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Abstract— We present upper bounds on the capacity of the i.i.d. by this, we consider whether we can show a corresponding
binary deletion channel, where each bit is independently deleted ypper bound of:(1 — d) in the limit asd — 1 with ¢y < 1.

with a fixed probability d. We provide a general approach that \ne show upper bound af, (1 — d) with ¢, = 0.7918 for this
gives a numerical answer for fixedd, and provide an argument limiting case 2 ’

that gives asymptotic upper bounds asl goes to 1. These appear
to be the first non-trivial upper bounds for this probabilistic
deletion channel.

A. Previous work

. INTRODUCTION The insertion/deletion/substitution channel was intazti

In this paper, we consider upper bounds on the capdwy Levenshtein [7] and the information-theoretic coding-th
ity of the i.i.d. binary deletion channel, where each bit isrem was established by Dobrushin in [8]. The line of work
independently deleted with a fixed probability The i.i.d. initiated by Levenstein led to combinatorial code constouns
binary deletion channel (henceforth also called the BD®r insertion/deletion channels; see for example [9] foe@ent
is perhaps the simplest stochastic model of a channel wihrvey of such results. Most early work focused on the case
synchronization errors. For this channel, there is stilsimgle- when there were &inite number of synchronization errors.
letter characterization of the achievable rate. For i.i.d. deletion errors, no single-letter characteiaa of

There has been significant recent progress in improving ttree achievable rate has been found, the main difficulty being
capacity lower bounds for the BDC [1]-[6], demonstratingtth that such a channel is not memoryless. When attention is
the capacity is much higher than previously known. But othegestricted to i.i.d. input codebooks, a single-letter fofon
than the triviall — d upper bound given by the correspondin@g lower bound on the achievable rate was established for
erasure channel, no non-trivial upper bound appears algila binary input i.i.d. insertion/deletion/substitution cimels by
In order to close the gap between the known upper and low@allager [10]. This idea was extended to a slightly more
bounds on the capacity, we would like to have good uppgeneral model for insertion errors in [11]. Ullman [12] also
bounds for the BDC as well. studied this problem in a combinatorial context, estabiigh

Our upper bounds are all determined by considering aehievable rates and some upper bounds. His work does
genie-aided decoder with access to side information alteut hot focus on probabilistic models, but on achieving correct
deletion process. For example, in this framework the eeasutecoding without error for a given fraction of synchroniaat
channel corresponds to a decoder with access toetfige errors, and as such his bounds do not hold for the channels
deletion process and gives a trivial upper bound. We considmnsidered here. More recently, improved lower bounds en th
two regimes. We first consider general bounds that hold foapacity of the BDC based on improved analysis techniques
anyd. Focusing on binary deletion channels, we definesas were introduced by Diggavi and Grossglauser [1], [2]. These
a set of contiguous zeros (or ones). In Section IIl, we carsidoounds were further improved by Drinea and Mitzenmacher
the case when the decoder knows when an entire run has bg@n[5], [13], and extended to additional channel models,
deleted from the input codeword. This allows us to refortaulaincluding channels where bits can be duplicated as well as
the capacity of such a channel in terms of a capacity per uditleted. Recent work by Mitzenmacher has focused on the
cost for the new channel, where the cost relates to the lengtise where bits caonly be duplicated, with such channels
of the runs. having been dubbesticky channel§l4]; the analysis of sticky

In Section IV, we also develop bounds for the asymptotithannels utilizes many of the ideas developed in Section Il
behavior asd approaches 1. Recently, Mitzenmacher anbespite the recent improvements in lower bounds for the BDC,
Drinea established a general lower bound for the capacity tbere has been no significant improvements in upper bounds
the BDC of ¢, (1 — d) for ¢; = 0.1185 > 1/9 [6]. Motivated of which we are aware.



Il. PRELIMINARIES Genie-aided methods are a useful technique in information
theory to establish upper bounds for capacity. In this case,
we combine a genie for the RLC with a natural approach for
upper-bounding the capacity per unit cost of the RLC in order
to obtain our bound.
strings of non-negative integers i — {0, 1,...}*. The set Specifically, we allow side information that converts the
of finite strings of bits isB — {0,1}* Cor’n[;I.e.t.e s.trings are RLC into a memoryless channel, which is much better suited
denoted by underlineX, z. Sing7le elements of a string are'© analysis. S".‘CG a_dding side information only improvees_ th
denoted by a subscriﬁ i?\deXi,xi. The interval substrings channgl capacity, this allows upper bounds on the capatity o
(i.e., Xi, Xi+1,...,X;) of a string are given b)X;’,xZ The BDC viaa memoryless cha_nnel. . .
length of a string isi(a). The weight of a strings(a) is the The side information we introduce is the most natural: if a
sum of all entrieszl@ 4 - run is entirely deleted, @symbol is introduced at the output of
i=1 di- the RLC. Considering our previous example, if the binaryinp

bitl-hzr']':j'do'ukf{'ni;y:?;ité%%czSEQSBUZC;Z:?S??;E?”i;n\;\tlthegreQHOHOOO had the middle four bits deleted, the runs presented
' P q P he enhanced RLC with side information would hé), 2.

jv?t%se?:t?;bciﬁt IS d o_tl)_Laemji?fetr)gniglit'er:\?veiic?hg'tBggegﬁgdtﬁfﬁyother words, the side information gives for each run in the
P yd. input the corresponding length of the run in the output, afen
erasure channel is that the erasure channel has knowledg Er

. . length is0. Therefore, we defin& to be anewmaodified
which subsequence was received whereas for the BDC, thi .
) : ..’ “aUutput of the channel where the sequence of run lengthg in
is unknown. Therefore, the set of possible transmissions IS

n . : . m. has( inserted (and the run lengths &f split appropriately)
{0.1}" and the set of p035|.ble rec.eptlonsuslzo {0,137 if a run was deleted. This is the channel we consider for the
note the lengthn of the received string has € {0,...,n}. upper bound

Run-length notation parses eac.h binary ?F””Q into.rung Ort)Since eacﬁ run in the input is affected independently, this
zeros and ones and produces a string of positive integergiv, o\ channel can also be seen as a memoryless binomial

the run lengths (e.9001000111 is mapped t02, 1,3, 3). If channel wherey the length of the output run is related to

n bits are transmitted, then the set of possible transm|55|ogp> 1 denoting the length of the input run as,

is {a € Alw(a) =n} and the set of possible receptions is —
(z)d’”_y(l —d)Y fo<y<uz
pyix(ylz) =< )

{a € Alw(a) < n}. Itis worth noting that run-length notation
0 otherwise
Now, we can relate the capacity of this memoryless binomial

does not distinguish between complementary strings (e.g.,
00101 and 11010), but this is asymptotically irrelevant and

channel to the genie-aided channel through a capacityxpiér-
cost relationship. Intuitively this is clear, since traritsimg

ignored henceforth.
Let us define theun-length projectionRL(-) of a binary
sting b € B as the positive-integer string € A where a; input = on the RLC costsr bits on the BDC, and so we
IS theBISngth gf thgth r:un inb. Let K bT_ an 'Epl"t string expect that the capacity of the BDC is upper bounded by the
to a BDC andV be the output strmg. _eK = RL(V) capacity per unit cost of the binomial channel. This intuiti
andY = RL(IW) be the run-length projections &f, W. The is formalized below.
run-length channe{RLC) is defined by transition probabilities Lemma 2:If we .denote the mutual information of the
py|x(ylz). Note that converting to run-length notation doe?nemoryless: binomial channel given in (2) BsX;Y), then
not immediately make the problem easier; if the length of any Y '
run in the input string is reduced to zero, the the adjacem ru Cppc < max I(X; Y), (3)
are combined in the output, and this is reflected in the RLC. rx(2) Ele(z)]
For example, the runs 3,2,3 (corresponding to binary inpwherec(x) = x.
00011000) could result in an output of 4 (if the middle four Proof: By Lemma 1, we know that for an input of bits
all-(l)—\t]veuéotll)ot\glnaqcestlrzz p:qeLgbass;vitg)réD(%ven without prOOf)As the genietla(ioeg' receiver which knows the deleted runs, we
) . . ) have I(RL(V); RL(W)) < I(X;Y), where X is the set of
Lemma 1:The mutual information of the run-length chan~I put runs andY is the set of genie-aided output runs. We
Eel (RLC) and the binary deletion channel (BDC) are relat W need onIyTo show that
y

Sets are denoted by calligraphic letters: X', ). Random
variables are denoted by capital lettels:Y, Z. The distribu-
tion of a random variable is denoted; (x). The set of finite
strings of positive integers id = {1,2,...}*. The set of finite

)

- - ) 1 I(X;Y)
I(X:;Y)-1<I(ViW)L<IT(X;Y)+1. 1 1 —I1(X;Y) = - 4
(* 7) VW) ( ) (1) i max SI(X;Y) = max E[c(z)] “)
[1l. UPPERBOUNDS VIA DECODERSIDE INFORMATION  wheren = Y"1, X;, ¢(z) = 2 andm = [(X) is the number

Even for i.i.d. deletion processes, we know of no approad} input runs. The above form is in standard format for the
for establishing a single-letter characterization of thpaxity. CaPacity per unit cost problem:
Given the recent success in establishing lower bounds &r th lim max [(X:Y) = max 1(X; Y)_
BDC, we hope to establish corresponding good upper bounds.  m—ccpx(z) >y X; ' px(@) E[X]



Here we use the fact that for a discrete memoryless channelx{mg,m;}. The closed form bound is given by

(DMC) the capacity per unit cost is maximized by choosing ,

an i.i.d. input distributionj.e., we can restrict our attention to I(x Zpy,x ylz) loglL(mI)
i.i.d. distributionspx (z) = [, px (x:). Therefore, we have =0 av(y)
proved (4) and hence the lemma. [ | -

. 1
The standard upper bound on the capacity of a DMC (see ;)pY'X(ym log av(y) HY|X =2)

[15] problem 4.17) was generalized to the capacity per unit

(a) &
cost by Abdel-Ghaffar [16]. <3 pyix(ylz) log q%(y)
Theorem 1:[Abdel-Ghaffar] Consider a memoryless chan- y=0
nel defined bypy|x (y|x) with input alphabetY” and output _ = | 1 L 1
alphabet). Let ¢y (y) be any distribution ony which is - Z()pY‘X(y|x) ¢ ZmpY‘X (ylz) log o)
absolutely continuous with respect g-x (y|x); Then, for 7m Y
a cost functione(x), the capacity per unit cost satisfies <B Z Py x (ylz) + Z Py x (ylz) (10g + %)
y=0 y=m
< (v)
C < S ) 5) < BT(z) +log - Z pyix (y]z) + Az, (8)

y=m

whereI(z) “ D(py x(-|z)lgv (-)) is the standard informa- where (a) follows from the boundl H(Y|X = z) > 0 and
tion divergence. m (b) follows fromE[Y|X = z] = (1 — d)=.

Choosing a valid output run-length distribution allows us If ¢ < 1 andz > my, then the first term of (8) is upper
to upper bound this capacity per unit cost and thereby th@unded byxlog 2 and this gives (x) < Az + (1+a)log *.
capacity of the BDC, but we still must deal with maX|m|Z|ndf > my, then it follows from the definition ofn; that
over the countably infinite input alphab&t Since we cannot —~ = (1+4)A.
simply truncate the support o and still obtain a valid upper ‘It ¢ > 1andz > M, then the first term of (8) is upper
bound, we need bound this infinite optimization problem by Rounded bys Az and the second term is negative. This allows
finite one. us to write I(‘T) < (1+49)A. [ ]

We do this in two steps. First, we compute a lower bound on Theorem 2 provides a simple upper bound on the capacity
the capacity per unit cost for a binomial channel by trumgpti of the BDC which can be optimized by computer. Table Il
the input alphabet. Letd be lower bound andp,(u) be Presents the numerical results derived from Theorem 2 and
the output distribution associated with the optimized inp§ompares them with the numerical lower bounds given in [5]

infinity using a geometric distribution to get Notice that this upper bound does not yet improve over the

trivial 1 — d upper bound forl > 0.9.

puly if y<m
ay (y) :{ v() (6) IV. AsymMPTOTIC UPPERBOUNDS

2~ A=) if y > m We now introduce an approach for obtaining upper bounds
on the capacity of the BDC in the limit as the deletion
where ¢ = 24m/(1=d)(1 — 9-A/(1=d)) (1 - Zy<mpU(y)>. probability d approaches 1; this approach is motivated by the
Using any output distribution of this form and Theorem 1 wwer bound approach of [6]. In this case, the genie-aided
get the the main result of this section is given below. decoder has available a special marker symbol that is sent
Theorem 2:Then the capacity of BDC satisfies after every block ofb = [a/(1 — d)] input bits; this marker
cannot be deleted. Adding this special marker symbol can onl
increase the capacity of the channel (since it could simply b
ignored). With the addition of these markers, however, the
channel can be though of as a memoryless channel, with each
whered is a positive constantd comes from (6), and/ is  plock of b input bits viewed as a symbol; that is, the input
a positive integer defined in the proof. alphabet consists of all possible sequence$ bfts and the
Proof: The proof follows from separating the supremunputput sequence consists of all possible sequences of up to
from (5) into two parts. The first uses the the true value of bits. We bound the mutual information for this ostensibly
I(xz) and ranges ovel < 2 < M. The second uses a closeagimpler channel.
form upper bound ot (x) using the geometric tail and handles As we are primarily interested in the asymptotic behavior

Cppc < max <(1 +0)A, lrr;;leM %I( )) @)

x> M. as d goes to 1, we introduce the following simplifications.
Let T(z) = >, py‘X(y|x) the left tail of py x and
1 .
_ > We also have an improved bound dz) based on a better bound for
define B = maxocy<mlog ooy If € 2 1, let M = min{w € - 550 W 1 O00S vantage of this improved bound is that
N|BT(z) <A} If c <1, then chooser > 0 and letmo = remains bounded as— 0, but the expression is more complicated and gives

min{zx € N|T(z) < alog -}, my = HO‘ 1og7, and M = only computational savings (hence omitted from this paper).



[ d ] Lower Bound | Upper Bound]

implies that
0.05 0.72829 0.815930
0.10 0.56196 0.704279 k © eyl
0.15 0.43918 0.618817 VW) <D p IV, WI(W) = 1)+ . (9)
0.20 0.34669 0.550780 Z i ( l:;d !
0.25 0.27588 0.494302
0.30 0.22243 0.446639 . ,
035 018101 0406367 .We note thgt a nqmerlca! upper boundf the capafltg of
0.40 0.14841 0.371178 this channel immediately yields the upper boufid= ~—“u
g-gg g-iéigg g-g‘l‘(l)(l)gg on the asymptote of the capacity of the BDCdas: 1. Notice
055 0084323 0283775 that, for.our upper bound, we now are left with bounding a
0.60 | 0.069564 0.258147 summation of terms up to only received lendgthwe make
8-38 8-82?2;31 8-%82‘1“115 use of this fact in our resulting numerical optimization. tha
075 | 0035984 0186024 other hand, small values éfare perfectly suitable; whem =
0.80 | 0.027266 0.163413 1 andk = 4, the (rather weak) upper bouddV; W|l(W) =
8-38 8-832% 00-110351090207 ) <lforl >k results in a loss of less than02(1 — d).
095 | 0005741 0.050000 The key to computing this bound is the following two

lemmas. The first is quite simple and its proof is omitted.

TABLE | Lemma 3:Consider any DMC defined byy | x(y|z) =
COMPARING LOWER BOUNDS FROM[5] WITH UPPER BOUNDS DERIVED W (y|x). Suppose there are inputsy,...,z,, and non-
FROM THEOREM 2 OR THE TRIVIAL 1 — d BOUND (DENOTED *). negative constants,, ..., a,, such that).!", a; = 1 which
also satisfy
Each block can be described as an initial bit and a finite W (ylzo) Z“z (ylzi),

vector (g1, ...,q;) with eachg; > 0 and>>/_,¢; = 1 as

follows: the block is divided intoj contiguous subblocks, then there is a capacity achieving input distribution wigna
where eactith subblock consists dfy; copies of the same bit; probability assigned ta,. u

the subblocks alternate between 0’'s and 1's; and the ifitial The following lemma shows that we can achieve capacity with
determines the value for the first subblock. For this to malkereduced input space consisting of symbols which have at
sense, the; values should also be chosen so that the subbloglost k£ alternating subblocks. Intuitively, if the sender only
lengths are integers. However, by taking large enough bloBkeds to consider the cases where at mdsits are obtained
lengths we can allowy; to take on values arbitrarily closeat the receiver, then it makes sense that each symbol should
any real value, and henceforth we ignore any issues relatshsist of at mostk alternating subblocks. The power in
to rounding to obtain integer-length subblocks. Similady —adopting this limitation is that we can significantly redube
taking b sufficiently large we can make the distribution ofearch space over distributions for the sender.

the number of bits that pass through a block arbitrarily €los Lemma 4:1f [(W) < k, then given any input. with more

to a discrete Poisson distribution with mean We use this than & alternating subblocks we can show that there ekist
distribution for the number of output bits in what follows. | sequences,, ..., v, such thafv, } have at mosk alternating

is clear that the effects of these simplifications vanishhia t blocks of zeros and ones, and such that for the modified
limiting case asi approaches 1. deletion channel

Now, we consider the channél — W, whereﬂjs a
b-bit input symbol (between successive markers) &¥idis pw\v (wlu) = Zszpwﬂ/ (wlv,)
the corresponding output. Sindél/’) denotes the received

sequence length, the mutual informatidifV; W) can be wheres; > 0, S s = 1 such that for allé such that

written as -
l(w) < k.
Proof: We show that any symbol with+1 subblocks can
IV, W) = I(V; W, [(W)) be replaced by multiple sequences with at mostubblocks
= (V3 1[(W)) +1(V; W|I(W)) while achieving the same output distribution at the reaeive
T for all received sequences of up kobits. The lemma then
_ follows by induction.
— ZPZ(Vm(l) I(V; W) = 1) Consider any symbol witlk 4+ 1 subblocks. Since at most
=0 k bits are obtained at the receiver, some subblock is entirely
k o b deleted. Imagine that instead of using this bit sequence, we
<> iy DIV W) = 1)+ > py (D1 initially choose a block to be deleted, remove it, and then
1=0 =kl send the corresponding remaining bits over the channelelf w

can choose correct probabilities for removing each blduis, t

Recall that we take the limit a8 — 1, so that the length gives us a distribution over symbols with at méssubblocks,
distribution of the received sequence is exactly Poisstis T proving the lemma. Specifically, let us denote a symbol



by an ordered pair consisting of a bit and a vectorgpf should suffice. We used the MATLAB function "fmincon” and
values. Consider the symb@®, (¢1, ..., qr+1)). We will find  verified our results by restarting it from a large number of
probabilitiess; such that the output distribution is the same ifandom initial points. Our best result is currentizpc <
we instead send the symb@l, (¢2/(1 — q1),...,qx+1/(1 — 0.7918(1 — d) asd — 1, and it was computed using = 6
q1)) with probability s1, (0,(q¢1/(1 — qk+1),-.-,qx) With anda = 2.0.
probability s;+1, and (0, (g1 /(1 = i), - .., (qi—1 + qi+1)/(1 =
¢i)s- > qre1/(1 — gi)) with probability s;. V. DiscussioN

To see that appropriate; exist, imagine the following In this paper we have studied upper bounds for ithd.
experiment: rather than bits being deleted by the chanrigletion channel. While there have been upper bounds for the

with j < k making it through, we could choosgbits of S combinatorial deletion problem (e.g. [12]), which can be-co

randomly and send them (in the appropriate order). Butamstesidered an adversarial deletion model, we believe our tesul
of choosing justj bits, imagine instead that we successivelgive the best non-trivial upper bounds for tpeobabilistic
choose bits at random from the input until we obtain at leadgletion channel. One approach using side informatiordgiel
one bit from each subblock (giving + 1 > j bits). In this good upper bounds for low deletion probabilities; another
scenario, some bit and its corresponding block is chosen la&pproach focused on the case whére: 1. We are currently
we lets; be the probability theth subblock was chosen last.€xamining other techniques that bridge these two regimes. W

We therefore see that the distribution pK k bits chosen believe that such upper bounds will shed considerable light
from S is equivalent to the distribution obtained by firson the coding techniques and the capacity of the i.i.d. ibelet
deleting theith block with probabilitys; and then choosing channel.

the j < k bits from the remaining blocks. This equivalence

completes the lemma. ]

Combining Lemma 3 and Lemma 4 shows that, for thdll
channel with{(IW) < k, there is a capacity achieving input
distribution which puts probability mass only on sequences,
with at mostk alternating blocks. Therefore, we have

(rars ) ea ). a0 @

whereV is the set of input symbols with at mastalternating
symbols andgy;, (w) is an arbitrary distribution over binary
strings of lengthk. Hence, combining (9) and (10) gives a
computable asymptotic upper bound for the deletion channd?!

Now, we consider some of the practical issues involveds)
Basically, the channel input is represented ask-gector
(q1,-..,q,) and the output is one of tH# ' —1 binary strings 7
of length at mostk. This ignores whether the input string
starts with a sequence of 0’s or 1's though. To handle this, we
use the channel symmetry implied by complementary string@
This symmetry implies that any optimal input distributiomist
choosev with the same probability as the complementuvof
Therefore, we can compute (10) by choosigg(w) with this [9]
symmetry and then maximizing only over inputs starting with
0's. This works because the symmetry @f, (w) implies the [10]
divergence must be the same for any input and its complemqm]

The most tedious part of this computation is coding an
efficient subroutine that computes the output distribufimma
fixed input. Once we have this subroutine, the following Ste[f’lz]
are straightforward. First, we pick a large number of input
vectors (either randomly or infa— 1 dimensional lattice) and
compute their associated output distributions. Next, wethe
Blahut-Arimoto algorithm to optimize the implied DMC. Let
qyi-(w) be the output distribution associated with the optima}4]
output distribution of this DMC. Finally, we perform the—1
dimensional optimization using (9) and (10).

To obtain a valid upper bound, we cannot underestimate tlél
maximum on the RHS of (10). Since the function is smooth
and thek-D domain is bounded, a good global optimizer

max I(Q,&\l(@) <k) <maxD

g (+) veV

(4]

(15]
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