads.
We again attempt a correction procedure for varying acknowledgment losses by

using a correction factor. Consider a fixed loss event parameter p = 0�05 and a fixed
number of packets in the message, 1024. We determined the ratio between the aver-
age transfer times for various acknowledgment loss probabilities, and then scaled
the entire distribution curve by this factor. The result appears in Figure 17. Although
the resulting distribution curves do not completely overlap, they are very close; we
see that larger acknowledgment losses lead to more extreme tails than scaling would
suggest. This suggests higher acknowledgment loss probabilities have a greater than
linear effect on the overall transfer time. A suitable correction procedure would
need to take this into account. From a more theoretical standpoint, this suggests
that a richer equation-based model that accurately accounted for lost acknowl-
edgments would need to include a non-linear term in the acknowledgment loss
probability. However, as a first approximation, the cumulative distribution for no
acknowledgment loss along with a correction factor determined by the expectations
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Figure 17. The correction rule applied to the cumulative distribution; 1024 packets.

appears sufficient to approximate the cumulative distribution for various amounts
of acknowledgment loss.
Again, these results are dependent on the TCP variables used in these exper-

iments. We specifically note that the effects of lost acknowledgments are less
substantial when delayed acknowledgments are not in use, as one would suspect.
However, they are still quite noticeable, as seen in Figure 18. At a 5% data packet
loss rate, the difference in average transfer time between no lost acknowledgments
and a 5% loss rate of acknowledgments is still almost 12%.

7. Variance and convergence

In this section, we examine how the variance in the transfer times changes as the size
of the transfer increases. We are motivated by several works which use the round-
by-round analysis approach to approximate the average throughput and goodput of
a connection. For example, in [21] the authors develop a simplified Markov chain
for TCP and design an equation to approximate the long-term expected throughput.
In [20] the limiting distribution of the Markov chain is determined numerically in
order to determine the average throughput rate.
While over the long haul we expect convergence toward the steady state rate, our

results show that for short and medium transfers there can be significant variance,
depending on the quantity and location of losses encountered. Hence an interest-
ing question is how the variance of the transfer time changes with the size of the
file, so that we may have some idea as to how good an approximation the steady
state average throughput rate is. For convenience here we again assume no lost
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Figure 18. Cumulative distribution functions as lost acknowledgments increase without delayed
acknowledgments.

acknowledgments. We use the Drop-Tail model for packet loss, although our results
generally hold for all of the loss models we consider.
Figure 19 shows the probability density functions for the number of rounds to

transfer 1024 packets. As can be seen, when the transfer is sufficiently long, the
transfer time (like the number of timeouts) appears normally distributed. (We note
that for short downloads such as 64 packets with small loss probabilities, the distri-
bution of loss episodes appears more like a discrete Poisson distribution, and the
transfer time also has approximately that form.) For a fixed loss episode parameter
p, the standard deviation in the number of loss packet episodes when n data packets
are transmitted is approximately

√
np�1− p�. (This is exact, modulo retransmis-

sions.) Hence we would expect for fixed p that the standard deviation in the transfer
time would grow proportionally to

√
n, and this is seen in our experiments, as shown

in Figure 20. While this means that as n grows large the standard deviation of the
transfer time becomes a vanishingly small fraction of the average, it also means that
for short and medium downloads the variation remains significant. For 1024 pack-
ets, one standard deviation in the transfer time is still over 10% of the average; for
16,384 packets, it is only 3%.
Noting the normal distribution of the download time allows us to devise a useful

correction mechanism. Given the average and the standard deviation, we expect
about l/3 of all trials to fall outside one standard deviation, and about 5% of all
trials to be within two standard deviations. (The exact numbers are actually 31.74%
and 4.56%.) Note that for a fixed loss episode parameter p we can approximately
determine the average and standard deviations using a small number of packets n
and scale up, if desired. We see in Table 1 that this rule of thumb is approximately
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Table 1. Percentage of trials two standard deviations or more smaller than
the mean, one deviation or more smaller, one deviation or more larger, and
two deviations or more larger

Number of packets p < 2 sd < 1 sd > 1 sd > 2 sd

64 0.02 0.00 28.4 16.5 3.7
0.05 0.00 14.5 12.9 2.8
0.08 0.00 8.0 10.0 3.0

1,024 0.02 2.1 15.6 15.8 2.7
0.05 1.6 14.9 14.9 3.0
0.08 0.6 13.6 13.2 3.2

16,384 0.02 2.2 15.8 15.8 2.3
0.05 2.0 15.7 15.2 2.6
0.08 1.5 16.1 15.8 2.8

Values converge to the normal distribution for sufficiently many packets.

true, when the download is sufficiently large. It is also interesting to note that there
is a skew toward tails with very long download times that decreases with file size.
The relationship as p changes is less clear, as the transfer rate and the standard

deviation in the transfer rate do not appear to have a linear relationship with the loss
episode parameter p. As losses increase, timeouts become even more common in
a superlinear way, because the timeouts arise from the interaction of several losses.
Understanding in detail the loss patterns that can lead to a timeout, as described
in part in [10], could shed light on this effect.

8. Conclusion

We have studied the impact of different loss models on the cumulative distribution
of TCP transfer times by simulating associated Markov processes. Our simulations
show that while the choice of the loss model (Bernoulli, Correlated, or Drop-Tail)
has a significant effect on the actual distribution function obtained, the shape of
the function is robust to changes in the model. We have quantified the preceding
observation by showing that the differences among the entire distributions obtained
for two different models can be characterized by a single scaling factor, which is
dependent on the two models and their associated parameters. The effectiveness of
such a simple correction procedure suggests that a simplified Markov model can be
used to derive approximations of the full distributions under realistic loss models.
We plan to explore this line of research further.
A primary reason for the effectiveness of the correction procedure is that the trans-

fer times have an approximately linear relationship with the number of timeouts in all
the loss models, and the distributions of timeouts in these models are approximately
normal with different mean values. A promising direction for future research is to
derive a better characterization of timeouts during TCP transfers, both in terms of
the number of occurrences as well as the total duration of the timeouts. In this vein,
it will also be interesting to consider alternative models for the duration of the first
timeout in any sequence of consecutive timeouts. Presently, this duration is assumed
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to be fixed both in our simulations and in the Markov chain approaches, whereas in
practice it is a random variable depending on round-trip time measurements. The
difference will likely change the overall distribution of transfer time.
We have also considered how the distributions of transfer times are affected by

lost acknowledgments, which are often ignored in analytical approaches for simplic-
ity. Simulations indicate that although the distribution curves maintain the overall
shape, lost acknowledgments slow the transfer considerably. The increase in transfer
times appears directly traceable to a significant increase in timeouts while waiting
for an acknowledgment. It would be interesting to use tools for studying critical
paths of TCP, such as those developed by Barford and Crovella [3], to examine
these effects in more detail.
Finally, we have studied the relationship of transfer size to the standard devia-

tion in the distribution of transfer times. We have observed that for a fixed packet
loss probability, the standard deviation is proportional to

√
n for a transfer of n

packets, and is significant for small to medium downloads. The growth rate of the
standard deviation stems from the fact that transfer times appear to be approxi-
mately normally distributed for sufficiently long files. An interesting open problem
is to characterize the standard deviation not only in terms of the file size but also in
terms of the loss model parameters. Such a characterization would provide another
mechanism for deriving useful approximations for full distributions of transfer times
under diverse loss models.
At a higher level, we have argued that Markov models for TCP should be sub-

jected to more detailed scrutiny by determining the effects of various simplifying
assumptions. The choice of the loss model, for example, can have a significant
effect on overall download time. While the ultimate goal may be a general analysis
that applies to all models, a useful practical alternative we suggest is to use a cor-
rection procedure between models. In some cases, it appears that simple correction
procedures can be derived experimentally. The search for correction procedures
also provides insight into TCP behavior under different models that can guide the
search for improved equation-based analysis.
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