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Abstract— We present upper bounds on the capacity of the i.i.d.
binary deletion channel, where each bit is independently deleted
with a fixed probability d. We provide a general approach that
gives a numerical answer for fixedd, and provide an argument
that gives asymptotic upper bounds asd goes to 1. These appear
to be the first non-trivial upper bounds for this probabilistic
deletion channel.

I. I NTRODUCTION

In this paper, we consider upper bounds on the capac-
ity of the i.i.d. binary deletion channel, where each bit is
independently deleted with a fixed probabilityd. The i.i.d.
binary deletion channel (henceforth also called the BDC)
is perhaps the simplest stochastic model of a channel with
synchronization errors. For this channel, there is still nosingle-
letter characterization of the achievable rate.

There has been significant recent progress in improving the
capacity lower bounds for the BDC [1]–[6], demonstrating that
the capacity is much higher than previously known. But other
than the trivial1− d upper bound given by the corresponding
erasure channel, no non-trivial upper bound appears available.
In order to close the gap between the known upper and lower
bounds on the capacity, we would like to have good upper
bounds for the BDC as well.

Our upper bounds are all determined by considering a
genie-aided decoder with access to side information about the
deletion process. For example, in this framework the erasure
channel corresponds to a decoder with access to theentire
deletion process and gives a trivial upper bound. We consider
two regimes. We first consider general bounds that hold for
anyd. Focusing on binary deletion channels, we definerunsas
a set of contiguous zeros (or ones). In Section III, we consider
the case when the decoder knows when an entire run has been
deleted from the input codeword. This allows us to reformulate
the capacity of such a channel in terms of a capacity per unit
cost for the new channel, where the cost relates to the length
of the runs.

In Section IV, we also develop bounds for the asymptotic
behavior asd approaches 1. Recently, Mitzenmacher and
Drinea established a general lower bound for the capacity of
the BDC of c1(1 − d) for c1 = 0.1185 > 1/9 [6]. Motivated

by this, we consider whether we can show a corresponding
upper bound ofc2(1 − d) in the limit asd → 1 with c2 < 1.
We show upper bound ofc2(1− d) with c2 = 0.7918 for this
limiting case.

A. Previous work

The insertion/deletion/substitution channel was introduced
by Levenshtein [7] and the information-theoretic coding the-
orem was established by Dobrushin in [8]. The line of work
initiated by Levenstein led to combinatorial code constructions
for insertion/deletion channels; see for example [9] for a recent
survey of such results. Most early work focused on the case
when there were afinite number of synchronization errors.

For i.i.d. deletion errors, no single-letter characterization of
the achievable rate has been found, the main difficulty being
that such a channel is not memoryless. When attention is
restricted to i.i.d. input codebooks, a single-letter formfor
a lower bound on the achievable rate was established for
binary input i.i.d. insertion/deletion/substitution channels by
Gallager [10]. This idea was extended to a slightly more
general model for insertion errors in [11]. Ullman [12] also
studied this problem in a combinatorial context, establishing
achievable rates and some upper bounds. His work does
not focus on probabilistic models, but on achieving correct
decoding without error for a given fraction of synchronization
errors, and as such his bounds do not hold for the channels
considered here. More recently, improved lower bounds on the
capacity of the BDC based on improved analysis techniques
were introduced by Diggavi and Grossglauser [1], [2]. These
bounds were further improved by Drinea and Mitzenmacher
[3], [5], [13], and extended to additional channel models,
including channels where bits can be duplicated as well as
deleted. Recent work by Mitzenmacher has focused on the
case where bits canonly be duplicated, with such channels
having been dubbedsticky channels[14]; the analysis of sticky
channels utilizes many of the ideas developed in Section III.
Despite the recent improvements in lower bounds for the BDC,
there has been no significant improvements in upper bounds
of which we are aware.



II. PRELIMINARIES

Sets are denoted by calligraphic letters:A,X ,Y. Random
variables are denoted by capital letters:X,Y,Z. The distribu-
tion of a random variable is denotedpX(x). The set of finite
strings of positive integers isA = {1, 2, . . .}∗. The set of finite
strings of non-negative integers isA0 = {0, 1, . . .}∗. The set
of finite strings of bits isB = {0, 1}∗. Complete strings are
denoted by underlinesX,x. Single elements of a string are
denoted by a subscript indexXi, xi. The interval substrings
(i.e., Xi,Xi+1, . . . ,Xj) of a string are given byXj

i , xj
i . The

length of a string isl(a). The weight of a stringw(a) is the
sum of all entries

∑l(a)
i=1 ai.

The i.i.d. binary deletion channel(BDC) takesn transmitted
bits, and outputs a random subsequence of the input where the
subsequence is obtained by deleting each bit independently
with probability d. The difference between the BDC and the
erasure channel is that the erasure channel has knowledge of
which subsequence was received whereas for the BDC, this
is unknown. Therefore, the set of possible transmissions is
{0, 1}

n and the set of possible receptions is∪n
m=0 {0, 1}

m;
note the lengthm of the received string hasm ∈ {0, . . . , n}.

Run-length notation parses each binary string into runs of
zeros and ones and produces a string of positive integers giving
the run lengths (e.g.,001000111 is mapped to2, 1, 3, 3). If
n bits are transmitted, then the set of possible transmissions
is {a ∈ A|w(a) = n} and the set of possible receptions is
{a ∈ A|w(a) ≤ n}. It is worth noting that run-length notation
does not distinguish between complementary strings (e.g.,
00101 and 11010), but this is asymptotically irrelevant and
ignored henceforth.

Let us define therun-length projectionRL(·) of a binary
string b ∈ B as the positive-integer stringa ∈ A where ai

is the length of theith run in b. Let V be an input string
to a BDC andW be the output string. LetX = RL(V )
and Ỹ = RL(W ) be the run-length projections ofV ,W . The
run-length channel(RLC) is defined by transition probabilities
pỸ |X(y|x). Note that converting to run-length notation does
not immediately make the problem easier; if the length of any
run in the input string is reduced to zero, the the adjacent runs
are combined in the output, and this is reflected in the RLC.
For example, the runs 3,2,3 (corresponding to binary input
00011000) could result in an output of 4 (if the middle four
bits were deleted, yielding0000).

The following simple observation (given without proof)
allow us to relate the RLC and the BDC.

Lemma 1:The mutual information of the run-length chan-
nel (RLC) and the binary deletion channel (BDC) are related
by

I
(

X; Ỹ
)

− 1 ≤ I (V ;W ) ≤ I
(

X; Ỹ
)

+ 1. (1)

III. U PPERBOUNDS VIA DECODERSIDE INFORMATION

Even for i.i.d. deletion processes, we know of no approach
for establishing a single-letter characterization of the capacity.
Given the recent success in establishing lower bounds for the
BDC, we hope to establish corresponding good upper bounds.

Genie-aided methods are a useful technique in information
theory to establish upper bounds for capacity. In this case,
we combine a genie for the RLC with a natural approach for
upper-bounding the capacity per unit cost of the RLC in order
to obtain our bound.

Specifically, we allow side information that converts the
RLC into a memoryless channel, which is much better suited
to analysis. Since adding side information only improves the
channel capacity, this allows upper bounds on the capacity of
BDC via a memoryless channel.

The side information we introduce is the most natural: if a
run is entirely deleted, a0 symbol is introduced at the output of
the RLC. Considering our previous example, if the binary input
00011000 had the middle four bits deleted, the runs presented
at the enhanced RLC with side information would be2, 0, 2.
In other words, the side information gives for each run in the
input the corresponding length of the run in the output, evenif
that length is0. Therefore, we defineY to be anewmodified
output of the channel where the sequence of run lengths inW
has0 inserted (and the run lengths ofW split appropriately)
if a run was deleted. This is the channel we consider for the
upper bound.

Since each run in the input is affected independently, this
new channel can also be seen as a memoryless binomial
channel wherey the length of the output run is related to
x ≥ 1 denoting the length of the input run as,

pY |X(y|x) =

{

(

x
y

)

dx−y(1 − d)y if 0 ≤ y ≤ x

0 otherwise
. (2)

Now, we can relate the capacity of this memoryless binomial
channel to the genie-aided channel through a capacity-per-unit-
cost relationship. Intuitively this is clear, since transmitting
input x on the RLC costsx bits on the BDC, and so we
expect that the capacity of the BDC is upper bounded by the
capacity per unit cost of the binomial channel. This intuition
is formalized below.

Lemma 2: If we denote the mutual information of the
memoryless binomial channel given in (2) asI(X;Y ), then,

CBDC ≤ max
pX(x)

I(X;Y )

E[c(x)]
, (3)

wherec(x) = x.
Proof: By Lemma 1, we know that for an input ofn bits

to the BDC, lim
n→∞

1

n
I(V ;W ) = lim

n→∞

1

n
I(RL(V );RL(W )).

As the genie-aided receiver which knows the deleted runs, we
haveI(RL(V );RL(W )) ≤ I(X;Y ), whereX is the set of
input runs andY is the set of genie-aided output runs. We
now need only to show that

lim
m→∞

max
pX(x)

1

n
I(X;Y ) = max

pX(x)

I(X;Y )

E[c(x)]
, (4)

wheren =
∑m

i=1 Xi, c(x) = x andm = l(X) is the number
of input runs. The above form is in standard format for the
capacity per unit cost problem:

lim
m→∞

max
pX(x)

1
∑m

i=1 Xi
I(X;Y ) = max

pX(x)

I(X;Y )

E[X]
.



Here we use the fact that for a discrete memoryless channel
(DMC) the capacity per unit cost is maximized by choosing
an i.i.d. input distribution,i.e., we can restrict our attention to
i.i.d. distributionspX(x) =

∏m
i=1 pX(xi). Therefore, we have

proved (4) and hence the lemma.
The standard upper bound on the capacity of a DMC (see

[15] problem 4.17) was generalized to the capacity per unit
cost by Abdel-Ghaffar [16].

Theorem 1:[Abdel-Ghaffar] Consider a memoryless chan-
nel defined bypY |X(y|x) with input alphabetX and output
alphabetY. Let qY (y) be any distribution onY which is
absolutely continuous with respect topY |X(y|x); Then, for
a cost functionc(x), the capacity per unit cost satisfies

C ≤ sup
x∈X

I(x)

c(x)
, (5)

whereI(x)
def
= D(pY |X(·|x)||qY (·)) is the standard informa-

tion divergence. �

Choosing a valid output run-length distribution allows us
to upper bound this capacity per unit cost and thereby the
capacity of the BDC, but we still must deal with maximizing
over the countably infinite input alphabetX . Since we cannot
simply truncate the support ofX and still obtain a valid upper
bound, we need bound this infinite optimization problem by a
finite one.

We do this in two steps. First, we compute a lower bound on
the capacity per unit cost for a binomial channel by truncating
the input alphabet. LetA be lower bound andpU (u) be
the output distribution associated with the optimized input
distribution. Next, we spread the finite tail ofpU (u) out to
infinity using a geometric distribution to get

qY (y) =

{

pU (y) if y < m

c2−Ay/(1−d) if y ≥ m
, (6)

where c = 2Am/(1−d)(1 − 2−A/(1−d))
(

1 −
∑

y<m pU (y)
)

.
Using any output distribution of this form and Theorem 1 we
get the the main result of this section is given below.

Theorem 2:Then the capacity of BDC satisfies

CBDC ≤ max

(

(1 + δ)A, max
1≤x<M

1

x
I(x)

)

, (7)

whereδ is a positive constant,A comes from (6), andM is
a positive integer defined in the proof.

Proof: The proof follows from separating the supremum
from (5) into two parts. The first uses the the true value of
I(x) and ranges over1 ≤ x < M . The second uses a closed
form upper bound onI(x) using the geometric tail and handles
x ≥ M .

Let T (x) =
∑m−1

y=0 pY |X(y|x) the left tail of pY |X and
defineB = max0≤y<m log 1

qY (y) . If c ≥ 1, let M = min{x ∈

N|B T (x) ≤ δA}. If c < 1, then chooseα > 0 and letm0 =
min{x ∈ N|T (x) ≤ α log 1

c}, m1 = 1+α
δA log 1

c , and M =

max{m0,m1}. The closed form bound is given by

I(x) =

xX

y=0

pY |X(y|x) log
pY |X(y|x)

qY (y)

=

xX

y=0

pY |X(y|x) log
1

qY (y)
− H(Y |X = x)

(a)

≤
xX

y=0

pY |X(y|x) log
1

qY (y)

=

m−1X

y=0

pY |X(y|x) log
1

qY (y)
+

xX

y=m

pY |X(y|x) log
1

qY (y)

≤ B

m−1X

y=0

pY |X(y|x) +

xX

y=m

pY |X(y|x)

„

log
1

c
+

Ay

1 − d

«

(b)

≤ B T (x) + log
1

c

xX

y=m

pY |X(y|x) + Ax, (8)

where (a) follows from the bound1 H(Y |X = x) ≥ 0 and
(b) follows from E[Y |X = x] = (1 − d)x.

If c < 1 and x ≥ m0, then the first term of (8) is upper
bounded byα log 1

c and this givesI(x) ≤ Ax+(1+α) log 1
c .

If x > m1, then it follows from the definition ofm1 that
I(x)

x ≤ (1 + δ)A.
If c ≥ 1 and x ≥ M , then the first term of (8) is upper

bounded byδAx and the second term is negative. This allows
us to write I(x)

x ≤ (1 + δ)A.
Theorem 2 provides a simple upper bound on the capacity

of the BDC which can be optimized by computer. Table III
presents the numerical results derived from Theorem 2 and
compares them with the numerical lower bounds given in [5]
(which appear to be the best lower bounds currently known).
Notice that this upper bound does not yet improve over the
trivial 1 − d upper bound ford ≥ 0.9.

IV. A SYMPTOTIC UPPERBOUNDS

We now introduce an approach for obtaining upper bounds
on the capacity of the BDC in the limit as the deletion
probability d approaches 1; this approach is motivated by the
lower bound approach of [6]. In this case, the genie-aided
decoder has available a special marker symbol that is sent
after every block ofb = ⌈α/(1 − d)⌉ input bits; this marker
cannot be deleted. Adding this special marker symbol can only
increase the capacity of the channel (since it could simply be
ignored). With the addition of these markers, however, the
channel can be though of as a memoryless channel, with each
block of b input bits viewed as a symbol; that is, the input
alphabet consists of all possible sequences ofb bits and the
output sequence consists of all possible sequences of up to
b bits. We bound the mutual information for this ostensibly
simpler channel.

As we are primarily interested in the asymptotic behavior
as d goes to 1, we introduce the following simplifications.

1We also have an improved bound onI(x) based on a better bound for
H(Y |X = x). The main advantage of this improved bound is thatm1

remains bounded asδ → 0, but the expression is more complicated and gives
only computational savings (hence omitted from this paper).



d Lower Bound Upper Bound

0.05 0.72829 0.815930
0.10 0.56196 0.704279
0.15 0.43918 0.618817
0.20 0.34669 0.550780
0.25 0.27588 0.494302
0.30 0.22243 0.446639
0.35 0.18101 0.406367
0.40 0.14841 0.371178
0.45 0.12286 0.340129
0.50 0.10186 0.311087
0.55 0.084323 0.283775
0.60 0.069564 0.258147
0.65 0.056858 0.233442
0.70 0.045324 0.208112
0.75 0.035984 0.186024
0.80 0.027266 0.163413
0.85 0.019380 0.134927
0.90 0.012378 0.100000∗

0.95 0.005741 0.050000∗

TABLE I

COMPARING LOWER BOUNDS FROM[5] WITH UPPER BOUNDS DERIVED

FROM THEOREM 2 OR THE TRIVIAL 1 − d BOUND (DENOTED∗).

Each block can be described as an initial bit and a finite
vector (q1, . . . , qj) with each qi > 0 and

∑j
i=1 qi = 1 as

follows: the block is divided intoj contiguous subblocks,
where eachith subblock consists ofbqi copies of the same bit;
the subblocks alternate between 0’s and 1’s; and the initialbit
determines the value for the first subblock. For this to make
sense, theqi values should also be chosen so that the subblock
lengths are integers. However, by taking large enough block
lengths we can allowqi to take on values arbitrarily close
any real value, and henceforth we ignore any issues related
to rounding to obtain integer-length subblocks. Similarly, by
taking b sufficiently large we can make the distribution of
the number of bits that pass through a block arbitrarily close
to a discrete Poisson distribution with meanα. We use this
distribution for the number of output bits in what follows. It
is clear that the effects of these simplifications vanish in the
limiting case asd approaches 1.

Now, we consider the channel̃V → W̃ , where Ṽ is a
b-bit input symbol (between successive markers) andW̃ is
the corresponding output. Sincel(W̃ ) denotes the received
sequence length, the mutual informationI(Ṽ ; W̃ ) can be
written as

I(Ṽ ; W̃ ) = I(Ṽ ; W̃ , l(W̃ ))

= I(Ṽ ; l(W̃ ))
| {z }

=0

+I(Ṽ ; W̃ |l(W̃ ))

=

bX

l=0

pl(W̃ )(l) I(Ṽ ; W̃ |l(W̃ ) = l)

≤
kX

l=0

pl(W̃ )(l)I(Ṽ ; W̃ |l(W̃ ) = l)+

bX

l=k+1

pl(W̃ )(l) l.

Recall that we take the limit asd → 1, so that the length
distribution of the received sequence is exactly Poisson. This

implies that

I(Ṽ ; W̃ ) ≤
kX

l=0

pl(W̃ )(l) I(Ṽ ; W̃ |l(W̃ ) = l)+

∞X

l=k+1

l e−ααl

l!
. (9)

We note that a numerical upper boundu of the capacity of
this channel immediately yields the upper boundu

b = 1−d
α u

on the asymptote of the capacity of the BDC asd → 1. Notice
that, for our upper bound, we now are left with bounding a
summation of terms up to only received lengthk; we make
use of this fact in our resulting numerical optimization. Onthe
other hand, small values ofk are perfectly suitable; whenα =
1 andk = 4, the (rather weak) upper boundI(Ṽ ; W̃ |l(W̃ ) =
l) ≤ l for l > k results in a loss of less than0.02(1 − d).

The key to computing this bound is the following two
lemmas. The first is quite simple and its proof is omitted.

Lemma 3:Consider any DMC defined bypY |X(y|x) =
W (y|x). Suppose there are inputsx0, . . . , xm and non-
negative constantsa1, . . . , am such that

∑m
i=1 ai = 1 which

also satisfy

W (y|x0) =
m

∑

i=1

aiW (y|xi),

then there is a capacity achieving input distribution with zero
probability assigned tox0. �

The following lemma shows that we can achieve capacity with
a reduced input space consisting of symbols which have at
most k alternating subblocks. Intuitively, if the sender only
needs to consider the cases where at mostk bits are obtained
at the receiver, then it makes sense that each symbol should
consist of at mostk alternating subblocks. The power in
adopting this limitation is that we can significantly reducethe
search space over distributions for the sender.

Lemma 4: If l(W̃ ) ≤ k, then given any inputu with more
than k alternating subblocks we can show that there existk
sequencesv1, . . . , vk such that{vk} have at mostk alternating
blocks of zeros and ones, and such that for the modified
deletion channel

pW̃ |Ṽ (w̃|u) =

k
∑

i=1

si pW̃ |Ṽ (w̃|vi)

where si ≥ 0,
∑k

i=1 si = 1 such that for allw̃ such that
l(w̃) ≤ k.

Proof: We show that any symbol withk+1 subblocks can
be replaced by multiple sequences with at mostk subblocks
while achieving the same output distribution at the receiver
for all received sequences of up tok bits. The lemma then
follows by induction.

Consider any symbol withk + 1 subblocks. Since at most
k bits are obtained at the receiver, some subblock is entirely
deleted. Imagine that instead of using this bit sequence, we
initially choose a block to be deleted, remove it, and then
send the corresponding remaining bits over the channel. If we
can choose correct probabilities for removing each block, this
gives us a distribution over symbols with at mostk subblocks,
proving the lemma. Specifically, let us denote a symbolS



by an ordered pair consisting of a bit and a vector ofqi

values. Consider the symbol(0, (q1, . . . , qk+1)). We will find
probabilitiessi such that the output distribution is the same if
we instead send the symbol(1, (q2/(1 − q1), . . . , qk+1/(1 −
q1)) with probability s1, (0, (q1/(1 − qk+1), . . . , qk) with
probabilitysk+1, and(0, (q1/(1− qi), . . . , (qi−1 + qi+1)/(1−
qi), . . . , qk+1/(1 − qi)) with probability si.

To see that appropriatesi exist, imagine the following
experiment: rather than bits being deleted by the channel
with j ≤ k making it through, we could choosej bits of S
randomly and send them (in the appropriate order). But instead
of choosing justj bits, imagine instead that we successively
choose bits at random from the input until we obtain at least
one bit from each subblock (givingk + 1 > j bits). In this
scenario, some bit and its corresponding block is chosen last;
we let si be the probability theith subblock was chosen last.

We therefore see that the distribution ofj ≤ k bits chosen
from S is equivalent to the distribution obtained by first
deleting theith block with probabilitysi and then choosing
the j ≤ k bits from the remaining blocks. This equivalence
completes the lemma.

Combining Lemma 3 and Lemma 4 shows that, for the
channel withl(W̃ ) ≤ k, there is a capacity achieving input
distribution which puts probability mass only on sequences
with at mostk alternating blocks. Therefore, we have

max
p

Ṽ
(·)

I(Ṽ ; W̃ |l(W̃ ) ≤ k) ≤ max
v∈V

D

„

pW̃ |Ṽ (·|v)

˛
˛
˛
˛

˛
˛
˛
˛
qW̃ (·)

«

, (10)

whereV is the set of input symbols with at mostk alternating
symbols andqW̃ (w) is an arbitrary distribution over binary
strings of lengthk. Hence, combining (9) and (10) gives a
computable asymptotic upper bound for the deletion channel.

Now, we consider some of the practical issues involved.
Basically, the channel input is represented as ak-vector
(q1, . . . , qk) and the output is one of the2k+1−1 binary strings
of length at mostk. This ignores whether the input string
starts with a sequence of 0’s or 1’s though. To handle this, we
use the channel symmetry implied by complementary strings.
This symmetry implies that any optimal input distribution must
choosev with the same probability as the complement ofv.
Therefore, we can compute (10) by choosingqW̃ (w) with this
symmetry and then maximizing only over inputs starting with
0’s. This works because the symmetry ofqW̃ (w) implies the
divergence must be the same for any input and its complement.

The most tedious part of this computation is coding an
efficient subroutine that computes the output distributionfor a
fixed input. Once we have this subroutine, the following steps
are straightforward. First, we pick a large number of input
vectors (either randomly or in ak−1 dimensional lattice) and
compute their associated output distributions. Next, we use the
Blahut-Arimoto algorithm to optimize the implied DMC. Let
qW̃ (w) be the output distribution associated with the optimal
output distribution of this DMC. Finally, we perform thek−1
dimensional optimization using (9) and (10).

To obtain a valid upper bound, we cannot underestimate the
maximum on the RHS of (10). Since the function is smooth
and thek-D domain is bounded, a good global optimizer

should suffice. We used the MATLAB function ”fmincon” and
verified our results by restarting it from a large number of
random initial points. Our best result is currentlyCBDC ≤
0.7918(1 − d) as d → 1, and it was computed usingk = 6
andα = 2.0.

V. D ISCUSSION

In this paper we have studied upper bounds for thei.i.d.
deletion channel. While there have been upper bounds for the
combinatorial deletion problem (e.g. [12]), which can be con-
sidered an adversarial deletion model, we believe our results
give the best non-trivial upper bounds for theprobabilistic
deletion channel. One approach using side information yields
good upper bounds for low deletion probabilities; another
approach focused on the case whered → 1. We are currently
examining other techniques that bridge these two regimes. We
believe that such upper bounds will shed considerable light
on the coding techniques and the capacity of the i.i.d. deletion
channel.
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