
Designing Stimulating Programming Assignments for an Algorithms Course:

A Collection of Exercises Based on Random Graphs

Michae l M i t z e n m a c h e r *
C o m p u t e r Sc ience Divis ion

U.C. Be rke l ey
Berke ley , CA 94720

m i t z e n @ c s . b e r k e l e y . e d u

Abstrac t

The field of random graphs contains many surprising and interesting results. Here we demonstrate
how some of these results can be used to develop stimulating, open-ended exercises for courses in al-
gorithms and data structures or graph theory. Specifically, we provide problems for algorithms that
compute minimum spanning trees, connected components, maximum flows, and all-pairs shortest paths.

1 I n t r o d u c t i o n

We have found in teaching courses on algori thms and da ta s t ructures tha t having s tudents program some
of the s tandard algori thms can be a useful learning experience. It ensures tha t they unders tand how the
algorithms function, it provides them with experience in turning theoretical results into usable tools, and
it demonst ra tes how theoretical t ime bounds t ranslate (or fail to t ranslate) into actual running times. We
therefore often include programming in our assignments.

How do we evaluate the exercises we develop? We have several goals in mind tha t the exercises should
accomplish, First, we hope to make the work interesting for the students. Second, we expect the exercises
will teach the s tudents something new, even beyond what they learn simply by the programming itself.
Finally, we would like the exercises to tie in with the direct{on of the course, and perhaps with each other.
These goals motivate us to develop exercises where the s tudents do something beyond just writ ing the
code and testing it on a few examples. Instead, we seek to create engaging and potentially open-ended
questions tha t allow students to use their code to discover new and hopefully surprising things. In general,
of course, such questions are hard to come by. However, we have found tha t the theory of random graphs
provides a source of remarkable problems for several s tandard algorithms.

In this paper we demons t ra te how the area of random graphs can be mined for engaging exercises by
providing examples tha t s tudents can explore after programming algori thms for the following problems:
minimum weight spanning tree, connected components , maximum flow, and all-pairs shortest paths. Al-
though stat ing the questions is easy, the related results in the l i terature are often ra ther technical, and are
certainly beyond the scope of this article. We will not delve too deeply into these technical details, but
instead merely a t t empt to provide basic intuition and references where possible.

Algori thms for all of the problems we consider can be found in [5, 9, 11], and many other s tandard texts.
For more information on the area of random graphs, we recommend the indispensable Random Graphs
by B@la Bollob£s [2]. Throughout we assume tha t the s tudents have simple and reliable pseudo-random
number generators available in their programming environment . The question of how good a pseudo-
random number generator should be is also beyond the scope of this paper; in practice, most systems
provide reasonably good pseudo-random number generators.

*This work was s u p p o r t e d in pa r t by the Office of Naval Research and in pa r t by NSF Gran t CCR-9505448.

S I G C S E
B U L L E T I N Vol, 28 No. 3 Sept. 1996 29

2 M i n i m u m Spanning T r e e

We begin by offering an example. We presume tha t the s tudents have been asked to implement some
s tandard minimum weight spanning tree algorithm.

E x e r c i s e : Consider a complete graph on n vertices. Assign a random weight uniformly and independently
from [0,1] to each edge.

Plot the expected weight of a minimum spanning tree as a function of n. For a few values of n, plot
the distribution of the weight for your samples. Do you notice anything? Can you make any conjectures?
[]

We have left open wha t ranges of n to consider and how many trials to make; these can be established
by the instructor if desired. One might wish to encourage s tudents to avoid floating point ari thmetic,
which can be slow on some systems. Instead assign a random integer weight from some large range (say
[0,10000]) and then rescale.

One might expect tha t the weight of the minimum spanning tree grows linearly with n, since the tree
contains n - 1 edges. The actual result is ra ther peculiar: as n tends to infinity, the weight of the minimum
spanning tree approaches a small constant! The following theorem, due to Frieze [6] and presented in [2,
p. 141-144], is quite specific:

T h e o r e m 1 Let s~ be a random variable corresponding to the weight of the minimum spanning tree when
the edges are given weights independently and uniformly from [0, 1]. Then:

lira E[sn] = ~(3) = ~ k -3 = 1 .202 . . .
k = l

And, for every e > 0,

lim P r { l s n - ff(3)l _> E) = o.
n--.t.¢~

One way to think about the problem is the following: as there are (~) edges, the lightest edge should

weigh about [(~) -t- 1] -1 ~ n - ~ " Similarly, the next lightest edge weight should be about ~ , and so
on. Hence, if the minimum spanning tree consisted of the n - 1 lightest edges, then its weight would be
approximately 1. The minimum weight spanning tree does not generally consist of these edges, because
they rarely form a tree; however, this result shows tha t this preliminary est imate is not too far off.

Al though the theorem describes limiting behavior, s tudents will find tha t the weight of the minimum
weight spanning tree is concentra ted near ~(3) even for relatively small values of n. In Table 1 we present
the average weight obtained from several simulation trials. Even at n -- 100, the average derived from
the simulation is very close to the limiting value. In Figure 1, we present an approximation for the
distribution of the minimum spanning tree weight from 1000 trials for 100 vertex and 200 vertex graphs.
(The approximation arises by making a histogram. Each da ta point covers a range of size 0.02.) Note tha t
the mean of both curves is close to ~(3), and moreover, the concentrat ion around the mean is stronger for
200 vertices than for 100 vertices. This behavior is exactly what Theorem 1 suggests.

n 100 200 300 400 500 600 700 800 900 1000
sn 1.207 1.201 1.200 1.206 1.202 1.205 1.205 1.199 1.204 1.201

Table 1: Average Minimum Spanning Tree Weight: 500 Trials

S I G C S E
B U L L E T I N Vol. 28 No. 3 Sept. 1996 3 0

5

4 . 5 t
i I

I
I

4 t ~ t ' ~
k /

I \1] - - - -

3.5 i I
J I I
I~ I 1L

2.5

2

f t
1.5

1

0.5

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
MST weight

- - 100 vertices
200 vertices

1.7 1.8

Figure 1: Min im um Spanning Tree Weight Density: 1000 Trials

We hope t h a t s tuden t s will find their s imulat ion results surprising and wor thy of fur ther investigation.
Making the exercise open-ended is simple, as there are a variety of issues the s tuden t s can explore. For
example:

1. W h a t happens if we change the dis t r ibut ion of the weights assigned to the edges?

2. W h a t happens if edges are first independent ly deleted from the graph with some probabi l i ty q?

3. W h a t is the d is t r ibut ion of the weight of the heaviest edge in the m i n i m u m spanning tree? The
l ightest edge not in the m i n i m u m spanning tree?

4. How many edges have weight less than the heaviest edge in the m i n i m u m spanning tree but are not
in the m i n i m u m spanning tree?

S tuden t s can also be encouraged to develop their own quest ions to explore, or the exercise can be
used to spark discussion on general probabil i ty questions, if the s tuden t s have sui table backgrounds. For
instance, it might be worth not ing t h a t the heaviest edge in a m in imum spanning tree will generally weigh
at least ~ since the expected number of vertices whose adjacent edges all weigh at least this much is

T b '

approximate ly 1.1

3 U n i o n - F i n d : C o n n e c t e d c o m p o n e n t s

Union-find refers to a class of a lgor i thms used to main ta in a d a t a s t ruc tu re for disjoint sets, many of
which have been analyzed by Tarjan. (For references, see [5, p. 461].) These a lgor i thms are often used in
connected componen t s a lgori thms, which mot iva tes the following exercise:

E x e r c i s e : Consider a graph t h a t initially contains n vertices and no edges. R a n d o m l y include one edge
at a t ime until the graph is connected, t h a t is, until there is only one connected componen t .

Plot the expected number of edges t h a t mus t be included before the graph is connected against n. Can
you find a funct ion f (n) such t h a t f (n) is close to the expected number of edges t ha t mus t be included?
For a few values of n, use your samples to es t imate g~(m) = P r { a f t e r m edges, the n ver tex graph is
connec ted) . P lo t your es t imates of g~; do you notice anyth ing? []

1All l o g a r i t h m s h a v e b a s e e un less o t h e r w i s e speci f ied .

S I G C S E
B U L L E T I N V o l . 2 8 N o . 3 S e p t . 1 9 9 6 31

The s tandard da ta s t ruc ture for disjoint sets is particularly effective when one performs many operations
tha t do not actually combine disjoint components , as may be the case under random edge insertion.

The number of edges tha t must be added before a graph becomes connected is very close to nlol~n2 . In

fact, nlos~ is a threshold function, in the following sense: as n --+ oo, if we throw in ~(log~+~(~)) edges, then
2 2

the probability tha t the graph is connected approaches 1 if w(n) --+ oc and it approaches 0 if w(n) --+ - o o .
This follows from the following more specific theorem, paraphrased from [2, p. 150-151]:

T h e o r e m 2 I f we throw in ~(lo~+c) edges, the probability that the graph is connected goes to e -e-~ as
2

n - - - ~ (~ .

In the terms of the exercise, the theorem says tha t g~ (~(1°g2~+c)) ~. e -~-~. Using this fact, we can

get a good es t imate for the expected numb.er of edges required to connect the graph as n gets large. We
approximate the probability density function and hence the expectat ion:

E[~edges]
n

~ - ~ (l ° g n + c) e - % - e - c d c

n f_,o = ~ (l o g n + ce-Ce-C-Cdc)
o o

n(log n + 0.577)

2

This es t imate proves remarkably accurate, even for small n, as can be seen in the results from a small
set of simulations given in Table 2.

Vertices Simulation Es t imate Relative Error (%)

100 253 259 2.3

200 581 588 1.2

300 948 942 0.6
400 1314 1314 0.0

500 1685 1698 0.8
600 2076 2092 0.8

700 2440 2495 2.2
800 2874 2905 1.1

900 3331 3320 0.3
1000 3740 3742 0.1

1100 4146 4169 0.6

1200 4578 4600 0.5
1300 4991 5035 0.9

1400 5485 5474 0.2
1500 5927 5918 0.2

1600 6361 6364 0.0

1700 6842 6813 0.4

1800 7150 7265 1.6

1900 7673 7720 0.6
2000 8037 8177 1.7

Table 2: Simulation vs. Es t imated Expected Number of Edges for Connectivity: 500 Trials

S I G C S E Vo]. 28 No. 3 Sept. 1996 32 B U L L E T I N

Students may get some idea of the threshold behavior by examining the distribution of results for a
specific value of n. Figure 2 gives an est imated distribution for gs00(m) based on a set of one thousand
trials. (Each da ta point covers a range of 40 values.) The distribution is well concentrated around the
mean. Threshold behavior often appears in the s tudy of random graphs. For more details, see [2, pp.
37-38].

2 x10-3

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

500 Vedices

, / , ,] \ / L ~ , A
1000 1500 2000 2500 3000

Edges

g%

3500

Figure 2: Est imated Density Function for # E d g e s for Connectedness: 1000 Trials

Again, this exercise raises many interesting questions, making it a good candidate for open-ended
assignments. For example:

1. How many edges must be included before there is one large component, say with over half the vertices?
Over some fraction p of the vertices?

2. What is the size of the largest component after m edges have been included? The second largest
component?

3. Wha t is the expected number of isolated vertices after m edges have been included?

4. Wha t is the behavior on other types of graphs, such as lattices? (See, for example, [10].)

5. How well does the disjoint set da ta s t ructure perform on this problem?

Students may be encouraged to experiment with these or other similar questions.

4 Flow algorithms: Bipartite matchings

Finding maximal biparti te matchings is a s tandard example of a use of maximum flow algorithms. We
offer two interesting exercises based on bipartite matchings:

E x e r c i s e : Consider a bipartite graph tha t initially contains n vertices on each side and no edges.
Randomly include one edge at a time until there is a perfect matching.

Plot the expected number of edges tha t must be included before the graph has a perfect matching
against n. Can you find a function f(n) such tha t f(n) is close to the expected number of edges tha t must
be included? Use your samples to est imate g,,(m) -- P r (a f t e r m edges, the 2n vertex graph has a perfect
matching} for a few values of n. Plot your estimates of gn; do you notice anything? []

S I G C S E
B U L L E T I N Yol. 28 No. 3 Sept. 1996 33

Note tha t for the above exercise it is more efficient to upda te the matching as edges are introduced,
ra ther than re-compute the maximum matching at each stage. This can easily be done using s tandard
methods.

The number of edges tha t must be added before the graph contains a perfect matching is very close to
n log n. In fact, n log n is a threshold function, and if we throw n(log n + c) edges, the probabili ty tha t the
graph is connected goes to e -2e-¢. See [2, p.73,155-159] for more details. S tudents should notice behaviors
similar to those in the problem of when a graph becomes connected. Students may also explore some of
the following questions:

1. How many edges must be included before there is a large matching, say with over half the vertices?
Over some fraction p of the vertices?

2. Let h~(m) be the probabili ty tha t there are no isolated vertices on the 2n vertex bipart i te graph
after m random edges have been added. W h a t is the difference between hn(rn) and gn(m)?

3. Suppose one begins with k pairs of vertices already matched. How does this affect the number of
edges tha t must be added before there is a perfect matching? Try both for small values of k, such as
k ---- 10, and for larger values of k, such as k - - - - n2]3~ over a range of values for n.

E x e r c i s e : Consider a bipart i te graph with n vertices on each side. Suppose tha t for each ver tex on the left
we choose two vertices uniformly at random from the vertices on the right and include the corresponding

edges. Let f (n) be the expected size of a maximal matching. Exper imenta l ly de termine how f (n) grows.
For a specific value of n use your samples to plot the an es t imate of the probabili ty tha t the maximal
matching has at least m edges. Do you notice anything? []

This question was studied by Hajek [7]. As n --4 oo, f (n) ~ 0.8381n, and the larger n gets, the t ighter
the concentra t ion of f (n) about its mean. It is interesting to compare this result to the case where each
vertex on the left chooses just one neighbor on the right, in which case the size of the max imum matching
is approximate ly n - n / e ~ 0.6321n. The question can be expanded through a number of variations; we
mention jus t a few:

1. W h a t happens if each ver tex on the left chooses 3 vertices at random? 4?

2. W h a t happens if the left side contains f~n vertices, for some constant ~3?

3. W h a t happens if each vertex on the left and each ver tex on the right chooses 2 random neighbors?

5 Al l -pa irs shor te s t pa ths

Shortes t paths a lgori thms are commonly used in network routing problems. Here we consider an interesting
variation on a s tandard type of network, the hypercube.

E x e r c i s e : Consider a n-dimensional hypercube. Assign a random weight uniformly and independent ly
from [0,1] to each edge. Let us call the length of the shortest path between two points the distance between
them, and let us call the max imum distance between any two points on the hypercube the diameter. The
d iameter can be found by running an all-pairs shortes t paths algori thm and finding the max imum shortest
path between any two points.

Plot the expected value of the d iameter as a function of n. For a few values of n plot the distr ibution
of the longest path. Do you notice anything? Can you make any conjectures? []

At first, one might think tha t the d iameter is linear in n, since there are 2 n-1 pairs of points whose
shortest paths must cross n edges. One can a t t e m p t to gain some intuition by considering paths chosen
greedily between pairs of points. Take two points opposite each other on the hypercube, and at each step

S I G C S E
B U L L E T I N Vol. 28 No. 3 Sept:, 1996 34

cross the smMlest weight edge in a dimension tha t has not yet been crossed. In the first step, one has n
dimensions to choose from, and hence the expected distance from the first s tep is 1 ~-T" At the second step,
one chooses an edge from the remaining n - 1 dimensions; the expected cost of this edge is ± Cont inuing n"
in this manner , one finds tha t the expected cost of the greedy pa th between any two vertices is O (log n).

This intui t ion might lead one to suspect the correct answer is O(logn) , but again, the actual result is
dramat ic : the d iameter appears to be bounded by a constant , with high probability. In fact, we make the
following conjecture:

C o n j e c t u r e : The d iameter of an n-dimensional hypercube with edge weights independent ly and uni-
formly dis t r ibuted from [0, 1] is at most 2 with high probabil i ty for all n.

We gave this exercise on an assignment , and were surprised by the results. The following intui t ion
seems to be correct2: if one looks only at edges with weight at most cz/n for some cons tan t cl > 1, with
high probabil i ty the remaining subgraph contains a large component , consisting of a cons tan t fraction of
the vertices. Every pair of points can be connected by a pa th tha t lies primarily on this large component ;

t ha t is, there is pa th t ha t uses at most O (n) edges on this componen t and cons tan t number of other edges.
Hence the m a x i m u m shor tes t pa th will be of cons tan t length. This part icular problem seems not to have
been ment ioned previously in the l i terature, a l though several related results can be found. (For example,
see [1, 3, 4, 8].) Proving t ight bounds on the d iameter appears difficult, and we would be interested in a
proof.

Because the number of vertices and edges grows exponential ly with the dimension, s tudents should not
be expected to run this exper iment for large values of n. In Table 3 we offer some d a t a from our simulat ions
on up to ten dimensions. Addit ional quest ions one might ask include:

1. How often is the shor tes t pa th between two points a greedy pa th?

2. W h a t does the longest pa th look like?

3. W h a t happens if we change the dis tr ibut ion of the edge weights?

Iill fil I B U B il ii I i l l iml I B R ! ! Ifll

Table 3: Average Hypercube Diameter: 500 Trials

6 C o n c l u s i o n

We hope t ha t the specific exercises we have suggested here prove useful. The goal is to make p rogramming
algori thms more interest ing for s tudents by demons t ra t ing surprising and unusual results. Perhaps the
exercises will encourage s tudents to explore related questions, or spark them to learn more about graph
theory or r andom graphs.

We believe t ha t there are many other similar potential exercises out there, some based on results in the
l i terature and some as yet undiscovered. We would be interested to hear if others design their own such
exercises. R a n d o m graphs are a wonderful area for exploration, especially since even simple algori thms
can be used to exper iment with difficult problems.

7 A c k n o w l e d g m e n t s

The au thor would like to thank several people for interest ing discussions or for reading early draf ts of
the article, including Andrei Broder, Michael Clancy, Steve Lumet t a , Lars Rasmussen, Alistair Sinclair,
Umesh Vazirani, and David Wolfe.

2Thanks to Andrei Broder for suggesting this argument.

S I G C S E
BULLETIN Vol. 28 No. 3 Sept. 1996 35

R e f e r e n c e s

[1] M. Atjai, J. Komlds, and E. Szemedrfdi. Largest Random Component of a k-Cube. Combinatorica. 2,
1982, 1-7.

[2] B. Bollob£s. Random Graphs. Academic Press, 1985.

[3] B. Bollob£s, Y. Kohayakawa, and T. Luczak. The Evolution of Random Subgraphs of the Cube.
Random Structures and Algorithms. 3, 1992, 55-90.

[4] B. Bollob£s, Y. Kohayakawa, and T. Luczak. On the Diameter and Radius of Random Subgraphs of
the Cube. Random Structures and Algorithms. 5, 1994, 627-648.

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1992.

[6] A. Frieze. On the Value of a Random Minimum Spanning Tree Problem. Discrete Applied Math. 10,
1985, 47-56.

[7] B. Hajek. Asymptotic Analysis of an Assignment Problem Arising in a Distributed Communications
Protocol. Proceedings of the 27th Conference on Decision and Control. 1988, 1455-1459.

[8] A.V. Kostochka, A.A. Sapozhenko, and K. Weber. Radius and Diameter of Random Subgraphs of the
Hypercube. Random Structures and Algorithms. 4, 1993, 215-229.

[9] D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, 1992.

[10] S. Lumetta, A. Krishnamurthy, and D. Culler. Towards Modeling the Performance of a Fast Con-
nected Components Algorithm on Parallel Machines. Available at http://www.cs.berkeley.edu/ 'stevel.
Conference version at http://www.supercomp.org/sc95/proceedings/465_SLUM/SC95.HTM.

[11] R. Sedgewick. Algorithms. Addison-Wesley Publishing Co., 1988.

************************************** Arrays From Page ************************************

Borland C++ Version 3.1 Library Reference. Borland International,
Inc. Scotts Valley, California. 1992.

Horowitz, E., Sahni, S., Mehta, D.. Fundamentals of Data
Structures in C++. Computer Science Press. New York. 1995.

Pohl, Ira. C++ for Pascal Programmers Second Edition. The
Benjamin/Cummings Publishing Company, Inc. Redwood City,
California. 1994.

S I G C S E Vol. 28 No. 3 Sept:. 1996 3 6
B U L L E T I N

