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Binary Intersymbol Interference Channels: Gallager
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Aleksandar Kav̌cić, Member, IEEE, Xiao Ma, and Michael Mitzenmacher, Member, IEEE

Abstract—We study the limits of performance of Gallager codes
(low-density parity-check (LDPC) codes) over binary linear inter-
symbol interference (ISI) channels with additive white Gaussian
noise (AWGN). Using the graph representations of the channel,
the code, and the sum–product message-passing detector/decoder,
we prove two error concentration theorems. Our proofs expand
on previous work by handling complications introduced by the
channel memory. We circumvent these problems by considering
not just linear Gallager codes but also their cosets and by distin-
guishing between different types of message flow neighborhoods
depending on the actual transmitted symbols. We compute the
noise tolerance threshold using a suitably developed density
evolution algorithm and verify, by simulation, that the thresholds
represent accurate predictions of the performance of the iterative
sum–product algorithm for finite (but large) block lengths. We
also demonstrate that for high rates, the thresholds are very close
to the theoretical limit of performance for Gallager codes over
ISI channels. If C denotes the capacity of a binary ISI channel
and if Ci i d denotes the maximal achievable mutual information
rate when the channel inputs are independent and identically
distributed (i.i.d.) binary random variables (Ci i d C), we
prove that the maximum information rate achievable by the
sum–product decoder of a Gallager (coset) code is upper-bounded
by Ci i d . The last topic investigated is the performance limit of
the decoder if the trellis portion of the sum–product algorithm is
executed only once; this demonstrates the potential for trading
off the computational requirements and the performance of the
decoder.

Index Terms—Bahl–Cocke–Jelinek–Raviv (BCJR)-once bound,
channel capacity, density evolution, Gallager codes, independent
and identically distributed (i.i.d.) capacity, intersymbol interfer-
ence (ISI) channel, low-density parity-check (LDPC) codes, sum–
product algorithm, turbo equalization.

I. INTRODUCTION

I F continuous channel inputs are allowed, the capacity of
discrete-time intersymbol interference (ISI) channels with

additive white Gaussian noise (AWGN) can be computed using
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the water-filling theorem [1], [2]. In many applications, the
physics of the channel do not allow continuous input alphabets.
A prime example of a two-level (binary) ISI channel is the
saturation magnetic recording channel, because the magne-
tization domains can have only two stable phases [3]. Other
examples include digital communication channels where the
input alphabet is confined to a finite set [4].

The computation of the capacity of discrete-time ISI chan-
nels with a finite number of allowed signaling levels is an open
problem. In the past, the strategy has been to obtain numeric
[5] and analytic [6], [7] bounds on the capacity. Very often au-
thors have concentrated on obtaining bounds on the achievable
information rate when the inputs are independent and uniformly
distributed (i.u.d.)—the so-called symmetric information rate
[5]–[7]. Recently, a Monte Carlo method for numerically evalu-
ating the symmetric information rate using the forward recur-
sion of the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [8]
(also known as the Baum–Welch algorithm, the sum–product
algorithm, or the forward–backward algorithm) has been pro-
posed by Arnold and Loeliger [9], and independently by Pfister,
Soriaga, and Siegel [10]. The same procedure can be used to
numerically evaluate the i.i.d. capacity, which is defined as the
maximal achievable information rate when the inputs are inde-
pendent and identically distributed. This marks the first (arbi-
trarily close in the probability- sense) approximation to the
exact result involving the channel capacity of a discrete-time
ISI channel with binary inputs. Also, recently, tight lower [11]
and upper [12], [13] bounds have been computed using Monte
Carlo methods for Markov channel inputs. The remaining issue
is to devise codes that will achieve the capacity (or at least the
i.i.d. capacity).

The ability to achieve (near) channel capacity has recently
been numerically demonstrated for various memoryless [14],
[15] channels using Gallager codes, also known as low-density
parity-check (LDPC) codes [16]. The theory of Gallager codes
has vastly benefitted from the notion of codes on graphs first
introduced by Tanner [17] and further expanded into a unifying
theory of codes on graphs by Wiberget al.[18] and Forney [19].
MacKay and Neal [20], [21] showed that there exist good Gal-
lager codes with performances about 0.5 dB worse than turbo
codes [22]. A major breakthrough was the construction ofir-
regular Gallager codes [23], and the development of a method
to analyze them for erasure channels [14], [24]. These methods
were adapted to memoryless channels with continuous output
alphabets (e.g., AWGN channels, Laplace channels, etc.) by
Richardson and Urbanke [25], who also coined the term “den-
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sity evolution” for a tool to analyze the asymptotic performance
of Gallager and turbo codes over these channels [26]. The use-
fulness of the tool was demonstrated by using it to optimize
codes whose performance is proven to get very close to the ca-
pacity, culminating in a remarkable 0.0045-dB distance from the
capacity of the memoryless AWGN channel reported by Chung
et al. [27].

In this paper, we focus on developing the density evolution
method for channels with binary inputs and ISI memory. The
computed thresholds are used for lower-bounding the capacity,
as well as for upper-bounding the average code performance.
The main topics of this paper are: 1) concentration theorems
for Gallager codes and the sum–product message-passing de-
coder over binary ISI channels; 2) a density evolution method
for computing the thresholds of “zero-error” performance over
these channels; 3) theorems establishing that the asymptotic
performance of Gallager codes using the sum–product algo-
rithm is upper-bounded by the symmetric information rate and
the i.i.d. capacity; and 4) the computation of the BCJR-once
bound, which is the limit of “zero-error” performance of the
sum–product algorithms if the trellis portion of the algorithm
is executed only once.

The paper is organized as follows. In Section II, we describe
the channel model, introduce the various capacity and infor-
mation rate definitions, and briefly describe the sum–product
decoder [28]. In Section III, we introduce the necessary notation
for handling the analysis of Gallager codes for channels with
memory and prove two key concentration theorems. Section IV
is devoted to describing the density evolution algorithm for
channels with ISI memory. In Section V, computed thresholds
are shown for regular Gallager codes. Section V also presents
a theorem regarding the limit of achievable code rates using
binary linear codes. In this section, we also develop the notion
of the BCJR-once bound, which has a practical implication;
namely, it is the limit of performance of the sum–product
algorithm if the trellis portion of the algorithm is executed only
once. This provides a concrete example of how we can trade off
the computational load (by doing the expensive BCJR step only
once) with the decoding performance. Section VI concludes
the paper.

Basic Notation: Matrices are denoted by boldface upper
case letters (e.g., ). Column vectors are denoted by underlined
characters, e.g., . Random variables (vectors) are typically
denoted by upper case characters, while their realizations are
denoted by lower case characters (e.g., a random vectorhas
a realization ). The superscript denotes matrix and vector
transposition. If a column vector is ,
then a subvector collecting entries is denoted
by . The notation denotes
the probability of , while denotes
the probability of given that occurred. The
probability mass functions of discrete random variables will
be denoted with the symbol “ ,” e.g., the probability mass
function of a discrete random vector evaluated at will
be denoted by , i.e., it is the probability that
takes the value . The probability density function (pdf) of
a continuous random variable will be denoted by the symbol

Fig. 1. Factor graph representation of the ISI channel.

“ .” For example, the pdf of a continuous random vector
evaluated at the point will be denoted by .

II. THE CHANNEL, GALLAGER CODES AND DECODING

A. Channel Model, Graph Representation and Capacity

Assume that we have a binary discrete-time ISI channel of
finite length , characterized by the channel response polyno-
mial , where . The
input to the discrete-time channel at time is a real-
ization of a random variable drawn from a binary alphabet

. The output of the channel is a realization
of a random variable drawn from the alphabet . The
channel’s probabilistic law is captured by the equation

(1)

where is a zero-mean AWGN sequence with variance
whose realizations are .

The channel in (1) is conveniently represented by a trellis
[29], or, equivalently, by a graph where for each variable
there is a singletrellis node[18], [19]. Define the state at time

as the vector that collects the input variables through
, i.e., . The realization of the random vector
can take one of values. With this notation, we can factor

the function

(2)

where each factor is

(3)

This factorization is represented by the factor graph in Fig. 1.
Each node of the graph (denoted by the letter “T”) represents
a factor (3), while each edge connected to the node represents
a variable on which the factor depends. Edges terminated by a
small filled circle ( ) are half edges. Half edges may be con-
sidered terminals to which other graphs may be connected. For
details on factor-graph representations, see [19], [28].

For the channel in (1), the capacity is defined as

(4)

where is the mutual information1 between the
channel input and the output evaluated for a specific probability

1Some authors refer toI(X ; Y ) as theaveragemutual information
(AMI), see, e.g., [1], [6], [7].
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mass function of the channel input, where
. Another quantity related to the mutual information is

the maximum i.i.d. mutual information rate (the i.i.d. capacity),
defined as

(5)
where the supremum is taken over all probability mass functions
of i.i.d. random variables , . Clearly, .

We shall also use the symmetric information rate

(6)

which is the information rate obtained when the input sequence
is Bernoulli- , i.e., when the inputs are i.u.d.

Conjecture 1: For the binary ISI channel modeled by (1),
holds.

Neither the capacity nor the i.i.d. capacity are known
in closed form. Only if the channel coefficients are for

(i.e., if the channel does not have memory) do we have
, in which case the capacity is known and can be

evaluated via numerical integration [1], [6]. For channels with
ISI memory, can be very accurately numerically evalu-
ated (with probability ) using the Arnold–Loeliger method [9].
These numerical evaluations also confirm (though they do not
prove) that for binary ISI channels.

B. Gallager Coset Codes

A Gallager code (also known as an LDPC code) is a linear
block code whose parity-check matrix is sparse [16]. Here, we
will extend this definition to include any coset of a linear block
code with a sparse parity-check matrix. An information block
is denoted by a vector . If a sparse

binary parity-check matrix is denoted by, then
denotes the generator matrix corresponding to (with
the property ). A Gallager coset code is specified
by a parity-check matrix and an coset-defining vector
. The codeword is an vector

(7)

where , and denotes binary vector addition. The
codeword satisfies

(8)

The code islinear if and only if ; otherwise, the code is a
coset codeof a linear Gallager code.

It is convenient to represent a Gallager coset code by a bipar-
tite graph [17], [19], [28]. The graph has two types of nodes:
variable nodes (one variable node for each entry in the vector)
and check nodes (one check node for each entry in the
vector ). There is an edge connecting theth check node and
the th variable node if the entry in the th row and th
column of is nonzero. Thus, each check node represents a
parity-check equation , where the symbol

denotes binary addition. An example of a graph of a Gallager
coset code is depicted in Fig. 2.

Fig. 2. Bipartite graph representation of a regular Gallager coset code
(L ; R ) = (2; 3).

The degree of a node is the number of edges connected to it.
Two degree polynomials

and

are defined [23], where and are the maximal vari-
able- and check-node degrees, respectively. Ifrepresents the
total number of edges in the graph, then the valuerepresents
the fraction of the edges that are connected to variable nodes
of degree . Similarly, represents the fraction of the edges
that are connected to check nodes of degree. Clearly

The design code rate2 is

A regular Gallager coset code is a code for which
and . The graph in Fig. 2 represents a regular Gallager
coset code for which .

We define the ensemble of Gallager coset
codes as the set of all block codes that satisfy (7) and (8),
whose codewords are of dimension , whose graph
corresponding to the parity-check matrix has variable and
check degree polynomials and , respectively, and
whose binary coset vectorcan take any of values.

Before transmission over the channel (1), the variables
are converted to variables as

(9)

Since there is a one-to-one correspondence between the vectors
and , the term codeword will be used interchangeably to de-

scribe either of the two vectors.

C. Sum–Product Decoding by Message Passing

In the literature, several methods exist for soft detection of
symbols transmitted over ISI channels [8], [30]–[34]. There also
exist several message-passing algorithms that decode codes on
graphs [16], [17], [23], [25]. Here, we will adopt the algorithm

2The true code rate of a code defined by a graph will always be greater than
or equal to the design code rate. In practice, they are often extremely close, so
we do not distinguish between them throughout the paper.
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Fig. 3. Joint code/channel graph.

referred to in the coding literature as the “sum–product” algo-
rithm [18], [28], but is also known as belief propagation [35],
[36]. When applied specifically to ISI channels, the algorithm
also takes the name “turbo equalization” [37]. For convenience
in the later sections, we describe here the “windowed” version
of the algorithm.

First, we join the channel factor graph (Fig. 1) with the code
graph (Fig. 2) to get the joint channel/code graph depicted in
Fig. 3. The exact schedule of the message-passing algorithm
seems to have only very little effect on the convergence value but
may affect the convergence speed. However, to do the analysis in
Section III, we must adopt a message-passing schedule because
the schedule affects the structure of themessage-flow neighbor-
hooddefined in Section III. Here, we describe the scheduling
choice presented in [38] often referred to asturbo equalization
[37] due to the resemblance to turbo decoding [22].

Trellis-to-Variable Messages:Assume that the received vec-
tor is . In the th round of the algorithm, we compute the

trellis output messages , where the messages (these are
available from the previous round of the message-passing de-
coding algorithm on the code subgraph of the joint channel/code
graph) are considered as the extrinsic information (in the initial
round ). The output message is computed by running
the “windowed” version of the BCJR algorithm. The windowed
BCJR algorithm for computing the message starts trellis
stages to the left and to the right of theth trellis node. The for-
ward-going and backward-going message vectors are started as

, where is an all-ones vector of size

. The computation of the message follows the BCJR
algorithm described in [8]; schematically depicted in Fig. 4. In
the Appendix, this algorithm is reproduced for completeness.

Variable-to-Check Messages:Once the messages are
computed, we compute the messages going from the variable
nodes to the check nodes. A detailed explanation of this com-
putation can be found in [25], [27]. Here, we just state the result.
Let the th variable node be of degree, i.e., it is connected to

check nodes. In theth round, let be the message arriving
from the trellis node and let (where ) denote
the messages arriving from the check nodes (in the initial round,

). The rule for computing the message is

(10)

and is depicted in Fig. 5.

Check-to-Variable Messages:The next step is to compute
the messages going from the check nodes back to the variable
nodes. Let the variable node be of degree, i.e., it is connected
to variable nodes, and let it represent a parity-check equation
for which . In round , let (where

) denote the messages arriving from the variable nodes to the
check nodes. The rule for computing the message is

(11)

and is depicted in Fig. 6. Here

Variable-to-Trellis Messages:The last step required to com-
plete a round of the message-passing sum–product agorithm is
to compute the messages passed from the variable nodes
to the trellis nodes. The rule for computing the message
is

(12)

and is depicted in Fig. 7.
The Full Message-Passing Algorithm:The algorithm is ex-

ecuted iteratively, where the stopping criterion can be chosen
in a number of different ways [39]. Here we assume the sim-
plest stopping criterion, i.e., conduct the iterations for exactly

rounds. In short, the algorithm has the following form

• Initialization
1) receive channel outputs ;
2) for , set ;
3) set all check-to-variable messages ;
4) set .

• Repeat while
1) for compute all trellis-to-variable messages

[Fig. 4 and the Appendix];
2) compute all variable-to-check messages [Fig. 5

and (10)];
3) compute all check-to-variable messages [Fig. 6

and (11)];
4) for compute all variable-to-trellis messages

[Fig. 7 and (12)];
5) increment by .

• Decode
1) for decide ,

where we use .

III. CONCENTRATION AND THE“ZERO-ERROR” THRESHOLD

In this section, we will prove that for i.u.d. information se-
quences, for almost all graphs and almost all cosets, the de-
coder behaves very closely to the expected behavior. When we
say here that an information sequence is i.u.d., we mean that
the channel input is a sequence of independent and uniformly
distributed random variables. We will then conclude that there
exists at least one graph and one coset for which the decoding
probability of error can be made arbitrarily small on an i.u.d.



1640 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 7, JULY 2003

Fig. 4. Message-passing through the trellis—the “windowed” BCJR algorithm.

Fig. 5. Computation of messages from variable nodes to check nodes.

Fig. 6. Computation of messages from check nodes to variable nodes.

Fig. 7. Computation of messages from variable nodes to trellis nodes.

information sequence if the noise variance does not exceed a
threshold. The proofs follow closely the ideas presented in [24],
[25] for memoryless channels and rely heavily on results pre-
sented there. The main difference is that the channel under con-
sideration here has an input-dependent memory. Therefore, we
first must prove a concentration statement for every possible
input sequence, and then show that the average decoder perfor-
mance is closely concentrated around the decoder performance
when the input sequence is i.u.d.

The section is organized as follows. In Section III-A, the basic
notation is introduced. Section III-B gives the concentration re-
sult, while Section III-C defines the “zero-error” threshold and
concludes that there exists a Gallager coset code that achieves
an arbitrarily small probability of error if the noise variance is
below the threshold.

A. Message-Flow Neighborhoods, Trees, and Error
Probabilities

For clarity of presentation, we consider only regular Gallager
codes, where every variable node has degree
and every check node has degree . In the joint
code/channel graph (Fig. 3), consider an edgethat connects a
variable node to a check node . In [25], Richardson and
Urbanke define a directed neighborhood of depth(distance
) of the edge . Here, we cannot define a neighborhood based

on the distance because the joint code/channel graph (Fig. 3)
is not a bipartite graph. Instead, we define amessage-flow
neighborhoodof depth (which equals the directed neigh-
borhood if the graph is bipartite). Let be the message
passed from the variable node to the check node in
round . The message-flow neighborhood of depthof the
edge is a subgraph that consists of the two nodesand

, the edge , and all nodes and edges that contribute to the
computation of the message . In Fig. 8(a), a depth-
message-flow neighborhood is depicted for the following pa-
rameters . The row of bits (binary
symbols) “ ” given above the trellis section in Fig. 8(a)
represent the binary symbols of the codewordcorresponding
to the trellis nodes that influence the message flow. Since
the channel has ISI memory of length, there are exactly

binary symbols that influence the message
flow. Fig. 8(b) is an equivalent short representation of the
depth- neighborhood depicted in Fig. 8(a). A message-flow
neighborhood of depthcan now be obtained by branching out
the neighborhood of depth. This is depicted in Fig. 9.

Since the channel has memory, the transmitted binary sym-
bols do, in fact, influence the statistics of the messages in the
message-flow neighborhood. We, therefore, must distinguish
between neighborhoods of differenttypes, where the type de-
pends on the transmitted bits. The neighborhood typeis de-
fined by the binary symbols that influence the message at the
end (top) of the message-flow neighborhood. We simply index
the types by the binary symbols in the neighborhood (with an
appropriate, say lexicographic, ordering). For example, the mes-
sage-flow neighborhood of depthin Fig. 9 is of type
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(a) (b)

Fig. 8. Equivalent representations of a message flow neighborhood of depth1. In this figure,(I; W; L; R) = (1; 1; 2; 3).

Fig. 9. Diagram of a message-flow neighborhood of depth`. The
neighborhood type is� = [0101; . . . ; 1111; . . . ; 0000; 1110; . . . ; 1001].

There are as many possible types of message flow neighbor-
hoods of depth as there are possible fillings of binary digits in
Fig. 9. One can verify that for a regular Gallager code there are
exactly possible types of message-flow neighborhoods of
depth , where

(13)

We index these neighborhoods as

where

A tree-like neighborhood, or simply atreeof depth is a mes-
sage-flow neighborhood of depthin which all nodes appear
only once. In other words, a tree of depthis a message-flow
neighborhood that contains no loops. Just like message-flow
neighborhoods, the trees of depthcan be of any of the
types , where .

Define as the binary symbol corresponding to the message
node at the top of the message-flow neighborhood of type.

In Fig. 8(a), the binary symbol can be read as the symbol
directly below the node , i.e., . The corresponding
bipolar value of the symbol is . Define
as the probability that the tree of typeand depth delivers an
incorrect message, i.e.,

tree type (14)

The probability in (14) is taken over all possible outcomes of
the channel outputs whenis the tree type, i.e., when the binary
symbols that define are transmitted.

We define the probability as the probability that a
message-flow neighborhood (of a random edge) is of type
when the transmitted-long sequence is and the code graph
is chosen uniformly at random from all possible graphs with
degree polynomials and , i.e.,

neighborhood type transmitted sequence (15)

Note that the probability defined in (15) does not depend on the
coset ; also note that there always exists a vectorsuch that for
any chosen parity-check matrix the vector is a codeword of
the coset code specified by and .

Next, define theerror concentration probabilitywhen is the
transmitted sequence as

(16)

Define thei.u.d. error concentration probability as the
error concentration probability when all neighborhood
types , , are equally probable

(17)

In the next subsection, we prove that for most graphs, ifis
the transmitted codeword, then the probability of a variable-to-
check message being erroneous afterrounds of the message-
passing decoding algorithm is highly concentrated around the
value . Also, we prove that if the transmitted sequence is
i.u.d., then the probability of a variable-to-check message being
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erroneous after rounds of the message-passing decoding algo-
rithm is highly concentrated around the value . To do that,
we need the following result from [23]. Define as the prob-
ability that a neighborhood of depthis not a tree when a code
graph is chosen uniformly at random from all possible graphs
with degree polynomials and . In [23], it is shown that

neighborhood not a tree (18)

where is a constant independent of.3

B. Concentration Theorems

Theorem 1: Let be the transmitted codeword. Let
be the random variable that denotes the number of

erroneous variable-to-check messages afterrounds of the
message-passing decoding algorithm when the code graph is
chosen uniformly at random from the ensemble of graphs with
degree polynomials and . Let be the number of
variable-to-check edges in the graph. For an arbitrarily small
constant , there exists a positive number, such that if

, then

(19)

Proof: The proof follows closely the proof of the concen-
tration theorem for memoryless channels presented in [25]. First
note that

(20)

The random variable depends on the deterministic
sequence and its probability space is the union of the en-
semble of graphs with degree polynomials , , and the
ensemble of channel noise realizations (which uniquely define
the channel outputs sinceis known). Following [23], [25], we
form a Doob edge-and-noise-revealing martingale and apply
Azuma’s inequality [40] to get

(21)

where depends only on , , and .
Next, we show that the second term on the right-hand side of

(20) equals by using inequality (18). Again, this is adopted
from [25], but adapted to a channel with ISI memory. We have

(22)

3Actually, in [23] this fact is shown for a bipartite graph, but the extension to
joint code/channel graphs of Fig. 3 is straightforward.

and

(23)

Combining (22) and (23), if , we get

(24)

Theorem 2: Let be a random sequence of i.u.d. binary
random variables (symbols) . Let be
the random variable that denotes the number of erroneous vari-
able-to-check messages afterrounds of the message-passing
decoding algorithm when the code graph is chosen uniformly at
random from the ensemble of graphs with degree polynomials

and , and when the transmitted sequence is. Let
be the number of variable-to-check edges in the graph. For an
arbitrarily small constant , there exists a positive number

, such that if , then

(25)

Proof: Using Theorem 1, we have the following:

(26)

Next, recognize that if is an i.u.d. random sequence, all neigh-
borhood types are equally probable, i.e., .
Using this, we prove that
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Now form a Doob symbol-revealing martingale sequence

If we can show that

(27)

where is a constant dependent on , , and (but not
dependent on ) then if we apply Azuma’s inequality [40], we
will have

(28)

Then, by combining (28) and (26), for , we
will get (25). So, all that needs to be shown is (27).

Consider two random variables and . The
random vectors and have the following properties:
1) the first symbols of and are deterministic and equal

; 2) The th symbol of is the random
variable , while the th symbol of is fixed (non-
random) ; 3) the remaining symbols and

are i.u.d. binary random vectors statistically independent
of each other. Fixing the th symbol,
can affect at most a constant number (call this number)
of message-flow neighborhoods of depth. The constant
depends on , , and , but it does not depend on.
Therefore, for any given neighborhood type, we have

(29)

Using the notation , we can verify that

Defining , and using (29), we get

(30)

Inequality (27) follows from (30).

Corollary 2.1: Let be any information block consisting of
binary digits. Let be a code chosen uniformly

at random from the ensemble of Gallager coset

codes. Let be a random variable representing the number
of erroneous variable-to-check messages in roundof the
message-passing decoding algorithm on the joint channel/code
graph of the code . Then

(31)

Proof: If and are chosen independently and uniformly
at random, then the resulting codeword in (7) consists of i.u.d.
binary symbols, and Theorem 2 applies directly.

C. “Zero-Error” Threshold

The term “zero-error” threshold is a slight abuse because the
decoding error can never be made equal to zero, but the concen-
tration probability can be equal to zero in the limit as ,
and hence the probability of decoding error can be made arbi-
trarily small. As in [25], the “zero-error” noise standard devia-
tion threshold is defined as

(32)

where the supremum in (32) is taken over all noise standard
deviations for which

(33)

Corollary 2.2: Let be an information block chosen uni-
formly at random from binary sequences of length.
There exists a code in the ensemble of
Gallager coset codes, such that for any , the probability
of error can be made arbitrarily low, i.e., if is the number
of erroneous variable-to-check messages in roundof the
message-passing decoding algorithm on the joint channel/code
graph of the code , then

(34)

Proof: Define an indicator random variable

if

otherwise.
(35)

From Corollary 2.1, for , , and chosen uniformly at
random we have . Since the expected
value is lower than , we conclude that there must exist
at least one graph and one coset-defining vectorsuch that
for chosen uniformly at random we have

i.e., there exists a graph and a coset-defining vectorsuch
that for chosen uniformly at random

(36)

The assumption guarantees
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Since , it follows that for every , there
exists an integer such that for every we have

. Then, for , we have

(37)

The desired result (34) follows by combining (36) and (37).

IV. DENSITY EVOLUTION AND THRESHOLDCOMPUTATION

A. Density Evolution

Define as the pdf of the message obtained
at the top of a depth-tree of type , see Fig. 8. With this no-
tation, we may express the i.u.d. error concentration probability
as

(38)

Here, is theaveragepdf (averaged over all tree types)
of the correct message from a variable node to a check node
in round of the message-passing algorithm on a tree. We can
obtain the pdf in several different ways. Here, we per-
form the averaging in every round and enter a new round with
an average pdf from the previous round, i.e., weevolve
into . This method was used in [14] for discrete mes-
sages and in [25] for continuous messages, where it was termed
density evolution.

Denote by theaveragedensity (pdf) of a message
in the th round of the message-passing algorithm (averaged
over all tree types), see Fig. 5. Let denote theaverage
pdf of a message in the th round of the message-passing
algorithm on a tree. Then the average density (pdf) is
given by

(39)

where stands for the convolution operation, and de-
notes the convolution of pdfs. As shorthand, we use the
following notation:

(40)

We also drop the function argumentsince it is common for all
convolved pdfs. Then (39) may be conveniently expressed as

(41)

Equation (41) denotes the evolution of the average density (pdf)
through a variable node, Fig. 5.

To express the density evolution through a check node
(Fig. 6), we require a variable change, resulting in a cumber-
some change of measure. A convolution can then be defined in
the new domain and an expression can be found for the density
evolution through check nodes [25]. Here we do not pursue this
rather complicated procedure because a numerical method for
density evolution through check nodes can easily be obtained
through a table lookup, for details see [27]. Here we simply
denote this density evolution as

(42)

where is symbolic notation for the average mes-
sage density obtained by evolving the density through
a check node of degree. We further express (42) by the fol-
lowing notation:

(43)

Similar to (41), the average density (pdf) of messages
(Fig. 7) is obtained using the convolution operator

(44)
Note that in this equation the degree distribution is averaged
with respect to the nodes, rather than the edges. This explains the
term , which is the fraction of variable nodes

with degree . The notation is symbolic shorthand.
The step that is needed to close the loop of a single density
evolution round is the evolution of the average density
into the average density , i.e., the evolution of message
densities through the trellis portion of the joint code/channel
graph. We denote this step as

(45)

where is symbolic notation fortrellis evolutionand de-
notes the pdf of the channel noise (in this case a zero-mean
Gaussian with variance ). Even though no closed-form so-
lution for (45) is known, it can be calculated numerically using
Monte Carlo techniques.

The density evolution is now given by

• Initialization
1) ;

2) set (where is the Dirac function).
• For to

1) ;

2) ;



KAV ČIĆ et al.: BINARY INTERSYMBOL INTERFERENCE CHANNELS 1645

3) ;

4) .

• Compute
1) .

B. Threshold Computation

With the density evolution algorithm described in the pre-
vious subsection, the zero-error thresholdcan be evaluated
(up to the numerical accuracy of the computation machine) as
the maximal value of the noise variancefor which ,
where is the numerical accuracy tolerance.

With a finite-precision machine, we must quantize the
messages, resulting in a discrete probability mass function.
For a sufficiently large number of quantization levels, the
discrete probability mass functions are good approximations of
continuous density functions (pdfs) , , , and . In
the for-loop of the density evolution algorithm in Section IV-A,
steps 2) and 4) are straightforward convolutions (easily im-
plemented numerically using the fast Fourier transform [41]).
Step 1) of the for-loop can easily be implemented using a table
lookup as explained in [27], or using a rather cumbersome
change of measure explained in [25]. Actually, only step 3) of
the for-loop needs further explanation. Since no closed-form
solution is known for evolving densities through trellis sections,
we employ aMonte Carloapproach to obtain a histogram that
closely approximates . This has first been suggested in [26]
for trellises of constituent convolutional codes of turbo codes.
In [26], Richardson and Urbanke run the BCJR algorithm on
a long trellis section when the input is the all-zero sequence.
Here, since the channel has memory, the transmitted sequence
must be a randomly chosen i.u.d. binary sequence. The length

of the sequence must be very long so that we can ignore the
trellis boundary effects.

To implement step 3) of the for-loop in the density evolu-
tion algorithm in Section IV-A, for we generate the
symbols independently and uniformly at random.
They are then transmitted over the noisy ISI channel to get the
channel output realization . We generate the extrinsic infor-

mation for as follows. For all , first
create independent realizations according to the pdf (actu-
ally, histogram) , and then set . For ,
we compute thea priori probability that the message symbol
equals as

Using these prior probabilities and using as the channel
outputs, we run the BCJR algorithm [8] to compute the trellis
outputs . We then equate to the histogram of the
values , where , and is chosen
large enough to avoid the trellis boundary effects. In [26], this
technique is accelerated by forcing the consistency condition on
the histogram. In ISI channels, however, consistency generally
does not hold, so we must use a larger trellis section in the
Monte Carlo simulation.

V. ACHIEVABLE RATES OFGALLAGER CODES

A. Achievable Rates of Binary Linear Codes Over ISI
Channels

In Section II, we pointed out that is the limit (as
) of the average mutual information between and

when is an i.i.d. sequence with

Since the input process, the channel, and, hence, the output
process and the joint input–output process are all stationary and
ergodic, one can adopt the standard random coding technique
[1] to prove a coding theorem to assure that all rates
areachievable(for the definition ofachievable, see [2, p. 194]).
We use the expression “standard random coding technique” to
describe a method to generate the codebook, where codewords
are chosen independently at random and the coded symbols are
governed by the optimal input distribution. For a generic fi-
nite-state channel, see [1, Sec. 5.9] or [42] for a detailed descrip-
tion of the problem and the the proof of the coding theorem. For
the channel in (1) with binary inputs, we present a somewhat
stronger result involvinglinear codes.4

Theorem 3: Every rate is achievable; further-
more, the rate can be achieved by linear block codes or their
coset codes.

Proof: From [5], if the channel input is an i.u.d.
(Bernoulli-1/2) sequence, we have

where the second equality follows from the fact that the channel
in (1) can be driven into any known state, with at most
inputs (where is the ISI length). For any , there exists a
positive integer such that and

where the starting state is a known vector of binary values,
say . Now we consider the following
transmission scheme. We transmit a binary vector, where be-
fore every block of symbols we transmit the known sequence

, i.e.,

...

(46)

Clearly, from (46), for any , we have

and

4Here we use a different (and apparently simpler) proof methodology. How-
ever, the proof only applies to finite-state channels for which we can guarantee
that we can achieve any state with a finite number of channel inputs (e.g., ISI
channels with finite ISI memory); not for a general finite-state channel.
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The symbols of the vector are transmitted over the channel
in (1) to obtain a vector at the channel output. Similar to the
vector in (46), we partition the vector as

...

where for any any , we have

and

Clearly, we have a memoryless vector-channel as follows:
Input: whose realization is a binary vector

Output: whose realization is real vector .
The probability law of the vector channel is defined by the

following conditional pdf:

since the known sequence is transmitted before every vector
. This channel transition probability law is well defined [1],

[42], hence, ; is also well defined. Note that the
pdf is not dependent on, which makes it possible to
factor the joint pdf as

showing that the vector channel is indeed memoryless. Further,
quantize the output vector to get a quantized vector

. Due to [1, Ch. 7], we can always find a quantizer
to get a discrete channel such that the corresponding average
mutual information ; is greater than the given
rate . Since is arbitrarily small, we can choose integersand

such that

Similar to [2, proof of Theorem 8.7.1, p. 198], we can prove
that is achievable for the obtained discrete memoryless
channel. The reader should note that the random code we
generated has codewords, which are statistically inde-
pendent. The coded symbols are i.u.d., each with probability

. Every codeword consists of vector symbols from
, say . The transmitted block

is with length . So,

the real code rate is . The received sequence also has the
same block length. However, from [2, proof of Theorem 8.7.1,
p. 198], the decoding error probability can be made arbitrarily
small even if we only use the typical-set decoding with respect
to and , which is not the full received sequence.

To prove the second part of this theorem, we should note
that the error probability bound only depends on the statistical
properties of the random codebook. We can generate a code-
book by drawing codewords uniformly at random as in [1, The-
orem 6.2.1, p. 206].

For binary ISI channels, define the capacity as the
supremum of rates achievable by binary linear codes under
any decoding algorithm. A consequence of Theorem 3 is

(47)

Formulating the exact relationship between , , ,
and is still an open problem since to the best of our knowledge
neither the literature nor the theorems presented in this paper
answer this question. For example, it is our belief that the strict
inequality must hold because binary linear codes
cannot achieve spectral shaping required to match the spectral
nulls of the code to the spectral nulls of the channel (see [43]
for matched spectral null codes), but we cannot back up this
statement with a proof. Further, we know (at least for some ISI
channels) that . An example can be constructed
by concatenating an outer regular rate-Gallager code whose
variable node degree is and check node degree
is , with an inner matched spectral null biphase
code [43] of rate . For this special construction, the resulting
code is a linear (coset) code of rate–. If we use this code for
transmission over the dicode channel ( channel), though
not explicitly shown here, we can compute that the zero-error
threshold of message-passing decoding is above (where
for this channel it can be numerically shown using the algorithm
in [9], [10] that ).

While the exact relationship between , , and is
still an open problem, we can prove a relationship between the
zero-error threshold of the message-passing decoder of Gallager
codes, and the values and .

Proposition 1: Let be the rate of a Gallager code and let
be the threshold computed by density evolution using i.u.d.

inputs. Then , where and are
evaluated at the noise standard deviation .

Proof: According to the concentration theorem, the
average probability of error (averaged over all random choices
of the graph, the coset vector, and the information-bearing
vector ) can be made arbitrarily small if . That
means that there exists at least one graph that achieves an
arbitrarily small average probability of decoding error (aver-
aged over all random choices of the coset vectorand the
information-bearing vector ). Pick the parity-check matrix
corresponding to this graph as our code matrix. We design the
following transmission scheme. The messagesare chosen
uniformly at random and the coset vectorsare chosen also
uniformly at random. The resulting transmitted sequence is
i.i.d. with probability of each symbol , that is, the sequence
is i.u.d. If the transmitted sequence is i.u.d., we cannot find a
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code with rate higher than such that the decoding error
is arbitrarily small. But since the decoding error (averaged over
all messages and all cosets ) for the sum–product decoder
of Gallager codes can be made arbitrarily small for , we
conclude that the code ratemust be smaller than the value for

evaluated at . Therefore,

B. Thresholds for Regular Gallager Codes as Lower Bounds
on

The two proofs presented in the preceding subsection
establish that the curve rate versus threshold for a
Gallager code over a binary ISI channel is upper-bounded
by the curve versus , and upper-bounded by the
curve versus . Thus, we have a practical method for
numerically lower-bounding . Furthermore, by virtue
of specifying the degree polynomials and , we also
characterize a code that can achieve this lower bound. This
is a bounding method that is different from the closed-form
bounds [6], [7] or Monte Carlo bounds [5] proposed in the
past, where no bound-achieving characterization of the code
is possible (except through random coding techniques which
are impractical for implementations). Further, we compare the
thresholds obtained by density evolution to the value
computed by the Arnold–Loeliger method [9], showing that
the thresholds are very close to in the high-code-rate
regions . This is exactly the region of practical
importance in storage devices where high-rate codes for binary
ISI channels are a necessity [3]. The codes studied in this paper
do not provide tight bounds in the low-rate region, but the
threshold bounds can be tightened by optimizing the degree
polynomials and , see [44].

In this paper, we present thresholds only for regular Gallager
codes5 in the family , where and is allowed
to vary in order to get a variable code rate . This
family of codes provides a curveversus threshold that is very
close to for high code rates, but not for low code rates.
To get tighter bounds in the low information rate regime,
we would have to revert to irregular Gallager codes [14],
[15], [44]. Table I tabulates the codes and their respective
thresholds for the ISI channel with additive
Gaussian noise (this channel was chosen for easy comparison
to some previously published bounds [5]–[7]). The density
evolution bounds ( versus SNR) are plotted in Fig. 10. For
comparison, the i.i.d. capacity numerically evaluated using the
Arnold–Loeliger method [9] is also plotted in Fig. 10. (Note that
for this channel, we can numerically verify that
at any signal-to-noise ratio (SNR) of interest.)

In [7], Shamai and Laroia introduce a curve for which they
conjecture that it may be a lower bound on (dash-dotted
line in Fig. 10). Although the curve is only a conjecture, it is
a very useful quick way to estimate because it involves

5Thresholds for irregular Gallager codes can also be obtained via density
evolution.

TABLE I
THRESHOLDS FORREGULAR GALLAGER CODES (L = 3); CHANNEL

h(D) = � D

Fig. 10. The i.i.d. capacityC and thresholds for regular Gallager codes
with message node degreeL = 3.

evaluating a one-dimensional integral, and also it seems to be
a relatively accurate estimate of as verified in [9]. For
this reason, we compare the thresholds computed by density
evolution to both and to the Shamai–Laroia conjecture.

Fig. 11 indicates the position of the threshold SNRfor two
regular Gallager codes (the code of rate and the

code of rate ) along with the SNR values for
the Shamai–Laroia conjecture at these rates and the best known
value for computed by the Arnold–Loeliger method [9].
(Again, note that for this channel, numerical evaluations show

.) Also shown in Fig. 11 are the SNR values for
which simulated Gallager codes of lengths
achieved bit-error rates of . First, observe that the thresh-
olds accurately predict the limit of code performance as the
block length becomes very large. Next, observe that for the
code of rate , the threshold is tight (tighter than
the Shamai–Laroia conjecture), establishing that regular Gal-
lager codes are relatively good codes for high rates. For the code

of rate , the threshold is far away from the SNR
values corresponding to and the Shamai–Laroia conjec-
ture, respectively, suggesting that good Gallager codes in the
low-rate regime should be sought among irregular codes [14],
[44].
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Fig. 11. Comparison of bit-error rate simulation results for finite-block-length Gallager codes of ratesr = 0:5 andr = 0:9 toC and to the density evolution
thresholds and to the Shamai–Laroia conjectured bound.

C. The BCJR-Once Bound

Due to the high computational complexity of the BCJR
algorihm, several authors suggest applying the BCJR step only
once [33], [45] and subsequently iterating the message-passing
decoding algorithm only within the code subgraph of the
joint channel/code graph (see Fig. 3). Clearly, this strategy
is suboptimal to fully iterating between the channel and the
code subgraphs of the joint channel/code graph, but does
provide substantial computational savings, which is of particular
importance for on-chip implementations. The question that
remains is how much does one lose in terms of achievable
information rate when this strategy is applied. We develop
next what we call theBCJR-oncebound which
answers this question.

Let be a realization of a random channel input sequence
. Let be a realization of the channel output sequence.

Let be the random variable representing the message
passed from theth trellis node to the variable node in the first
round of the sum–product algorithm (i.e., it is the output of the
BCJR algorithm applied once in the first iteration of decoding).
Denote the vector of realizations by , which is
a realization of a random vector . We assume that the input
sequence is i.u.d., and define the BCJR-once bound as

-

(48)

Two straightforward properties can be established for the
BCJR-once bound.

Property 1:

-

Proof: The BCJR algorithm computes

So, is a sufficient statistic for determining from
(without knowledge of the code). Therefore (see, e.g., [2, p. 37]),

.

Property 2:

-

Proof: Let denote the conditional entropy of
given , and let denote the entropy of . From

the independence bound [2, p. 28] it follows that

If is a vector of i.i.d. random variables, we have

(49)

Evaluated when is a Bernoulli- random (i.u.d.) se-
quence, the right-hand side of (49) is - , in the limit

, and the left-hand side is .

Further, we have the following result for the BCJR-once
bound - if we “disregard the channel memory.”

Proposition 2: Let the channel input and the BCJR-once
output form amemorylesschannel. For such a channel, any
rate - is achievable.

Proof: The proof follows the proof of Theorem 8.7.1 in
[2, pp. 198–206].

In view of the definition (48) and Proposition 2, it is tempting
to refer to - as the BCJR-oncecapacity(or rate) in-
stead of the term we chose—the BCJR-oncebound. However,
it is easy to show that the value - is not a capacity
(nor a rate) of a meaningful physical channel. This is because
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the physical channel is not memoryless as assumed
in Proposition 2, and we have

-

On the other hand, we believe it is appropriate to refer to
- as a bound because in Section V-D we show

that the rate achievable by message-passing decoding of
randomly constructed Gallager (coset) codes is upper-bounded
by - .

The BCJR-once bound - for the channel in (1)
can be computed by i) running the BCJR algorithm on a very
long trellis section, ii) collecting the outputs, iii) quantizing
them, iv) forming a histogram for the symbol-to-symbol tran-
sition probabilities, and v) computing the mutual information
of a memoryless channel whose transition probabilities equal
those computed by the histogram. Another way is to devise a
method similar to the Arnold–Loeliger method for computing

(see [9]). First, we note that for i.u.d. input symbols,
. Thus, the problem of computing -

reduces to the problem of computing

(50)

where is the binary entropy function defined as
. For a given channel output

realization , the BCJR algorithm computes .
So, we can estimate (50) by generating an-long i.u.d. input
sequence, transmitting it over the channel and running the BCJR
algorithm on the observed channel output to get

for every . The estimate

-

converges with probability to - as .
The BCJR-once bound - (computed in the manner

described above for ) is depicted as the dashed curve
in Fig. 12 (the same figure also shows three other curves:
1) the curve for as computed by the Arnold-Loeliger
method, 2) the thresholds presented in Section V-B, and 3) the
BCJR-once thresholds for regular Gallager codes which are
presented next in Section V-D).

D. BCJR-Once Thresholds for Gallager Codes

Just as we performed density evolution for the full
sum–product algorithm over the joint channel/code graph,
we do the same for theBCJR-onceversion of the decoding
algorithm. The only difference here is in the shape of the
depth- message flow neighborhood, while the general method
remains the same. Denote by - the noise toler-
ance threshold for the BCJR-once sum–product algorithm
for a Gallager-code/ISI-channel combination. The threshold

- can be computed by density evolution on a tree-like
message-flow neighborhood assuming that the trellis portion

of the sum–product algorithm is executed only in the first
decoding round.

Proposition 3: Let be the rate of a Gallager code and
let - be the BCJR-once noise tolerance threshold
(computed by density evolution using i.u.d. inputs). Then

- , where - is the BCJR-once bound
evaluated at the noise standard deviation - .

Proof: The threshold - is computed using the
density evolution method described in Section IV-A, where the
trellis evolution step is executed only in the first round. Thus, the
threshold - is computed as the threshold of a Gallager
code of rate on a memoryless channel, whose channel law
(conditional pdf of channel output given the channel input) is
given by

Here is the output of the windowed BCJR algorithm when
the window size is , and clearly, due to the channel symmetry

As evident from the density averaging in the trellis portion of
the density evolution, the function is the

average conditional pdf of , taken over all conditional pdfs
of conditioned on under the constraint ,
i.e.,

For this channel, when the noise standard deviation is, the
channel information rate is , where

. Similar to the proof of Proposition
1, we use a Gallager code where the coset vector is chosen
uniformly at random in each block transmission. For this
Gallager code of rate, the transmitted symbols are i.u.d. From
the concentration theorem, we have that if - ,
then the probability of decoding error is arbitrarily small. Since
the probability of error can be made arbitrarily small,must
satisfy - . Now, let , and we get

- - -

Again, we choose the family of regular Gallager codes with a
constant variable node degree and a varying check node
degree . The channel is with AWGN.
The BCJR-once thresholds are given in Table II, and the corre-
sponding plot is given in Fig. 12. Fig. 12 shows the BCJR-once
bound derived in Section V-C. It can be seen that the regular
Gallager codes have the capability to achieve the BCJR-once
bound at high information rates if the BCJR-once version of
the message-passing decoding algorithm is applied. For com-
parison, Fig. 12 also shows the curve for as computed
by the Arnold–Loeliger method [9]. (It can be numerically ver-
ified for this channel that .) The figure shows
that the BCJR-once bound is very close to at low SNRs,
but is about 1 dB away from at higher information rates.
The difference between the full sum–product threshold curve
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TABLE II
BCJR-ONCE THRESHOLDS FORREGULAR GALLAGER CODES(L = 3); CHANNEL h(D) = � D

Fig. 12. The BCJR-once boundC - and the BCJR-once thresholds
for regular Gallager codes withL = 3 compared to capacityC and full
sum–product thresholds (computed in Section V-B).

and the BCJR-once threshold curve also seems to be closely ap-
proximated by the difference between and - .
We thus conclude that, say at rate , we can expect to see
a loss of 1 dB if we execute the BCJR algorithm only once at
the very beginning of the sum–product decoding algorithm (as
opposed to executing the trellis sum–product algorithm in every
iteration of the decoder).

VI. CONCLUSION

In this paper, we have developed a density evolution method
for determining the asymptotic performance of Gallager codes
over binary ISI channels in the limit , where is the
block length. We proved two concentration theorems: 1) for a
particular transmitted sequence and 2) for a random transmitted
sequence of i.u.d. symbols. The noise tolerance threshold was
defined as the supremum of noise standard deviations for which
the probability of decoding error tends to zero as the number of
rounds of the decoding algorithm tends to infinity. We also es-
tablished that the code rateversus the noise tolerance threshold
traces a curve that is upper-bounded by the i.i.d. capacity of bi-
nary ISI channels. We have computed the thresholds for regular
Gallager codes with three ones per column of the parity-check

matrix over the dicode channel and
showed that they get very close to the limit of i.i.d. capacity in
the high code rate region. For low code rates, regular Gallager
codes do not perform close to the i.i.d. capacity. A good low-rate
code should, therefore, be sought in the space of irregular Gal-
lager codes. We showed via Monte Carlo simulations that codes
with increasing code lengths approach closely the threshold
computed by density evolution.

We also explored the limits of performance of Gallager codes
if a slightly more practical sum–product algorithm is utilized.
Since the computational bottleneck in the sum–product algo-
rithm for ISI channels is the trellis portion of the algorithm, it
is computationally advantageous to run the trellis portion of the
algorithm only once at the beginning of the first decoding iter-
ation, i.e., the “BCJR-once” version of the algorithm. This al-
gorithm suffers from a performance loss compared to the full
sum–product algorithm. We computed the maximal achievable
rate of the BCJR-once sum–product algorithm and showed that
for the dicode channel , the asymptotic
performance loss at high rates is about 1 dB, while for low rates,
the loss is minimal. Approximately, the same difference (at most
1.1 dB) was observed for the thresholds computed for the full
sum–product algorithm and the BCJR-once version.

We conclude the paper by pointing out some remaining chal-
lenges in coding for binary ISI channels. While can now
be numerically evaluated [9], [10], the computation of the ca-
pacity remains a challenge. A method for lower-boundingby
extending the memory of the source is presented in [9], sug-
gesting that at high rates,and are close to each other (at
low rates, and differ substantially). In channels of prac-
tical interest, i.e., channels with signal-dependent noise [11],
due to the signal-dependent nature of the noiseand
may not be close to each other even in the high-rate region.
There is a need for a practical tool for computing the lower
bound on by optimizing the trellis transition probabilities of
an extended-memory source [9]. Another challenging problem
is to move the performance thresholds of practical codes be-
yond . A viable strategy may be to somehow combine the
beneficial spectral-shaping characteristics of matched spectral
null codes [43] with Gallager’s low-density parity-check con-
straints, but it is not clear how to achieve this and still have a
relatively simple encoder/decoder. Even for linear binary codes
(i.e., non-spectral-shaping codes) the optimization of irregular
Gallager codes to achieve is also a challenging problem.
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APPENDIX

We briefly describe the windowed BCJR algorithm mainly
for completeness of the text. Our description uses a compact
matrix notation. For a conventional description, we refer the
reader to [8]. The notation in this appendix refers to Fig. 4.
We start with the messages available from the code portion
of the graph and available from the channel output, where

, and is the codeword length. First, set

(51)

Then, for every , form a diagonal matrix of size ,
where is the ISI length of the channel. Enumerate the states of
the finite-state machine with numbersthrough . Set the th
diagonal element of as

if th state is reached when the

channel input at time is

if th state is reached when the

channel input at time is .

Next, for every , form a matrix of size , with the
entry in the intersection of theth row and th column given by

if no trellis branch

connects statesand

otherwise

where is the noiseless channel output when the finite-
state machine corresponding to the ISI channel transitions from
state to state . Now, for each form the two vectors of size

For every , compute

(52)

(53)

For each , compute the vector as

(54)

where denotes the Hadamard (i.e., element-wise) product of
two vectors. Denote by the sum of the elements of

that correspond to the states that are reached if the channel
input is , i.e., the element is included in the sum if
state is reached when the channel input is. Similarly, denote
by the sum of the elements of that correspond to

the states that are reached if the channel input is. Then, the
message to the code portion of the graph is computed as

The windowed BCJR algorithm described in this appendix is
not the most economical method (in terms of memory). Our
aim was to give a compact description for completeness of the
text. In practice, to achieve a numerically stable method, the
multiplications in (52) and (53) need to be normalized such that
the vector obtained by successive multiplication from the left all
have the property that the sum of their elements equal to[8].
For other implementations of the windowed BCJR algorithm,
see [46]–[48].
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[11] A. Kavc̆ić, “On the capacity of Markov sources over noisy channels,”
in Proc. IEEE Global Communications Conf., San Antonio, TX, Nov.
2001, pp. 2997–3001.

[12] P. Vontobel and D. M. Arnold, “An upper bound on the capacity of
channels with memory and constraint input,” inProc. IEEE Informa-
tion Theory Workshop, Cairns, Australia, Sept. 2001.
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