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Abstrac t  

The field of random graphs contains many surprising and interesting results. Here we demonstrate 
how some of these results can be used to develop stimulating, open-ended exercises for courses in al- 
gorithms and data structures or graph theory. Specifically, we provide problems for algorithms that 
compute minimum spanning trees, connected components, maximum flows, and all-pairs shortest paths. 

1 I n t r o d u c t i o n  

We have found in teaching courses on algori thms and da ta  s t ructures  tha t  having s tudents  program some 
of the s tandard  algori thms can be a useful learning experience. It ensures tha t  they unders tand how the 
algorithms function, it provides them with experience in turning theoretical  results into usable tools, and 
it demonst ra tes  how theoretical  t ime bounds t ranslate  (or fail to t ranslate)  into actual  running times. We 
therefore often include programming in our assignments. 

How do we evaluate the exercises we develop? We have several goals in mind tha t  the exercises should 
accomplish, First,  we hope to make the work interesting for the students.  Second, we expect the exercises 
will teach the s tudents  something new, even beyond what  they learn simply by the programming itself. 
Finally, we would like the exercises to tie in with the direct{on of the course, and perhaps with each other.  
These goals motivate us to develop exercises where the s tudents  do something beyond just  writ ing the 
code and testing it on a few examples. Instead, we seek to create engaging and potentially open-ended 
questions tha t  allow students  to use their code to discover new and hopefully surprising things. In general, 
of course, such questions are hard to come by. However, we have found tha t  the theory of random graphs 
provides a source of remarkable problems for several s tandard  algorithms. 

In this paper we demons t ra te  how the area of random graphs can be mined for engaging exercises by 
providing examples tha t  s tudents  can explore after programming algori thms for the following problems: 
minimum weight spanning tree, connected components ,  maximum flow, and all-pairs shortest  paths. Al- 
though stat ing the questions is easy, the related results in the l i terature are often ra ther  technical, and are 
certainly beyond the scope of this article. We will not delve too deeply into these technical details, but  
instead merely a t t empt  to provide basic intuition and references where possible. 

Algori thms for all of the problems we consider can be found in [5, 9, 11], and many other  s tandard  texts. 
For more information on the area of random graphs, we recommend the indispensable Random Graphs 
by B@la Bollob£s [2]. Throughout  we assume tha t  the s tudents  have simple and reliable pseudo-random 
number  generators  available in their programming environment .  The question of how good a pseudo- 
random number  generator  should be is also beyond the scope of this paper; in practice, most  systems 
provide reasonably good pseudo-random number  generators.  

*This work was s u p p o r t e d  in pa r t  by the  Office of Naval  Research and in pa r t  by NSF  Gran t  CCR-9505448. 
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2 M i n i m u m  Spanning T r e e  

We begin by offering an example. We presume tha t  the s tudents  have been asked to implement  some 
s tandard  minimum weight spanning tree algorithm. 

E x e r c i s e :  Consider a complete graph on n vertices. Assign a random weight uniformly and independently 
from [0,1] to each edge. 

Plot the expected weight of a minimum spanning tree as a function of n. For a few values of n, plot 
the distribution of the weight for your samples. Do you notice anything? Can you make any conjectures? 
[] 

We have left open wha t  ranges of n to consider and how many trials to make; these can be established 
by the instructor  if desired. One might  wish to encourage s tudents  to avoid floating point ari thmetic,  
which can be slow on some systems. Instead assign a random integer weight from some large range (say 
[0,10000]) and then rescale. 

One might expect tha t  the weight of the minimum spanning tree grows linearly with n, since the tree 
contains n -  1 edges. The actual  result is ra ther  peculiar: as n tends to infinity, the weight of the minimum 
spanning tree approaches a small constant! The following theorem, due to Frieze [6] and presented in [2, 
p. 141-144], is quite specific: 

T h e o r e m  1 Let s~ be a random variable corresponding to the weight of the minimum spanning tree when 
the edges are given weights independently and uniformly from [0, 1]. Then: 

lira E[sn] = ~(3) = ~ k -3 = 1 .202 . . .  
k = l  

And, for every e > 0, 

lim P r { l s n  - ff(3)l _> E) = o. 
n--.t.¢~ 

One way to think about  the problem is the following: as there are (~) edges, the lightest edge should 

weigh about  [(~) -t- 1] -1 ~ n - ~ "  Similarly, the next lightest edge weight should be about  ~ ,  and so 
on. Hence, if the minimum spanning tree consisted of the n - 1 lightest edges, then its weight would be 
approximately 1. The minimum weight spanning tree does not generally consist of these edges, because 
they rarely form a tree; however, this result shows tha t  this preliminary est imate is not too far off. 

Al though the theorem describes limiting behavior, s tudents  will find tha t  the weight of the minimum 
weight spanning tree is concentra ted near ~(3) even for relatively small values of n. In Table 1 we present 
the average weight obtained from several simulation trials. Even at n -- 100, the average derived from 
the simulation is very close to the limiting value. In Figure 1, we present an approximation for the 
distribution of the minimum spanning tree weight from 1000 trials for 100 vertex and 200 vertex graphs. 
(The approximation arises by making a histogram. Each da ta  point covers a range of size 0.02.) Note tha t  
the mean of both curves is close to ~(3), and moreover, the concentrat ion around the mean is stronger for 
200 vertices than for 100 vertices. This behavior is exactly what  Theorem 1 suggests. 

n 100 200 300 400 500 600 700 800 900 1000 
sn 1.207 1.201 1.200 1.206 1.202 1.205 1.205 1.199 1.204 1.201 

Table 1: Average Minimum Spanning Tree Weight: 500 Trials 
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Figure  1: Min im um  Spanning  Tree Weight Density: 1000 Trials 

We hope t h a t  s tuden t s  will find their  s imulat ion results surprising and wor thy  of fur ther  investigation.  
Making  the  exercise open-ended is simple, as there  are a variety of issues the  s tuden t s  can explore. For 
example:  

1. W h a t  happens  if we change the  dis t r ibut ion of the  weights assigned to the  edges? 

2. W h a t  happens  if edges are first independent ly  deleted from the  graph with some probabi l i ty  q? 

3. W h a t  is the  d is t r ibut ion of the  weight of the  heaviest  edge in the  m i n i m u m  spanning  tree? The  
l ightest  edge not  in the  m i n i m u m  spanning  tree? 

4. How many  edges have weight less than  the  heaviest edge in the  m i n i m u m  spanning  tree but  are not  
in the  m i n i m u m  spanning  tree? 

S tuden t s  can also be encouraged to develop their  own quest ions to  explore, or the  exercise can be 
used to spark discussion on general  probabil i ty questions,  if the  s tuden t s  have sui table backgrounds.  For 
instance,  it might  be worth  not ing  t h a t  the  heaviest  edge in a m in imum spanning  tree will generally weigh 
at least ~ since the  expected  number  of vertices whose adjacent  edges all weigh at  least this much is 

T b  ' 

approximate ly  1.1 

3 U n i o n - F i n d :  C o n n e c t e d  c o m p o n e n t s  

Union-find refers to a class of a lgor i thms used to main ta in  a d a t a  s t ruc tu re  for disjoint sets, many  of 
which have been analyzed by Tarjan.  (For references, see [5, p. 461].) These  a lgor i thms are often used in 
connected componen t s  a lgori thms,  which mot iva tes  the  following exercise: 

E x e r c i s e :  Consider  a graph  t h a t  initially contains  n vertices and no edges. R a n d o m l y  include one edge 
at  a t ime until  the  graph  is connected,  t h a t  is, until  there  is only one connected  componen t .  

Plot  the  expected number  of edges t h a t  mus t  be included before the  graph  is connected  against  n. Can 
you find a funct ion f (n)  such t h a t  f (n)  is close to  the  expected number  of edges t ha t  mus t  be included? 
For a few values of n, use your  samples  to es t imate  g~(m) = P r { a f t e r  m edges, the  n ver tex graph is 
connec ted) .  P lo t  your  es t imates  of g~; do you notice anyth ing?  [] 

1All  l o g a r i t h m s  h a v e  b a s e  e un less  o t h e r w i s e  speci f ied .  
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The s tandard  da ta  s t ruc ture  for disjoint sets is particularly effective when one performs many  operations 
tha t  do not actually combine disjoint components ,  as may be the case under random edge insertion. 

The number  of edges tha t  must  be added before a graph becomes connected is very close to nlol~n2 . In 

fact, nlos~ is a threshold function, in the following sense: as n --+ oo, if we throw in ~(log~+~(~)) edges, then 
2 2 

the probability tha t  the graph is connected approaches 1 if w(n) --+ oc and it approaches 0 if w(n) --+ - o o .  
This follows from the following more specific theorem, paraphrased from [2, p. 150-151]: 

T h e o r e m  2 I f  we throw in ~(lo~+c) edges, the probability that the graph is connected goes to e -e-~ as 
2 

n - - - ~ ( ~ .  

In the terms of the exercise, the theorem says tha t  g~ (~(1°g2~+c)) ~. e -~-~. Using this fact, we can 

get a good es t imate  for the expected numb.er of edges required to connect  the graph as n gets large. We 
approximate  the probability density function and hence the expectat ion:  

E[~edges]  
n 

~ - ~ ( l ° g n + c )  e - % - e - c d c  

n f_,o = ~ ( l o g n  + ce-Ce-C-Cdc) 
o o  

n(log n + 0.577) 

2 

This es t imate  proves remarkably  accurate,  even for small n, as can be seen in the results from a small 
set of simulations given in Table 2. 

Vertices Simulation Es t imate  Relative Error  (%) 

100 253 259 2.3 

200 581 588 1.2 

300 948 942 0.6 
400 1314 1314 0.0 

500 1685 1698 0.8 
600 2076 2092 0.8 

700 2440 2495 2.2 
800 2874 2905 1.1 

900 3331 3320 0.3 
1000 3740 3742 0.1 

1100 4146 4169 0.6 

1200 4578 4600 0.5 
1300 4991 5035 0.9 

1400 5485 5474 0.2 
1500 5927 5918 0.2 

1600 6361 6364 0.0 

1700 6842 6813 0.4 

1800 7150 7265 1.6 

1900 7673 7720 0.6 
2000 8037 8177 1.7 

Table 2: Simulation vs. Es t imated  Expected Number  of Edges for Connectivity:  500 Trials 
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Students may get some idea of the threshold behavior by examining the distribution of results for a 
specific value of n. Figure 2 gives an est imated distribution for gs00(m) based on a set of one thousand 
trials. (Each da ta  point covers a range of 40 values.) The distribution is well concentrated around the 
mean. Threshold behavior often appears in the s tudy of random graphs. For more details, see [2, pp. 
37-38]. 
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Figure 2: Est imated Density Function for # E d g e s  for Connectedness: 1000 Trials 

Again, this exercise raises many interesting questions, making it a good candidate for open-ended 
assignments. For example: 

1. How many edges must  be included before there is one large component,  say with over half the vertices? 
Over some fraction p of the vertices? 

2. What  is the size of the largest component  after m edges have been included? The second largest 
component? 

3. Wha t  is the expected number of isolated vertices after m edges have been included? 

4. Wha t  is the behavior on other types of graphs, such as lattices? (See, for example, [10].) 

5. How well does the disjoint set da ta  s t ructure  perform on this problem? 

Students may be encouraged to experiment with these or other similar questions. 

4 Flow algorithms: Bipartite matchings 

Finding maximal biparti te matchings is a s tandard example of a use of maximum flow algorithms. We 
offer two interesting exercises based on bipartite matchings: 

E x e r c i s e :  Consider a bipartite graph tha t  initially contains n vertices on each side and no edges. 
Randomly include one edge at a time until there is a perfect matching. 

Plot the expected number of edges tha t  must  be included before the graph has a perfect matching 
against n. Can you find a function f(n) such tha t  f(n) is close to the expected number of edges tha t  must 
be included? Use your samples to est imate g,,(m) -- P r ( a f t e r  m edges, the 2n vertex graph has a perfect 
matching} for a few values of n. Plot your estimates of gn; do you notice anything? [] 
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Note tha t  for the above exercise it is more efficient to upda te  the matching as edges are introduced,  
ra ther  than  re-compute  the maximum matching at each stage. This can easily be done using s tandard  
methods.  

The number  of edges tha t  must  be added before the graph contains a perfect  matching is very close to 
n log n. In fact, n log n is a threshold function, and if we throw n(log n + c) edges, the probabili ty tha t  the 
graph is connected goes to e -2e-¢. See [2, p.73,155-159] for more details. S tudents  should notice behaviors 
similar to those in the problem of when a graph becomes connected.  Students  may also explore some of 
the following questions: 

1. How many  edges must  be included before there  is a large matching,  say with over half the  vertices? 
Over some fraction p of the vertices? 

2. Let h~(m) be the probabili ty tha t  there  are no isolated vertices on the 2n vertex bipart i te  graph 
after  m random edges have been added. W h a t  is the difference between hn(rn) and gn(m)? 

3. Suppose one begins with k pairs of vertices already matched.  How does this affect the number  of 
edges tha t  must  be added before there  is a perfect matching? Try both for small values of k, such as 
k ---- 10, and for larger values of k, such as k - - - -  n2]3~ over a range of values for n. 

E x e r c i s e :  Consider a bipart i te  graph with n vertices on each side. Suppose tha t  for each ver tex on the left 
we choose two vertices uniformly at random from the vertices on the right and include the  corresponding 

edges. Let f ( n )  be the expected size of a maximal  matching.  Exper imenta l ly  de termine  how f ( n )  grows. 
For a specific value of n use your  samples to plot the an es t imate  of the  probabili ty tha t  the maximal  
matching has at  least m edges. Do you notice anything? [] 

This question was studied by Hajek [7]. As n --4 oo, f ( n )  ~ 0.8381n, and the larger n gets, the t ighter  
the concentra t ion of f ( n )  about  its mean.  It is interesting to compare  this result to the case where each 
vertex on the  left chooses just  one neighbor on the right, in which case the size of the max imum matching 
is approximate ly  n - n / e  ~ 0.6321n. The question can be expanded through a number  of variations; we 
mention jus t  a few: 

1. W h a t  happens if each ver tex on the left chooses 3 vertices at  random? 4? 

2. W h a t  happens if the left side contains f~n vertices, for some constant  ~3? 

3. W h a t  happens if each vertex on the left and each ver tex on the right chooses 2 random neighbors? 

5 Al l -pa irs  shor te s t  pa ths  

Shortes t  paths a lgori thms are commonly  used in network routing problems. Here we consider an interesting 
variation on a s tandard  type  of network, the hypercube.  

E x e r c i s e :  Consider a n-dimensional  hypercube.  Assign a random weight uniformly and independent ly  
from [0,1] to each edge. Let us call the length of the shortest  path between two points the  distance between 
them,  and let us call the max imum distance between any two points on the hypercube  the diameter. The 
d iameter  can be found by running an all-pairs shortes t  paths algori thm and finding the max imum shortest  
path between any two points. 

Plot the expected value of the d iameter  as a function of n. For a few values of n plot the distr ibution 
of the longest path.  Do you notice anything? Can you make any conjectures? [] 

At first, one might  think tha t  the d iameter  is linear in n, since there  are 2 n-1 pairs of points whose 
shortest  paths must  cross n edges. One can a t t e m p t  to gain some intuition by considering paths  chosen 
greedily between pairs of points. Take two points opposite each other  on the hypercube,  and at each step 
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cross the  smMlest weight edge in a dimension tha t  has not  yet  been crossed. In the  first step, one has n 
dimensions to choose from, and hence the  expected distance from the first s tep is 1 ~-T" At the  second step, 
one chooses an edge from the  remaining n - 1 dimensions;  the  expected cost  of this edge is ± Cont inuing n" 
in this manner ,  one finds tha t  the  expected cost of the  greedy pa th  between any two vertices is O (log n). 

This  intui t ion might  lead one to suspect  the  correct  answer is O( logn) ,  but  again, the  actual  result is 
dramat ic :  the  d iameter  appears  to  be bounded  by a constant ,  with high probability. In fact,  we make the  
following conjecture:  

C o n j e c t u r e :  The  d iameter  of an n-dimensional  hypercube  with edge weights independent ly  and uni- 
formly dis t r ibuted from [0, 1] is at most  2 with high probabil i ty for all n. 

We gave this exercise on an assignment ,  and were surprised by the  results. The  following intui t ion 
seems to be correct2: if one looks only at edges with weight at most  cz/n for some cons tan t  cl > 1, with 
high probabil i ty the  remaining subgraph  contains a large component ,  consisting of a cons tan t  fraction of 
the  vertices. Every pair of points  can be connected by a pa th  tha t  lies primarily on this large component ;  

t ha t  is, there  is pa th  t ha t  uses at most  O (n) edges on this componen t  and cons tan t  number  of other  edges. 
Hence the  m a x i m u m  shor tes t  pa th  will be of cons tan t  length.  This part icular  problem seems not  to have 
been ment ioned previously in the  l i terature,  a l though several related results can be found. (For example, 
see [1, 3, 4, 8].) Proving  t ight  bounds  on the  d iameter  appears  difficult, and we would be interested in a 
proof. 

Because the  number  of vertices and edges grows exponential ly with the  dimension,  s tudents  should not  
be expected to run this exper iment  for large values of n. In Table 3 we offer some d a t a  from our simulat ions 
on up to ten dimensions.  Addit ional  quest ions one might  ask include: 

1. How often is the  shor tes t  pa th  between two points  a greedy pa th?  

2. W h a t  does the  longest pa th  look like? 

3. W h a t  happens  if we change the dis tr ibut ion of the edge weights? 

Iill fil I B U B  il ii I i l l iml I B R ! !  Ifll  

Table 3: Average Hypercube Diameter:  500 Trials 

6 C o n c l u s i o n  

We hope t ha t  the  specific exercises we have suggested here prove useful. The  goal is to  make p rogramming  
algori thms more interest ing for s tudents  by demons t ra t ing  surprising and unusual  results. Perhaps  the 
exercises will encourage s tudents  to explore related questions,  or spark them to learn more about  graph 
theory or r andom graphs.  

We believe t ha t  there  are many  other  similar potential  exercises out  there,  some based on results in the  
l i terature and some as yet undiscovered. We would be interested to hear if others  design their  own such 
exercises. R a n d o m  graphs  are a wonderful  area for exploration,  especially since even simple algori thms 
can be used to exper iment  with difficult problems. 
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